

Detection mechanism Sources of efficiency loss Material requirements

The idea

Preliminary ideas on conceptual design:

- · Neutron conversion to recoil protons using polyethylen entrance window.
- Photon conversion using a lead glass structure with optimised geometry and surface to volume ratio:

More detail: Hartmut Hillemanns' presentation in WG1.

Photon detection

Four-step process:

- Compton scattering of the y producing a recoil e⁻, or e⁺e⁻ production in the nuclear field;
- e⁻ traverses the absorber and enters the gas;
- transport of the e⁻ through the gas;
- amplification and detection.

Interactions of photons

[Adapted from the PDG, 2004 edition]

Cross section terms

At $\epsilon_{v} = 3$ MeV, Compton scattering dominates.

- At higher ϵ_y and high Z, pair production in the nuclear field takes over.
- The photo-electric effect is a smaller contribution at lower γ energy, which matters mainly for secondary γ 's.

Compton cross section – Klein Nishina

Total cross section:

$$2\pi \left| \frac{q_e^2}{4\pi\epsilon_0 m_e c^2} \right|^2 \left| \frac{1+a}{a^2} \left| 2\frac{1+a}{1+2a} - \frac{\log(1+2a)}{a} \right| + \frac{\log(1+2a)}{2a} - \frac{1+3a}{(1+2a)^2} \right|$$

where:

 $a = \epsilon_{\gamma} / m_{e}$

Compton scattering cross section

 ε_{γ} [MeV]

Compton mean free path

Try to estimate the mean free path λ via the e⁻ density: $n [e^{-}/cm^{3}] = Z [e^{-}/atom] \times N_{0} [atoms/mol] \times \rho [g/cm^{3}] \div A [g/mol]$

Which gives as Compton mean free path for Pb:

- $n = 82 \times 6.022 \ 10^{23} \text{ atoms/mol} \times 11.34 \text{ g/cm}^3 \div 207.2 \text{ g/mol}$ = 2.70 10²⁴ e⁻/cm³
- $\lambda \; = \; 1/(\sigma \, n)$
 - = 4.5 cm [$\sigma_{\rm KN}$ = 0.083 barn at ϵ_{γ} = 5 MeV]
- The mean free path for $\epsilon_{y} = 5$ MeV is:
 - $\lambda = 2.1 \text{ cm} !$ [NIST calculation]
- Pair-production (and the photo-electric effect) can not be neglected, nor can corrections for the atomic structure.

e⁺e⁻ Pair-production

- Nuclear field pair-production dominates the γ cross section at $\epsilon_{\gamma} = 6$ MeV in high Z materials.
- Either the e⁺ or the e⁻ will have an energy in excess of $\epsilon_y / 2 = 1.5-3$ MeV.

Photo-electric effect

For Pb, the highest Z element to be plausibly used in this project, the photo-electric effect plays a role mainly for secondary interactions.

[Graph from LBL]

γ -Mean free path in some materials

As provided by NIST:

	λ 3 MeV	$\lambda 4 \text{ MeV}$	λ 5 MeV	λ 6 MeV	Density	Z/A
	[cm]	[cm]	[cm]	[cm]	$[g/cm^3]$	[-]
W	1.27	1.28	1.26	1.23	19.30	0.403
Pb	2.08	2.10	2.06	2.01	11.34	0.396
Lead glass	3.94	4.08	4.10	4.06	6.22	0.421
Pyrex	12.40	14.30	15.80	17.00	2.23	0.497
PET	19.50	22.80	25.60	28.10	1.38	0.520
Bakelite	21.30	24.90	28.00	30.80	1.25	0.528

Required thickness

For a 20-25 % scattering probability, one needs $\sim \lambda/4$:

- ▶ Pb: ~ 5 mm,
- $\blacktriangleright W: \sim 3 \text{ mm}, \text{ pure, more for typical alloys}$
- Lead glass: ~ 1 cm, more for less dense glasses
- ▶ PET: ~ 6 cm.
- The ideal Compton absorber has:
 - high density,
 - $\blacktriangleright \text{ high } Z/A.$

Compton recoil electron properties

At \(\epsilon_{y}\) = 3-6 MeV,
 recoil e⁻ goes forward;
 \(\epsilon_{e}\) peaks just below \(\epsilon_{y}\).

This is independent of the absorber.

Klein Nishina formulae (cont'd)

Electron energy distribution $\frac{d\sigma}{d\epsilon_{e}} = \frac{\pi r_{e}^{2}}{a\epsilon_{y}} \left| 2 - \frac{2\epsilon_{e}}{a(\epsilon_{y} - \epsilon_{e})} + \frac{\epsilon_{e}^{2}}{a^{2}(\epsilon_{y} - \epsilon_{e})^{2}} + \frac{\epsilon_{e}^{2}}{\epsilon_{y}(\epsilon_{y} - \epsilon_{e})} \right|$

> γ -Angular distribution: $p = v'/v = 1/(1 + a(1 - \cos(\theta_{\gamma})))$

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\theta_{\gamma}} \propto p^2 \left| p + \frac{1}{p} - \sin\left(\theta_{\gamma}\right)^2 \right| \sin\left(\theta_{\gamma}\right)$$

e⁻-Angular distribution:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\theta_{e}} = \frac{\mathrm{d}\sigma}{\mathrm{d}\theta_{y}} \frac{(1+a)\sin^{2}(\theta_{y}/2)}{\cos^{2}(\theta_{e})}$$

Compton photon deflection angle

- When $\epsilon_{\gamma} = 1-10$ MeV, the γ is deflected little.
- This is independent of the absorber.

Compton recoil electron – direction

- Electrons of course only go forward.
- Distribution peaks even more forward than the γ at $\epsilon_{\gamma} > 1$ MeV.
- This is independent of the absorber.

Compton recoil electron – energy

The energy ϵ_e of the recoil e⁻ peaks at the kinematic maximum:

$$\epsilon_{e}^{max} = \epsilon_{\gamma} \frac{2a}{1+2a}$$
$$a = \epsilon_{\gamma} / m_{e}$$

This is independent of the absorber.

Energy loss of e⁻

- Recoil and pair-production electrons have $\epsilon_e \sim a$ few MeV when produced and less when they enter the gas.
 - ▶ \$\epsilon_e < E_{exc}\$: elastic scattering, vibrations, rotations
 $E_{exc} < E_{exc} < 11.5 \text{ eV in Ar}$ ▶ $E_{exc} < \epsilon_e < E_c$: ionisation, excitation, attachment
 $E_c < 7 \text{ MeV in Pb}, E_c \sim 40 \text{ MeV in Ar}$ ▶ $E_c < \epsilon_e$: Bremsstrahlung

e⁻ Stopping power and range – NIST

e⁻ Range in lead glass

Assumes:
 25 % PbO, 75 % SiO₂,
 ρ = 6.22 g/cm³.

Shown is the CSDA range calculated with ESTAR.

e⁻ Range in lead glass

▶ PbO (25 %) + SiO₂ (75 %) with density 6.22 g/cm³:

Energy	Stopping power	R	Range			
	Collision	Radiatio	n Tota	al C	CSDA	
MeV	MeV cm ²	'g MeV	cm^2/g N	/IeV cm ² /g	g/cm ²	mm
0.10	0 3.04	-3 0	.0152	3.058	0.020	0.03
1.00	0 1.39	95 0	.0440	1.439	0.574	0.92
2.00	0 1.39	95 0	.0828	1.478	1.263	2.03
3.00	0 1.42	.4 0	.1256	1.550	1.924	3.09
4.000	0 1.45	0	.1711	1.622	2.554	4.11
5.00	0 1.47	4 0	.2183	1.692	3.158	5.08
6.00	0 1.49	03 0	.2669	1.760	3.737	6.01

Catching electrons below 1 MeV is a challenge.

e⁻ Range in pure Pb and W

Þ Pb

Energy	Stopping power				Range			
	Collision	Rad	Radiation 7		CSDA			
Me	MeV cr	n^2/g M	leV cm ² /g	g MeV	cm ² /g	g/cm ²	mm	
3.00	0 1.	063	0.3427	7	1.406	2.381	2.10	
4.00	0 1.	095	0.4582	2	1.553	3.057	2.70	
5.00	0 1.	120	0.5773	3	1.698	3.673	3.24	
6.00	0 1.	142	0.6991	l	1.841	4.239	3.74	

W

Energy	Stopping power	Range				
	Collision	Radiation	Total	CSDA		
MeV	$V MeV ext{ cm}^2/g$	g MeV cm ²	/g MeV	cm²/g	g/cm ²	mm
3.000) 1.072	2 0.315	58	1.388	2.372	1.23
4.000) 1.102	0.424	48	1.526	3.059	1.59
5.000) 1.120	6 0.537	72	1.663	3.687	1.92
6.000) 1.140	6 0.652	23	1.798	4.265	2.22

Detour factor

- The projected distance covered by the electrons is smaller than the CSDA range by the *detour factor*.
- For heavy materials, the factor seems to be ~ 0.25.

[Tatsuo Tabata and Pedro Andreo, 10.1016/S0969-806X(98)00184-4]

Required granularity

The precise projected range remains to be worked out. Assuming a detour factor of 0.25 and a CSDA range of 4 mm (lead glass), absorber material more than 1 mm from a gas channel is likely to be inefficient.

Higher density absorbers require finer granularity.

Energy loss of high-energy e⁻ in Ar

- Secondary e⁻ production is minimal at $\epsilon_e \sim 1$ MeV with ~8 e⁻/mm.
- At $\epsilon_{e} \sim 10$ keV, an e^{-} is absorbed within 1 mm.
- Calculated with ESTAR.

Range of electrons in Ar

Electrons scatter in a gas. Range [cm] Measures of the range: $\sim R_{total}$: total path length R_{p} : practical range \overline{z} : cog in direction of initial motion $\sim \sigma_{1}$: RMS in direction of initial motion $\triangleright \sigma_{\mathbf{x}}$: RMS transverse to initial motion

Practical range: distance at which the tangent through the inflection point of the descending portion of the depth- absorbed dose curve meets the extrapolation of the Bremsstrahlung background (ICRU report 35, 1984)

Range of electrons in noble gases

[Formulae: L.P. Lapina et al., PNPI preprint 2022 (1994)]

Electron transport

Argon-based gases have $\sigma_{\rm T} \sim 250 \,\mu{\rm m}$ for 1 cm of drift which for a channel of length *l* and radius *r* gives:

$$\log = e^{-\frac{r^2}{2l\sigma_r^2}}$$

E.g. with r = 0.5 mm and l = 2 cm, losses are 37 %, while they are 2 % for r = 1 mm.

Packing ratios

Assuming r = 1 mm and 1 mm inter-hole distance, the absorber fraction would be 60 %.

For 1 cm net absorber, one needs 1.6 cm overall thickness.

Summary

Absorber:

Solution Assuming a high- ρ lead glass, 25 % conversion efficiency requires > 1 cm of absorber (net).

Gas channels:

in high-ρ lead glass, absorber material > 1 mm from a gas channel can go undetected;

channel diameter should be > 2 mm if length > 2 cm;

Density scaling:

lacktriangleright absorber thickness: $\propto \rho$,

- channel diameter: $\propto \sqrt{
 ho}$,
- lacktriangleright inter-channel gap: $\propto \rho$.