Thai High Energy Physics Consortium Meeting 2023 18-19 November 2023

Dark Dimension and Neutrino Oscillations

with Ignatios Antoniadis, Hiroshi Isono, and Mitesh Behera + the works of Apimook Watcharangkool

Auttakit Chatrabhuti **Chulalongkorn University** Bangkok, Thailand

Challenge for a fundamental theory

To describe both <u>particle physics</u> and <u>cosmology</u>

- Inflation from supersymmetry breaking?
- Swampland Program

Connecting inflation with beyond SM physics. (with Antoniadis, Isono, Knoops and Aldabergenov)

Combining String Theory (Swampland conjecture) with a positive cosmological constant leading to the "dark dimension" scenario with <u>an extra dimension of micron size</u> (or $\sim O(\text{meV})$)

Extra dimension

Arkani-Hamed, Dimopoulos and Dvali, Scientific American, August 2000

- Standard Model particles are localized on a 3 dimensional brane.
- Gravity can propagate inside the bulk (3+1 dimensional space)
- The extra dimension is compactified (circle with radius R_{\perp})

Validity of $1/r^2$ experiment $\Rightarrow R_{\perp} < 30 \ \mu m$

- Sterile neutrino ν_R can also propagate inside the bulk

Right-handed Neutrinos

Neutrinos' mass expected to be very small

There are 3 types of Seesaw models

Seesaw mechanism ⇒ Right-handed neutrinos

- How to distinguish effects from different seesaw models?
- Consider higher dimensional operator

- Heat Kernel expansion \Rightarrow calculate one-loop correction
- Obtained effective field theory
- Check with JUNO & other experiments

[This part is explored by Apimook Watcharangkool's group]

IOS

Neutrino and Extra dimension

- natural explanation of neutrino masses, introducing ν_R in the bulk
- recent analysis of ν -oscillation data with 3 bulk neutrinos

 \Rightarrow $R_{\perp} \lesssim 0.4 \ \mu \text{m}$ (or $m_{KK} \gtrsim 2.5 \ \text{eV}$) [Forero-Giunti-Ternes-Tyagi '22, Roy 23]

- from a 4-dimensional perspective, each of the bulk neutrinos can be decomposed as an infinite tower of KK states with mass $m_i^{(n)} = \frac{\alpha_i^{(n)}}{R_\perp}$, $n = 0, 1, \dots \infty$
- $(\alpha_i/R_\perp)^2$ are the eigen value of the matrix $M_i^{\dagger}M_i$ satisfying the transcendental equation

$$\frac{\alpha_i}{\pi (m_i^D R_\perp)^2} - \cot(\pi \alpha_i) = 0$$

Let us consider the zero-mode, we have From ν -oscillation: $R_{\perp} < \frac{1}{2\sqrt{\Delta m_{31}^2}}$

This gives the theoretical bound: $R_{\perp} \lesssim 2 \ \mu$ m.

Adding bulk neutrino masses

• the bound can be relaxed in the presence of **bulk** ν_R -neutrino masses C_i , with (modified) transcendental equation

$$\frac{(c_i R_\perp)^2 + (m_i^D R_\perp)^2 \pi c_i R_\perp + (\tilde{\lambda}_i)^2}{\pi \tilde{\lambda}_i (m_i^D R_\perp)^2} - \cot(\pi \tilde{\lambda}_i) = 0$$

with
$$\tilde{\lambda_i} = \sqrt{(\alpha_i)^2 - c_i^2 R_{\perp}^2}$$
.

• For the zero-modes with small eigen values $\alpha_i^{(0)} < c_i R_{\perp}$,

$$\tilde{\lambda_i} \Rightarrow \lambda_i = \sqrt{c_i^2 R_\perp^2 - (\alpha_i)^2}$$
 with

$$\frac{(c_i R_\perp)^2 + (m_i^D R_\perp)^2 \pi c_i R_\perp - (\lambda_i)^2}{\pi \lambda_i (m_i^D R_\perp)^2} - \coth(\pi \lambda_i) = 0$$

[L. A. Anchordoqui, I. Antoniadis and J. Cunat, ArXiv:2306.16491]

- No theoretical bound on R_{\perp}
- Dark dimension with $R_{\perp} \sim 5 10 \ \mu {
 m m}$ is possible?

Mass of the 0thmodes and KK modes

- With this setup, the model depends on five parameters: R_{\perp} , m_1^D , c_1 , c_2 and c_3 .
- Let use focus on the case $\,\alpha_1^{(0)} \ll c_1 R_{\perp}$, mass formula for the zero modes

$$m_{1}^{(0)} = \frac{1}{R_{\perp}} \sqrt{\frac{2\pi c_{1}^{2} (m_{1}^{D})^{2} R_{\perp}^{4} (1 - \coth(\pi c_{1} R_{\perp}))}{\pi^{2} c_{1} (m_{i}^{D})^{2} R^{3} \operatorname{csch}^{2} (\pi c_{1} R_{\perp}) - 2c_{1} R_{\perp} - \pi (m_{1}^{D})^{2} R_{\perp}^{2}}}}{m_{2}^{(0)} = \sqrt{\left(m_{1}^{(0)}\right)^{2} + \Delta m_{21}^{2}}},$$
$$m_{3}^{(0)} = \sqrt{\left(m_{1}^{(0)}\right)^{2} + \Delta m_{31}^{2}}}$$

• For the KK excitations, in the limit $m_i^D R_{\perp} \ll 1$, mass formula for the $n^{\rm th}$ KK mode is

$$m_i^{(n)} = \sqrt{c_i^2 + \frac{n^2}{R_\perp^2}} + \frac{1}{R_\perp} \frac{n^2 (m_i^D R_\perp)^2}{\left(n^2 + (c_i R_\perp)^2\right)^{3/2}} , i = 1, 2, 3$$

 Next, use oscillation data to put constraints on param space experiment (DUNE, JUNO, ...)

Some Results

Lensing Effects on ν -oscillation

• Lensing by geometry (curved space)

[H. Chakrabarty, <u>A. Chatrabhuti</u>, D. Malafarina, B. Silasan, T. Tangphati, **JCAP 08** (2023) 018, ArXiv:2302.01564]

• Lensing by Dark Dimension (flat space)

Neutrino source

Thai High Energy Physics Consortium Meeting 2023 **18-19 November 2023**

ขอบคุณครับ - Thank you

