### The CMS high eta upgrade electronics

(Summary of the main points of the first MPGD high eta electronics meeting 7<sup>th</sup> April 2011)

### LHC to LHC-upgrade System Styles Front-ends Powering Data transmission

### LHC style readout system – example TOTEM



### LHC style readout system – example TOTEM



Problem : LHC radiation hard custom components designed ~ 2003-2005.

Most of which face either obsolescence or are out of stock.

P. Aspell CERN

# LHC-Upgrade style readout system



The GBT is currently foreseen for many LHC upgrades : CMS tracker, HCAL, Atlas tracker, LHCb (all upgrades)

Generic projects in CERN for :

DC/DC Powering GBT Versatile Link

# **Basic system idea**



### **Front-ends**



### VFAT

A front-end "system on chip" providing fast trigger information and digitized data storage for the charge sensitive readout of multi-channel silicon and gas particle detectors.

0.25µm CMOS

2.5V power supply

P. Aspell CERN

Estimated 5 man year design time.

Designers : Paul Aspell Giovanni Anelli Walter Snoeys Herve Mugnier Jan Kaplon Kostas Kloukinas Pierre Chalmet

April 2011

7

# **VFAT2 Signal Flow**



### **Used in TOTEM for RP silicon, T1 & T2 GEM detectors**

### **Roman Pot – Silicon strips**







### **Common mode issues with GEMs**

Measurements in Totem T2 and in the MPGD lab show the minimum threshold is different between detectors and higher than it should be. There appears to be a high level of common mode pickup.



Detailed studies on-going in these two areas both in the lab and via simulation.

Aim : to arrive at proposals for improvements in :

| Detector design | Grounding, return paths and shielding | Front-end design :<br>VFAT3<br>GDSP | Readout |
|-----------------|---------------------------------------|-------------------------------------|---------|
|-----------------|---------------------------------------|-------------------------------------|---------|

## **Front-end families**

|                         | Analog<br>Memories                      | Binary              | DSP                                     |
|-------------------------|-----------------------------------------|---------------------|-----------------------------------------|
| Examples                | APV<br>PACE                             | VFAT<br>Pixels      | Saltro<br>GdSP                          |
| Age                     | Development<br>some years ago.<br>(LHC) | Now (LHC &<br>SLHC) | Future (SLHC ?)<br>(ILC/Clic)           |
| Threshold               | no                                      | analog              | digital                                 |
| Common mode subtraction | offline                                 | no                  | Yes (GdSP), on-line                     |
| Trigger output          | no                                      | yes                 | Yes<br>(lower noise, longer<br>latency) |

### SAltro16



16 channel demonstrator chip designed in 2009-2010, recently received back from the foundry awaiting test.

Technology : IBM 130nm CMOS



# **Digital processing**



### Systematic perturbation





Corrects on-chip for :

Systematic offsets, Baseline movements Ion tails Removial of glitches



### Zero-suppressed output

**DP Design and simulations : Eduardo Garcia** 

# The GDSP (a possibility)



### Estimate for optimal future power (static)

64 channels = Analog power ~ 320mW + Digital power ~ a few hundred mW. Approx. ~500mW / chip.

128 channels = Analog power 640mW + Digital power ~ some hundreds mW. Approx. ~900mW / chip.

Should be possible to get 7-8 mW/ch for everything on a 128 ch chip.

Power management & pulsing may then be applied to reduce power further.

### Powering





# Radiation Hard DC-DC Converters Development at CERN

G. Blanchot, F. Faccio, S. Michelis C. Fuentes, B. Allongue



### Some applications are still using ASICs that require more current than what AMIS2 can deliver.

- SM01C based on LT3605, delivers up to 5A at 2.5V (can be tuned), replacement for AMIS2.
- STV10 is identical to SM01C, but is intended to be bonded on staves (no connector).









DM current < -10 dBuA above 7 MHz

### GBT



### Radiation Hard Optical Link Architecture

#### Defined in the "DG White Paper"

- "Work Package 3-1"
  - Objective:
    - Development of an high speed bidirectional radiation hard optical link
  - Deliverable:
    - Tested and qualified radiation hard optical link
  - Duration:
    - 4 years (2008 2011)

#### **Radiation Hard Optical Link:**

- Versatile link project:
  - Opto-electronics components
  - Radiation hardness
  - Functionality testing
- GBT project:
  - ASIC design
  - Verification
  - Radiation hardness
  - Functionality testing



### **GBTX Block Diagram**



http://cern.ch/proj-gbt

## Summary



#### On-going work :

Lab: Investigation into common mode pickup : tests with 10cmx10cm GEM detectors and VFAT2 readout. Preparation for beam tests.

Office : Simulations of VFAT2 with GEM and System planning VFAT3 design ideas. GDSP design ideas.

#### Large GEM prototyping and design evolution to incorporate electronics.

P. Aspell CERN

Very early days but The big picture is taking shape:

Large GEM detectors Front-end ASIC ideas : VFAT3/GDSP ? Chip power and signal routing on the GEM. GEM design as a stand alone electronic module. Use generic R&D existing in CERN for the upgrades such as : DC/DC powering GBT and Versatile link optical communication and readout.