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Introduction
Motivation

CERN maintains dense & diverse physics program
Imposes challenges on accelerator operation

~ 1142
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* Machine availability & beam quality critical for

it = experiments to reach physics objectives
m® mREX/HIE ; . .
T —= = * Broad spectrum of machine & beam types requiring
i D T high flexibility and efficient parameter tuning

Ideally, machine operation based on physics models
Not always possible: complexity, completeness, online evaluation, ... - .

Learning

Machine

Explore new technologies
* What does the optimization & ML toolbox have to offer?

Learning

* Will discuss specific aspects of reinforcement learning (RL) today




Introduction

RL and the machine learning landscape

* Goal: find structure in data
 Data: unlabelled samples (x;)

Other approaches
> Classic control

> Numerical and Bayesian optimization,
(GP-)MPC, fuzzy logic, etc.

> Some of them very suitable for
accelerator-related problems

Image
Classification

Customer Retention

e Goal

Idenity Fraud Classification Diagnostics e Data

Detection

Advertising Popularity

Supeersed Prediction
Learning Weather

Machine Ye
Learning

Regression

Market
Forecasting

Prediction
Estimating

life expectancy

: find mapping f: x; — y;

: labelled samples (x;,v;)

e Goal: learn to take optimal decisions

* Data: agent actively interacts with

environment coll
rewards

ecting samples &

Image source



https://www.linkedin.com/pulse/business-intelligence-its-relationship-big-data-geekstyle/
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Reinforcement learning (RL) DeepMind, 2022: AlphaTensor ‘% - o
State-of-the-art > Improve computational efficiency of v v _ \

matrix multiplication " ﬁ A ) A

> Benefits countless fields
RL agent discovered more efficient
algorithms than developed by humans -

A\

Updated
model
A

DeepMind & EPFL, 2022: Tokamak control
> Maintaining plasma within tokamak requires
high-dimensional, high-frequency, closed-
loop control using magnetic actuator coils
> RL agent successfully trained as magnetic
controller

A
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UZH & Intel Labs, 2023: Drone racing e %

; & . R Rremee ﬁ' E

> RL agent beats human drone racing Z
champions in real environment

> Training in simulations with mixed-in
residual models from real data

OpenAl, 2019: Hide and seek

and more ... 5


https://openai.com/blog/emergent-tool-use/
https://www.deepmind.com/open-source/alphazero-resources
https://www.nature.com/articles/s41586-022-05172-4
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-023-06419-4

Reinforcement learning (RL)
... in a nutshell

Trial-and-error learning

* Agent takes actions in environment and collects rewards
* Goal

* learn optimal behavior <> maximize return G,
* sum of discounted, future rewards

Gt = Yk=0V" 1tex  withy € (0,1)

state

reward

Tt+1

Agent
| Agent |

r

-

v St+1
€

* Policy 1t: encodes agent’s behavior — “what action to take in a given state?”

* Can be solved in various ways: many kinds of algorithms exist

Example: Pacman

Reward: food (+), ghosts (-)

\_

Environment ]<7

action
a;

Sutton & Barto

State: where am I? Where are ghosts, snacks, cookies?
Actions: up, down, left, right

Return: how much food am | going to eat over time

Policy: given state, should | go up, down, left, or right?


https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

Reinforcement learning (RL)

Algorithm zoo

RL Algorithms
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Focus on Q-learning
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Model-Based RL
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Learn the Model Given the Model
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OpenAl — spinning up

> Can understand a large selection of RL algorithms, and this talk

> Also covers algorithms mostly employed for CERN RL applications so far


https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Q-learning
How does it work?

* Use Q-function Q(s, a) to estimate return G, = Y., _, V" 7:4x for every (s, a) pair

 Qanswers: “In a given state, what is the best action to take to maximize return?”
Greedy policy: a; = arg max, Q(s;, a’)

!
Q(sp,ar) =1 +y maxy Q(Setq,a")

* lterative approach based on temporal difference (TD)
rule using collected agent-environment interactions R I

learnin
g TD error /
rate a;

Q(se, ar) « Q(sg,ae ) + a [ + ymaxy Q(seqq,a’) — Q(Se, ar)] T
target (new best guess) pre:;’)ilgtion Sti1 T+ t+1
* Bootstrapping: update Q(s;, a;) using target based on estimate. \
“Moving target”: training could be unstable ©  double Q-learning At+1 @ °

* Q-function represented by e.g.: table, parametrized model (neural network, ?) Time



Q-learning

An example: Q-table

+30

AT

T -10

RL lecture @TU Darmstadt

Episode 2400

R Fomm e R
up | down | left | right
—————— S S
27.4 | 22.1 | 22.1 | 18.4
23.4 | 26.1 | 23.4 | 28.7
28.7 | 18.4 | 26.1 | 28.7
24.7 | 18.4 | 27.4 | 30.0
30.0 | 24.7 | 18.4 | 24.7
0.0 | 0.0 | 0.0 | 0.0
—————— e e o et

N.B.: we often deal with (large)
continuous state-action spaces

30 ——
20
o
=
g
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c
0 -
| | | I | I
0 500 1000 1500 2000 2500
Episode

Q(sg, ar) < Q(s,ar ) + a [ry + y maxy Q(Se4q,a’) — Q(Se, ar)]

23 4 24.7
234428727 4.4.30.0 %
 / v
26.1 18.4
27 4 28.7 30.0
22,14_4_’184 26“8.7 18‘4‘_4_’24,7
v
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greedy
policy
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>
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https://github.com/aoeftiger/TUDa-NMAP-11

Q-learning
Deep Q-learning (DQN)

Episode 2400

+—— - +———— +———- +—-— + O O

| s\a | up | down | left | right | O O )

Fm——————— Fm————— Fmm———— tm————— Fmm————— + O S. a

| (0, 0) | 27.4 | 22.1 | 22.1 | 18.4 | : . . O Qo '.1)

| (0, 1) | 23.4 | 26.1 | 23.4 | 28.7 | s . . : :

| (1, 0) | 28.7 | 18.4 | 26.1 | 28.7 | O O O O Q(s,am-1)
| (1, 1) | 24.7 | 18.4 | 27.4 | 30.0 |

| (2, 0) | 30.0 | 24.7 | 18.4 | 24.7 | O O O O _Q(S'am)

| (2, 1) | 0.0 | 0.0 | 0.0 | 0.0 |

¥ N NN Fom A NV + O O

e Q-function of continuous or very large state-spaces can no longer be represented by a table

* Replace table by a neural network: deep Q-learning (DQN)
* universal function approximator
» great interpolator (e.g. for unseen states)

* Train network weights using temporal difference learning

* Does not yet solve the continuous action problem: see e.g. actor-critic schemes




RL challenges

... for accelerator applications, but not only

Sample efficiency

> How many agent-environment interactions are required for convergence?

> Relevant for particle accelerator control given cost of beam time (online training)

* Reward engineering
> Alignment: getting the objective right

“Making sure the agent does what we want it to do”

e State definition
> ldeally “fully observable”
> Limited beam instrumentation
> Can be a real RL show-stopper

e Parameter drifts

> Dependencies we can not easily include in our state

e Safety
> Particularly a concern during exploration
> There are ways to add safety to RL agents

Stuart Russell

= -

P

Human
(101'1'1],)211’1 ble

\/ and the Problem of Control 0

ar (i\f > ¢s > arXiv:2205.10330

Computer Science > Artificial Intelligence

[Submitted on 20 May 2022 (v1), last revised 20 Feb 2023 (this version, v4)]

A Review of Safe Reinforcement Learning: Methods, Theory and Applications
Shangding Gu, Long Yang, Yali Du, Guang Chen, Florian Walter, Jun Wang, Yaodong Yang, Alois Knoll

Reinfarremant learnina (R hac arhisued tramaendaiic ciirrace in many ramnley daricinn makina racke When it ramac tn denlavina R in

https://arxiv.org/abs/2205.10330
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RL challenges

... for accelerator applications, but not only

* Sample efficiency

> How many agent-environment interactions are required for convergence?
Focus today

> Relevant for particle accelerator control given cost of beam time (online training)

Stuart Russell
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RL challenges

Sample efficiency

How to improve sample efficiency?

* Reliable simulations / surrogate models
Train RL agent on model, then deploy in real world (sim2real)
* Choice of algorithm
> Model-based RL: learn model explicitly and train agent on that (= planning)
> Quantum RL?

[ Model-free RL J [ Model-based RL ]
Gradient-free  Policy-gradient  Actor-critic " ,
algorithms methods methods Q-learning Deep RL Shallow RL
<€ >

Less efficient quantum RL (?) More efficient
(more samples) (fewer samples)
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Beyond classical RL
Free energy based approach

Q-learning performance depends on type of
function approximator we use for Q(s, a)

> Classical deep Q-learning (DQN)
Feed-forward neural net

> Free-energy based RL (FERL)
Quantum Boltzmann machine (QBM)

Free energy-based reinforcement learning using a quantum processor

Anna Levit,! Daniel Crawford,! Navid Ghadermarzy,':?
Jaspreet S. Oberoi,’»® Ehsan Zahedinejad,' and Pooya Ronagh®

'1QBit, 458-550 Burrard Street, Vancowver (BC), Canada V6C 2B5
?Department of Mathematics, The University of British Columbia,
121-1984 Mathematics Road, Vancouver (BC), Canada V6T 1Z2

9School of Engineering Science, Simon Fraser University,
8888 University Drive, Burnaby (BC), Canada V5A 156

22, %

Recent theoretical and experimental results suggest the possibility of using current and near-future
quantum hardware in challenging sampling tasks. In this paper, we introduce free energy-based
reinforcement learning (FERL) as an application of quantum hardware. We propose a method for
processing a quantum annealer’s measured qubit spin configurations in approximating the free energy
of a quantum Boltzmann machine (QBM). We then apply this method to perform reinforcement
learning on the grid-world problem using the D-Wave 2000Q quantum annealer. The experimental
results show that our technique is a promising method for harnessing the power of quantum sampling

in reinforcement learning tasks.

S R P P
W tidt w4 T
P tidicit 4
1.0
0.8 1
2 0.6
:
E 0.4
0.2 1 E
DQN : FERL
0.0 T T T T T T T
0 10000 20000 30000 40000 0 100 200 300 400 500
Training Sample Training Sample
—— D-Wave'=0.5,5=2.0 —— SQA ChimeraI'= 0.5, = 2.0

D-Wave Classical B =2.0  —— SQA Bipartite ' = 0.5, = 2.0

—— SA Chimera § = 2.0 ~——— RBM
—— SA Bipartite § =2.0

https://arxiv.orq/pdf/1706.00074.pdf
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Beyond classical RL
Motivation: 1° study for 1D beam steering

Our first attempt: 1D beam steering problem for SPS NA

* Continuous state: beam position (1D)
* Discrete action: £A on magnet kick angle (1D)
* Reward: amount of beam on target

1D beam steering
North Area transfer line

Dipole (MSSB.220460) BPM (BSPH.240212) A@pmssh =-160.0 prad
Defocusing quadrupole /. Target (T4) A@mssh =-70.0 prad
Focusing quadrupole A@pssy = 120.0 prad
14 0.30

0.15 4

= L=
£ 0004 _
x ~ :‘ Tl
-0.15 \4
1
T T T T T T T T —0.30 T
0 20 40 60 80 100 120 140 160 180 171.0 171.3 171.6
s (m) s (m)

# training steps
(100 % optimality)

104 ]

103 4

102

101 ]

This looks interesting

How does FERL work?
Quantum Boltzmann machine
combined with quantum annealing

Can we test it on other accelerator
physics problems?

DQN

<
300x fewer network
50x fewer parameters

training steps _
-f- DQN, 1 hidden layer
-F- DQN, 2 hidden layers
-T- DQN, 3 hidden layers

:[ FERL 7. FERL 1x2 unit cells

“L" (Chimera graph)

162 1(‘)3 1(‘)4 165

# Q-net weights
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Beyond classical RL Hamiltonian of Ising spin model

Quantum Boltzmann machine ,\ 1
H = -3 Z Wy S;S; — FZ si
i i

5L <K 2 1

yc T vC T TC T lC T h ‘ ) Ground state energy is what we care
: : : : . bout, Q-val imator:

: . . : EZ ./ a(a\?(z?a)o:rEO value approximator
Mt NelEl BN

C

* Network of stochastic, binary (spin up / down) nodes: coupled qubits

* Every time we measure qubit states, they assume values according to probability distribution over spin states
 Different spin configurations correspond to the system’s different energy levels (2" states)

* Qubits influence each other through coupling weights wj; : this is how we “train” the QBM

* How to ensure system reaches ground state E,? (simulated) quantum annealing



Beyond classical RL
Annealing: looking for the system’s ground state

* Simulated annealing

> Method for function optimization inspired by metallurgy:
heating followed by controlled cooling for metals strong crystalline structure

> T high: exploration
> T — 0:system assumes final configuration, ideally in global optimum

* Quantum annealing: higher efficiency thanks to quantum tunneling
 Way to bring QBM into ground state and reliably get Q value for RL

A
Ll
"~ Think of objective Thermal
&0
o function as landscape annealing Quantum annealers
c ; . )
w with hillsfand yalleys > Different type of quantum computer:

non-gate based
» More qubits, but not as generic as

/ gate-based QPUs
quantum annealing » Suited for quadratic minimization

(tunneling allowed) problems

Spin configuration ¢



Beyond classical RL
Comparison to deep Q-learning

Difference lies in how we approximate and predict Q

DQN

* Network: typically fully connected feed-forward
* Provide state at input

* Q-value estimates at output for discrete set of actions

FERL

* Network: guantum Boltzmann machine

* Implements energy model: e.g. Ising spin model
* Provide state and action at input

* Get Q(s,a) through quantum annealing

* Why: allows mapping to real physical system
(= quantum annealer) with 1000s of qubits

________

_________

O
C:) O —Q(S' al)
(-) O Q(S, élm—l)
O O Q (s, am)
O

O @) @

| AN
O
N F A
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Beyond classical RL

Developing a hybrid actor-critic scheme for continuous action-space problems

* Q-learning: only discrete action-space environments

* Accelerator optimization requires continuous action space

develop hybrid actor-critic algorithm

* Based on Deep Deterministic Policy Gradient family: DDPG, TD3, etc.

> QBM replaces classical critic, train with FERL approach

> Does it work? Can we exploit high learning efficiency of FERL?
Intuitively: if critic learns faster, should benefit actor training via policy gradient

Q-learning
Actor
O O O O
_ - O O
O O O O |Q(s,aq) C;) : :
: : : : : $ 5./ Classical
O O O O Q(s,any) | W
O O Discrete set T
of m actions

o O

DDPG family
Critic
o 0 0
s O 0
O
n(sly) =a eR" QBM O Q(s,alf)
O
a: O O
O o o

Policy gradient: V,, (s|x)
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2"d study: 10D continuous beam steering
RL problem and training on quantum annealer

Framing the RL problem
> Action: deflection angles at 10 correctors
> State: beam positions at 10 BPMs
> Objective: minimize beam trajectory rms
> reward: negative rms from 10 BPMs

Inside the D-Wave
enclosure

AWS Service Charges $2,805.51
~ Braket $2,337.88
~ US West (Oregon) $2,337.88

Amazon Braket CompleteTask $98.08
$0.00019 per-shot for D-Wave-2000Q in US West (Oregon) Region  516,209.000 Quantum-Shot $98.08

Amazon Braket Task $2,239.80
$0.30 per-task for D-Wave-2000Q in US West (Oregon) Region 7,466.000 Quantum-Task $2,239.80

e beam

-~
| | Beam position monitor (BPM)
—==  Corrector dipole magnet
MCAWA.430029 Main dipole magnet
Focusing quadrupole
Defocusing quadrupole

—|I— BPM.430039
MCAWA. 430040

Ax

£ < MCA WA 490104 J\J
3 . - g Training: on D-Wave Advantage quantum annealer (QA)
£ @@@Q\ 2 4 8 8 10 12 14 5 (m)
g el 28 88 % 2959 8 0.0 o
8 N g 3 58 2 [uas 8 Objective
o 8 8% 9 sTzssos ~2.59
2EF fF 3 EEf:i & _
m (1] m m m m O o m (7]
E -s5.0
worn e 3 £
' S o0 . - g -7.5
83 8% g5 8% 8§ 2 —10.0 1 Initial reward
g% g% gé g% g 125 Final reward
aQ o oo ol o = D . . . .
5= 5 B2 53 & Exploring & learning Success Reward objective
5 bea L] L] L1y L) L —-15.0 *= . . . .
e T W Tk T 0 10 20 30 40
Episode

[ ol

Common beam line (6 m) Plasma cell (10 m) 25




2"d study: 10D continuous beam steering

# evaluation steps

Initial reward (mm)

Real (QA) vs simulated (SQA) quantum annealing
) 0.200 T— 0.30 T—
< - r=-3.30+x1.33 mm rr=-0.76x0.39 mm
= 0.7 0.1754 F;=-3.33+1.31 mm 0.25 | 7r=-1.03£0.30 mm
e 2 061 [ 0.150 4
> -
8 S 0.5 0.125 4 0.20
-
Q  go4 0.100 - 0.15 -
o ©
0.3 .075 4
Q g 0.075 0.10
(@) Z 0.2 0.050 -
S 0.05 1
g 0.1 0.025 - '
= 0.0 . ; : ; — 0.000 ; . —— 0.00 ; ; —
n 0 2 4 6 8 10 -10 -8 -6 -4 =2 -4 -3 -2 -1
# evaluation steps Initial reward (mm) Final reward (mm)
0.8 1 0.25 T— — 0.35 T— . .
: — ri=-276%x1.18 mm - rF=-1.70+0.23 mm | |
(¥ Fi=-3.61x126 mm | | 0.30 { 7r=-0.97+0.49 mm g i
I~ 0.20 - b ' :
= § 0.6 [— b 0.25 i
1 1 1
g 38 0.15 1 L !
S T - ! 0.20 !
Q) E 0.4 1 i
Q ¢ 0.10 - 0.151
— ‘6 -
S 2021 0.10
Q 0.05 -
oc 0.05
0.0 . . . —L 11 0.00 . . - . 0.00 —1 | +
0 2 4 6 8 10 -10 -8 -6 -4 =2 -4 -3 -2 -1

Final reward (mm)

But it works © !

Hyperparameter tuning with
simulated quantum annealing

Consistent performance on
simulated line

Agents minimize rms in 1 step
for 60 — 70 % cases

Both also perform fine on real
beamline

SQA-agent better on real line
compared to QA agent
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# evaluation steps

2"d study: 10D continuous beam steering
Comparison to a classical actor-critic

200 : : —»— Hybrid A-C
17.5 | | —¥— Classical A-C
o ! : * Slight improvement in terms of sample efficiency
s L 50 vs 70 interactions

' I I
100 : : * Very few interactions sufficient for both approaches

1 1

"~ : * Dynamics potentially too simple (linear problem)

5.0 | ]
! Move towards non-linear RL benchmarks
2.51
>3 20 40 60 80 100 120

# agent-environment interactions

[ Classical A-C, 50 interactions [ Hybrid A-C, 50 interactions Reward objective
[ Classical A-C, 70 interactions [ Hybrid A-C, 70 interactions
0.20 T T 0.30 T
101 = F=-3.41x134mm ¥ Fr=-1.38+0.62 mm
Fi=-324+1.16 mm & 0.25 | Fr=-0.64£0.25 mm
= 08 0.15 4 ri=-3.32x1.24 mm I ’ rF=-0.54+0.31 mm
g ’ F;=-3.25+1.26 mm 0.20 4 fr=-0.56+0.33 mm
(9]
- 0.6
I || 0.10 0.15
©
£ 0.4 -
£ 0.10 1
= 0.05 4
0.2 j 0.05 -
0.0 L ' —L 11 600 . : — 0.00 : . —L
0 2 4 6 8 10 -10 -8 -6 -4 -2 0 -4 -3 -2 -1 0

# evaluation steps Initial reward (mm) Final reward (mm) 27



3rd study: Cart-Pole v1

Overview

e Cart-Pole v1: official env from classic control problems domain

> Continuous state (4D): cart position & velocity, pole angle & angular velocity
> Discrete action (1D): push cart left or right

> Reward: +1 per iteration

> Max. episode length: 500 iterations

* Non-linear dynamics

* Agents
> Deep Q-learning: various architectures optimized with ray-tune
> FERL: 2x2 unit cell QBM (32 qubits), simulated QA and on D-Wave



https://www.gymlibrary.dev/environments/classic_control/cart_pole/

3rd study: Cart-Pole v1
Comparing DQN vs FERL

Deep Q-learning

=
o
o

s0] Preliminary
60 1
40
201

Successful agents (%)

FERL (simulated QA)

v

500

—e— Before training

4009 o After training

300 A
200

Average reward

100 A

500

400
300 A
200 A

Max. reward

100 4

T T T T T T
—e— Before training
1 —e— After training

T T T T T T T
0 10000 20000 30000 40000 50000 60000
Weight updates

0 10 20 30 40 50
Weight updates

60 70
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3rd study: Cart-Pole v1

Comparing with D-Wave hardware

Deep Q-learning

=
o
o

s0] Preliminary

Successful agents (%)

FERL (simulated QA)

Viaane

—e— Before training
1 —e— After training

T T T T T T T
—— |
—e— Before training
1 —e— After training

————o———o—o—0 09

FERL (trained on D-Wave)

T T T T T T T
0 10000 20000 30000 40000 50000 60000

Weight updates

T
70000

W‘\_/\

20 30 40 50 60 70
Weight updates

Step: 0
L ]
O
M
-y
o
q
(]
. L
Step: 0
-
I Q
=3
()
q
. L

17.5 20.0 22.5
Weight updates

e Big gain in sample efficiency and robustness for FERL vs DQN
e Similar performance on D-Wave hardware
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3rd study: Cart-Pole v1
More detailed study on FERL

Distribution of episode length before and after different
numbers of training iterations

> 50 independent agents
> 40 evaluation episodes

* Same 40 initial states for every agent

Count

Incredibly fast convergence

Next: how about non-linear

continuous action problems?

N..., = 100: all agents optimal
Nirain = 20 steps Ntrain = 40 steps Nirain = 60 steps Ntrain = 80 steps Nrain = 100 steps
2000 4 H=28.3 {1 u=307 {1 u=26.5 {1 u=326 { u=303
o= 28.0 o= 42.8 o= 24.8 o= 52.4 o= 37.0
17501 |, =352 1 u=3842 1 u=4716 1 u=4709 1 u=500.0
o= 220.3 o= 205.6 o= 112.3 o= 106.1 o= 0.0
1500 — 1 1 .
1250
1000
750
500 -
250 L
O T T T T - T T T T ~| T T T T H T ! T T T T T T
0 100 200 300 400 500 O 100 200 300 400 500 0O 100 200 300 400 500 O 100 200 300 400 500 O 100 200 300 400 500

Episode length

Episode length

Episode length

Episode length

Episode length
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4" study: Pendulum-v1

Continuous action space

[1.1.8.]

hs on Low [-1.-1.-8.]
Import

gym.make (" Pendulum-v1")

Classic DDPG (baseline)

—250 7
-500 1 WORK IN PROGRESS
=750 7

B
g —1000
&

—1250

Pure exploration
—=1500 1 {no weight updates)
—8— Train
—1750 1 —— Eval
(I) 5I lID ll5 2I0
Episode

T
25
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Some speculation

Why we think FERL could be more efficient than a classical approach?
Based on observations made ...

* Thought1l
> QBMs have higher expressivity compared to classical networks:
every node is defined by a probability distribution, rather than a simple marix multiplication
> Hence require fewer nodes than classical networks to represent Q-function

> This means fewer parameters to fit and hence less training data needed
> N.B.: classical network with few nodes failed to solve the task

* Thought 2

> QBM training itself is more efficient, i.e. fewer weight updates needed to reach convergence
> Reason: quantum annealing finds global optimum more reliably



Final remarks & outlook

* RLis powerful, but comes with a number of challenges, such as
achieving good sample efficiency

* Depends on Q-approximator & algorithm:
FERL shown to be more sample efficient than classical approach

* Developed hybrid actor-critic to solve continuous action problems

e Successfully trained on simulated & real quantum annealer
and evaluated on simulated & real AWAKE beam line

* FERL on non-linear Cart-Pole problem shows very fast convergence

* Outlook: try different quantum hardware, progress on non-linear
continuous action problem, explore alternative algorithm(s)

Hybrid actor-critic algorithm for quantum
reinforcement learning at CERN beam lines

Michael Schenk!, Elias F. Combarro?, Michele Grossi', Verena
Kain', Kevin Shing Bruce Li', Mircea-Marian Popa®’ and Sofia
Vallecorsa'

'European Organisation for Nuclear Research, Espl. des Particules 1, 1211 Meyrin,
Switzerland

2Computer Science Department - University of Oviedo, C. San Francisco 3, 33003
Oviedo, Asturias, Spain

3Politehnica University of Bucharest, Splaiul Independentei 313, 060042 Bucharest,
Romania

E-mail: michael.schenk@cern.ch

Abstract. Free energy-based reinforcement learning (FERL) with clamped quantum
Boltzmann machines (QBM) was shown to significantly improve the learning efficiency

Questions?

QUANTUM
COMPUTER
SUPPORT

BILLPROUD

"Have you tried turning it ON and
OFF at the same time?”
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Beyond classical RL
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lated vs real QA
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> Similar distribution and convergence time scales

-10

* QBM coupling weights trained with SQA and on QPU



Alternative approaches
RL with QAOA

Whp, train net
o

e QAOA: Quantum Approximate Optimization Algorithm

* Solver for combinatorial optimization problems: finds spin configuration with

minimum energy; not based on annealing, but more generic gate-based QPU

Wyn, train net
o

* (Can solve quadratic unconstrained binary optimization (QUBO) problems

* Works well, but simulations compute-intensive (~5.5 h for 100 interactions)
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https://qiskit.org/textbook/ch-applications/qaoa.html

Alternative approaches: quantum fuzzy logic controller

Evaluation on AWAKE beam line

@l = Fuzzification
L Interface

* Alternative control algorithm

* Fuzzy Logic is used to develop control systems based on linguistic rules = highly interpretable

* Quantum Fuzzy Control System (G. Acampora, R. Schiattarella, A. Vitiello)

Exploit exponential advantage in computing fuzzy rules on guantum computers
e Successfully evaluated on AWAKE beam line (no training required)
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Evaluation: on AWAKE beam line
Objective reached typically in 1 step
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https://ieeexplore.ieee.org/document/9869303

QUBO formulation

QUBO: quadratic unconstrained binary optimization problems

The kind of problems that quantum computers (annealers) solve efficiently

Example with 3 qubits
f(x1,%x2,x3) = =3x1 + X1 X, — X3 X3

QUBO matrix Q=
* On diagonal terms describe self-couplings, i.e. biases
» Off diagonal terms describe quadratic couplings between qubits

Run annealing 5000 times

[1 0 0]: 33.4 % of occurrences

[1 0 1]: 33.2 % of occurrences
[111]: 33.4 % of occurrences

Corresponds to our solution table




