

THE TECHNOLOGY TRANSFER NETWORK FOR PARTICLE PHYSICS: STATUS ON MPGD PILOT OFFER

RD51 Collaboration Meeting, CERN, 14 April 2011

Hartmut Hillemanns, Marie-Pierre Vidonne, CERN

TTN in a nutshell

Purpose

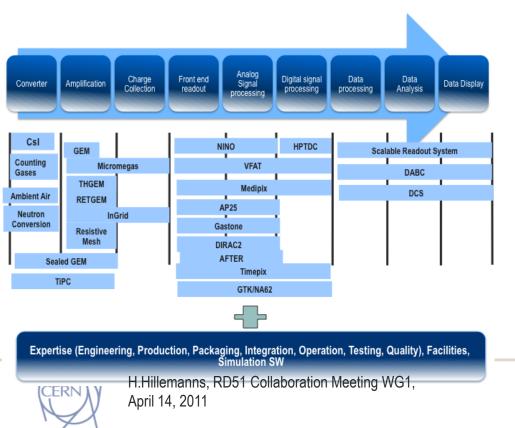
- Establish a genuine partnership / collaboration amongst institutes active in Particle Physics in MS with a view to enhancing Technology Transfer activities
- Develop the image of the PP community as a source of knowledge that benefits society

Programme of work:

• 3-year project to develop tools and methods in order to support a permanent operation

Financing

During the execution of the project, the TT
Network members will cover their own costs


*TT Network members on September 2010, ILL officially applied for full membership, KFKI, Hungary observer status

Institution*	Country
CEA/IRFU	France
CERN	
CHALMERS	Sweden
Copenhagen University	Denmark
CNRS/IN2P3	France
DESY	Germany
EPFL	Switzerland
GSI	Germany
INFN	Italy
JSI Jožef Stefan Institute	Slovenia
PSI Paul Scherrer Institute	Switzerland
National Technical University of Athens	Greece
LIP	Portugal
STFC, Scientific & Technology Facilities Council	UK
University of Sofia	Bulgaria
CPAN	Spain

Pilot Technology Offer for MPGD (RD-51)

and patents

- Classification of entries according to a conceptual gaseous detector
- User requirements elicitations for application devices in key domains
- Elaboration in collaboration with researcher of application device offers meeting user requirements and according to the conceptual gaseous detector layers

TT Network

How to build a technology offer in practice: n/y imaging

R

Case identification: combined neutron / gamma imaging for fast air cargo mass inspection in homeland security

Market needs and key user requirements for effective mass screening of air cargo containers:

- High resolution images over large areas (few m²)
- Accurate scanning without unpacking
- Less than 2 min scan time per container
- Radiation safety compliance
- · Low cost, reliable, easy to maintain

Method: Absorption measurement of 14 MeV neutrons and ^{60}Co γ 's (1.17 and 1.33 MeV)

$$R = \frac{\mu_n}{\mu_g} = \frac{\ln(I_n / I_n^0)}{\ln(I_g / I_g^0)}$$

Each material has a specific R

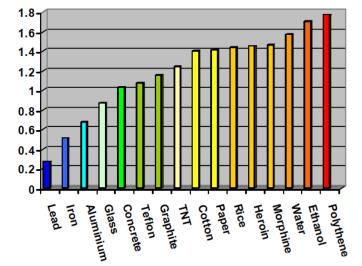
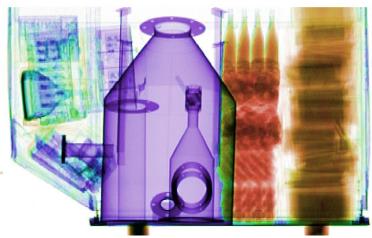



Figure 1. Calculated R values for a range of materials, using 14 MeV neutrons and ⁶⁰Co gamma rays.

J.E.Eberhardt, Y.L. (2006), Fast Neutron and Gamma-Ray Interrrogation of Air Cargo Containers, Proceedings, of Science (FNDA2006)

How to build a technology offer in practice: n/y imaging

Prototype scanner (CSIRO) tested with Australian customs (2006):


Conventional Technologies:

- Plastic scintillators (n)
- Csl (γ)

H.Hillemanns, RD51 Collaboration Meeting WG1, April 14, 2011

etwork

Can Particle Physics propose an alternative solution based on MPGD technologies from RD51 to meet user requirements ?

Identify detailed user requirements

Identify possible synergies with ongoing RD51 activities

 Are there similar developments ongoing within RD51's own research program ? (→ large area detectors for HEP !)

Validate with RD51 experts the availability of necessary technologies and support

- Performance & efficiency
- Readiness
- Production
- Etc.

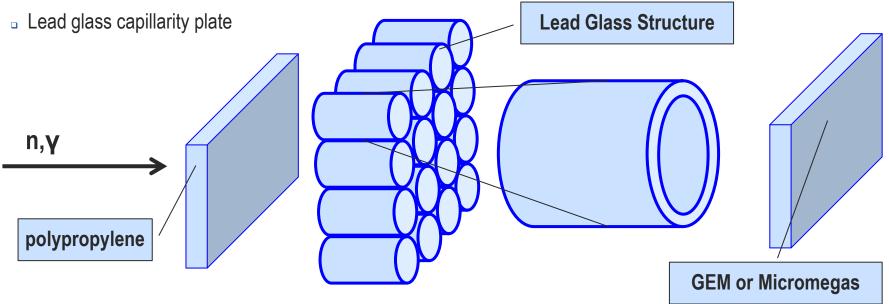
ERN

Develop "unique selling points"

• Why customs and others should use it ?

H.Hillemanns, RD51 Collaboration Meeting WG1, April 14, 2011

User requirementLarge areay/n ?Short scan timey/n ?Shape AND material infoy/n ?Device costsy/n ?......



First discussions with RD51 experts*

2-dim combined neutron / gamma imaging with GEM or MicroMegas detector stack.

Preliminary ideas on conceptual design:

- Neutron conversion to recoil protons using polypropylene entrance window.
- Photon conversion using a lead glass structure with optimised geometry and surface to volume ratio:

H.Hillemanns, RD51 Collaboration Meeting WG1, April 14, 2011

*Vladimir, Leszek, Maxim, Rob, Hans, Supratik TT Network

Open Issues

CÉRN

N detection efficiency:

• Few percent seem to be possible with polypropylene, but further simulations and a demonstrator needed

X-ray detection efficiency :

- Requirement: not less than a few percent for 3 -6 MeV photons
- Optimal structure for gamma converter (→ see Rob's talk in WG4)
- Availability and price of gamma converter for large area systems

Simultaneous or alternating n/gamma measurement:

Better if we don't need to discriminate between n/y

Charge multiplication structure, Readout structure

H.Hillemanns, RD51 Collaboration Meeting WG1, April 14, 2011 Operation, Integration and production

Answering these questions requires:

- More detailed simulations (expression of interest by Saha)
- building a small proof-of-concept prototype to attract industry and/or other research laboratories active in homeland security
- Project proposal, plan, funding schemes, resources, lab infrastructure, etc.

Experts welcome !!

TT Network

"Non-technological" tasks

Collaboration with Vienna university of economics, Institute of Entrepreneurship and Innovation:

- 5 students over 3 months to establish a "business plan" for the route-to-market of combined neutron gamma imaging for fast air cargo scanning
 - Market assessment: consolidation of key user requirements, trends, unique selling points, "hot" features
 - Identification of key players, expert forums, conferences and industry fairs
 - Existing solutions
 - Funding schemes

Visits of existing installations, interviewing of air cargo experts

Better understanding of market needs, operational aspects under real conditions, and customers

Identification of suitable industry and governmental agency contacts

HEP cannot build a complete scanner by itself

Ideal solution: make available MPGD technology package for collaborative R&D with academia and industry

An appropriate proposal for such collaborative R&D on large area detector systems requires:

- Better understanding of market needs and opportunities:
 - Finalise study with WU Vienna
- Better understanding of detector physics of combined neutron gamma detection
 - Carry out simulation studies

CFRN

- Building of a demonstrator prototype for a combined neutron gamma detection module
 - dedicated project proposal (objectives, planning, funding, staffing)

Final goal: optimise the pilot offer on MPGD technology for the homeland security sector:

• Technologies, expertise, knowhow, facilities, etc

Thank you for your attention

For more information and questions please contact:

Hartmut.Hillemanns@cern.ch