Time Domain Reflectometer project for KLOE2 IT

- The Inner Tracker detector of KLOE2
- The readout plane geometry
- The Time Domain Reflectometer project
 - results & prospects
- Conclusions

On behalf of IT KLOE2 Group

The cylindrical GEM IT detector for KLOE2 experiment @LNF

- Implemented with <u>Cylindrical-GEM</u> detectors
- **4** independent tracking layers for a fine vertex reconstruction of K_s and η
- **200** μ m $\sigma_{r\phi}$ and 500 μ m σ_{Z} spatial resolutions with XV readout
- 700 mm active length
- from 130 to 220 mm radii
- 1.8% X₀ total radiation length in the active region

The cylindrical GEM IT detector for KLOE2 experiment @LNF

Inner Tracker Layout - CGem 4 Layers design

XV Readout

Peculiar XV readout designed for the cylindrical geometry
X Strips on a layer for r
 coordinate
V Strips at 40° formed by Pads connected by internal vias (~220.000 VIAs!)
Crossing of X and V gives Z coordinate

IT: large area test beam @ CERN-PS

- May 2010: Large area planar prototype built First large-area GEM (300x700 mm²)
- October 2010: at CERN-PS T9 beam-line with:
 - Final readout with XV pad-strip (220k vias)
 - GASTONE64 + Interface Board + General Intermediate Boards (GIB)+Software Interface

Gas: $Ar/CO_2 = 70/30$ Fields: 1.5-3.0-3.0-6.5 kV/cm V_{GEM} : 395-385-375=1155V and 390-380-370 =1140V

Trigger: 4 scintillators (2 upstream, 2 downstream) External Trackers: 4 planar GEMs w/650 µm pitch XY strips

GASTONE64 FE readout for IT

	Charge sensitivity	22 mV/fC ($C_{det} = 0 \text{ pF}$)
	Gain non-uniformity	< 6% (0 - 150 pF)
	Noise (erms)	~ 800 e ⁻ + 40 e ⁻ /pF
	Peaking time	80ns÷150 ns (C _{det} = 0÷100pF)
	Power consumption	~ 7.5 mW/ch
	Readout	Serial LVDS (100 Mbps)
GTN 64 B GTN 64 B GI 2 110 M25 110 GI 3 110 M25 1100 M25 1100 M25 11000 M25 11000 M25 1100000000000		
R13 (60, 50) R23 2 2 R13 (60, 50) R21 2 P15 R7 (60, 50) R21 2 MB2 R12 (50) R2	•Final production (500 chips) already received	

N. Channels

Chip dimensions

Input impedance

ips) already received •Test Bench Board will be received in 2 weeks Production of FEB will start soon

Main features

4.5x4.5 mm²

64

400 Ω

Front-End Board dimensions (120 Channels): 62x40 mm²

RD51 Collaboration Meeting A. Ranieri INFN Bari

IT Read Out connectivity test

the drawing on the right shows the foreseen run of a signal injected into a open line.

You see the two edges, the first at the input while the second edge occurs when the signal comes back after been reflected by strip's end

13/04/2011

Transmission line and characteristic impedance

 $\rho = \frac{R - Z}{R + Z}$

INFN Bari

High resolution TDC system test design

We have designed a circuit to check the strips integrity by measuring the timing of reflected signals.

We have implemented a digital method based on a single FPGA (max clock @ 200MHz), based on:

- A course counter with 4 ns resolution plus
- Time Digital Conversion by delay lines with a time resolution of ~100 ps

Very economic implementation based on one simple FPGA circuit (Xilinx XC3s400) only: •versatile •off-the-shelf component

Time Conversion by Delay Lines (basic idea)

10/25

High resolution TDC system test design

The system has been designed:

- 1. To check lines connectivity (continuity)
- 2. To discover possible shorts

The system is based on a *delay chain* implemented inside FPGA-CLB measuring the propagation time of the reflected signal injected onto a microstrip.

The system features a delay line implemented inside one FPGA which contains :

- •Analog interface towards strip
- •Delay line and control logic for TDC
- •Ethernet interface for data transmission
- •A logic for short-circuit detection is also included

11 / 25

TDC lack of linearity in FPGA

A Lack of linearity in conversion is due to different positioning and routing of blocks in FPGA. Moreover there is a **skew** of the clock signal timing chain.

Propagation Time between input CIN and output COUT of a slice ~ 120ps

Maximum skew of a clock signal within one "clock region" ~ 12 ps

13/04/2011

RD51 Collaboration Meeting INFN Bari A. Ranieri

High resolution TDC : calibration tests

System sensitivity (fitted value) = 101.45 ps/cm

Readout plane test system

 \mathbb{R}^2

Shorts report

Short circuits report generated on 21/03/2011 13:20:57

GND Short pins: Total GND short: 0

Pin to Pin shorts: Cluster 0 B2.P60 (B2.X2.2) [B2.X11] B2.P58 (B2.X2.3) [B2.X12]

Cluster 1 B2.P10 (B2.X5.3) [B2.X36] B3.P62 (B3.X2.1) [B3.X10]

Cluster 2 B2.P84 (B2.V3.2) [B2.V19] B2.P82 (B2.V3.3) [B2.V20]

Cluster 3

B3.P20 (B3.X4.6) [B3.X31] B3.P18 (B3.X4.7) [B3.X32]

Cluster 4

B3.P84 (B3.V3.2) [B3.V19] B3.P82 (B3.V3.3) [B3.V20]

13/04/2011

Total Pin to Pin clusters: 5

Graphical log

Anodic plane defects discovered

13/04/2011

RD51 Collaboration Meeting INFN Bari A. Ranieri

System features summary

- 120 channels/board
- A few seconds for full test (shorts and lengths)
- System flexibility (impedance matching)

Conclusions

- A very reliable test system is available in Bari to test the readout plane of I.T. detector in KLOE apparatus
- Once the massive readout planes production will start we will be ready to test them in a while.