Electroluminescence yields in MicroMegas, THGEM and GEM

H. Natal da Luz¹, C.M.B. Monteiro¹, J.M.F. dos Santos¹, C. Balan¹, E.D.C. Freitas¹, J.F.C.A. Veloso², A. Breskin³, T. Papaevangelou⁴, I. Giomataris⁴

> ¹University of Coimbra, Portugal ²University of Aveiro, Portugal ³Weizmann Institute of Sciences, Israel ⁴Centre d'Études Nucléaires de Saclay, France

o Motivation;

 Experimental setups with different MPGDs and UV sensitive LAAPDs;

- Methods for determination of Electroluminescence yields;
- Results;
- Conclusions.

Motivation

 Rare event experiments (eg.: dark matter search, neutrinoless double beta decay) can take advantages of reading charge and scintillation light produced by MPGDs;

Decoupling of electronic noise;
Usually much better SNR.

MPGD scintillation vs. charge readout

MicroMegas

Dimensions are in mm

Gap: 50 μm Hole diameter: 25 μm

THGEM/GEM

Thickness: 0.4 mm Hole diameter: 0.4 mm Rim: 0.1 mm

(C) AN

7th RD51 Collaboration Meeting

Charge (a) and scintillation (b) pulse-height distributions in MM

.AAPD gain ~⁄30

7th RD51 Collaboration Meeting 13-15 April, 2011, CERN

MM EL Yield

$$N_{e,XR} = \frac{22100 \text{ eV}}{3.62 \text{ eV}} = 6.1 \times 10^{3}$$
$$N_{UV} = \frac{A_{Sc}}{A_X} \times \frac{N_{e,XR}}{QE}$$
$$2\pi \left(E_X\right)^{-1}$$

$$Y_{eff} = N_{UV} \times \frac{2\pi}{\Omega_{Sc}} \times \left(\frac{E_x}{w_{E_x}}\right)$$

$$N_{UV,e} = QE^{-1} \times \frac{G_{tot}}{G_{APD}}$$

$$Y_{eff} = N_{UV} \times \frac{2\pi}{\Omega_{Sc}}$$

MM charge gain in Xe

Maximum charge gain Vs pressure (Xe)

MM Charge gain fluctuations (Xe)

MM gain in scintillation-readout (C_{tot} = primary charge/charge out from LAAPD)

Charge-to-scintillation gain ratio

Absolute EL Yield "out" of MM (Xe)

Double mesh, uniform field scintillation gap yields

466 photons/e⁻/cm @ 4.1 kV/cm/bar

THGEM Gains in Xe

APD gain ~150

THGEM EL yield in Xe

Statistical fluctuations in THGEM

GEM gain in Xe

GEM EL yield (Xe)

GEM statistical fluctuations

THGEM in Ar

13-15 April, 2011, CERN

GEM in Ar

Conclusions

Table I – Maximum gain and scintillation yield for GEMs and THGEMs operating in argon and xenon at 1 bar and 2.5 bar.

		Xenon		Argon	
		1 bar	2.5 bar	1 bar	2.5 bar
GEM	Gain	1.5 × 10 ⁵	4 × 10 ⁴	5 × 10 ³	5 × 10 ³
	Yield	6 × 10 ³	1.5 × 10 ³	3 × 10 ²	3 × 10 ²
THGEM	Gain	1.2 × 10 ⁶	4 × 10 ⁴	1.2 × 10 ⁵	3 × 10 ⁴
	Yield	7 × 10 ⁴	2 × 10 ³	1.5 × 10 ⁴	4 × 10 ³

Double mesh, uniform field scintillation gap yields
466 photons/e⁻/cm @ 4.1 kV/cm/bar