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Introduction

CERN maintains dense & diverse physics program

Imposes challenges on accelerator operation

• Machine availability & beam quality critical for 
experiments to reach physics objectives

• Broad spectrum of machine & beam types requiring 
high flexibility and efficient parameter tuning

Motivation

Ideally, machine operation based on physics models
Not always possible: complexity, completeness, online evaluation, ...

Explore new technologies

• What does the optimization & ML toolbox have to offer?

• Will discuss specific aspects of reinforcement learning (RL) today



Introduction

• Goal: find mapping 𝑓: 𝑥𝑖 ⟼ 𝑦𝑖
• Data: labelled samples (𝑥𝑖 , 𝑦𝑖)

RL and the machine learning landscape

• Goal: learn to take optimal decisions

• Data: agent actively interacts with 
environment collecting samples & 
rewards

Other approaches

➢ Classic control

➢ Numerical and Bayesian optimization, 
(GP-)MPC, fuzzy logic, etc.

➢ Some of them very suitable for 
accelerator-related problems

• Goal: find structure in data

• Data: unlabelled samples (𝑥𝑖)

Image source

https://www.linkedin.com/pulse/business-intelligence-its-relationship-big-data-geekstyle/


Contents

• Introduction

• Reinforcement learning

• Beyond classical RL

• Results

• Conclusions & outlook



Contents

• Introduction

• Reinforcement learning

• Beyond classical RL

• Results

• Conclusions & outlook



Reinforcement learning (RL)
State-of-the-art

OpenAI, 2019: Hide and seek

DeepMind, 2016: AlphaGo

DeepMind, 2022: AlphaTensor
➢ Improve computational efficiency of 

matrix multiplication
➢ Benefits countless fields
➢ RL agent discovered more efficient 

algorithms than developed by humans

DeepMind & EPFL, 2022: Tokamak control
➢ Maintaining plasma within tokamak requires 

high-dimensional, high-frequency, closed-
loop control using magnetic actuator coils

➢ RL agent successfully trained as magnetic 
controller

UZH & Intel Labs, 2023: Drone racing
➢ RL agent beats human drone racing 

champions in real environment
➢ Training in simulations with mixed-in 

residual models from real data

and more …

https://openai.com/blog/emergent-tool-use/
https://www.deepmind.com/open-source/alphazero-resources
https://www.nature.com/articles/s41586-022-05172-4
https://www.nature.com/articles/s41586-021-04301-9
https://www.nature.com/articles/s41586-023-06419-4


Reinforcement learning (RL)

Trial-and-error learning

• Agent takes actions in environment and collects rewards

• Goal

• learn optimal behaviormaximize return 𝑮𝒕
• sum of discounted, future rewards

𝐺𝑡 = σ𝑘=0 𝛾
𝑘 𝑟𝑡+𝑘 with 𝛾 ∈ 0, 1

• Policy 𝝅: encodes agent’s behavior – “what action to take in a given state?”

• Can be solved in various ways: many kinds of algorithms exist

Sutton & Barto

... in a nutshell

State: where am I? Where are ghosts, snacks, cookies?

Actions: up, down, left, right

Reward: food (+), ghosts (-)

Return: how much food am I going to eat over time

Policy: given state, should I go up, down, left, or right?

Example: Pacman

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf


Reinforcement learning (RL)
Algorithm zoo

Focus on Q-learning

➢ Can understand a large selection of RL algorithms, and this talk

➢ Also covers algorithms mostly employed for CERN RL applications so far 

OpenAI – spinning up

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html


Learning Q

• Iterative approach based on temporal difference (TD) 
rule using collected agent-environment interactions

Q-learning
How does it work?

• Use Q-function 𝑄(𝑠, 𝑎) to estimate return 𝐺𝑡 = σ𝑘=0 𝛾
𝑘 𝑟𝑡+𝑘 for every (𝑠, 𝑎) pair

• Q answers: “In a given state, what is the best action to take to maximize return?”
Greedy policy: 𝑎𝑡 = arg max𝑎′ 𝑄(𝑠𝑡 , 𝑎′)

• Bootstrapping: update 𝑄 𝑠𝑡 , 𝑎𝑡 using target based on estimate.
“Moving target”: training could be unstable       double Q-learning

• Q-function represented by e.g.: table, parametrized model (neural network, ?)

TD error

𝑄 𝑠𝑡 , 𝑎𝑡 ← 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼 [𝑟𝑡 + 𝛾max𝑎′ 𝑄 𝑠𝑡+1, 𝑎
′ − 𝑄(𝑠𝑡 , 𝑎𝑡)]

target (new best guess)
old

prediction

learning 
rate

𝑄 𝑠𝑡, 𝑎𝑡 = 𝑟𝑡 + 𝛾 max𝑎′ 𝑄 𝑠𝑡+1, 𝑎
′

!



Q-learning
An example: Q-table

greedy
policy

+30

-10

-1

-5

𝑄 𝑠𝑡 , 𝑎𝑡 ← 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼 [𝑟𝑡 + 𝛾max𝑎′ 𝑄 𝑠𝑡+1, 𝑎
′ − 𝑄(𝑠𝑡 , 𝑎𝑡)]

N.B.: we often deal with (large) 
continuous state-action spaces

RL lecture @TU Darmstadt

https://github.com/aoeftiger/TUDa-NMAP-11


Q-learning
Deep Q-learning (DQN)

• Q-function of continuous or very large state-spaces can no longer be represented by a table

• Replace table by a neural network: deep Q-learning (DQN)

• universal function approximator

• great interpolator (e.g. for unseen states)

• Train network weights using temporal difference learning

• Does not yet solve the continuous action problem: see e.g. actor-critic schemes

𝑄(𝑠, 𝑎1)

𝑄(𝑠, 𝑎𝑚−1)

𝑄(𝑠, 𝑎𝑚)



RL challenges
… for accelerator applications, but not only

• Sample efficiency

➢ How many agent-environment interactions are required for convergence?

➢ Relevant for particle accelerator control given cost of beam time (online training)

• Reward engineering

➢ Alignment: getting the objective right
“Making sure the agent does what we want it to do”

• State definition

➢ Ideally “fully observable”

➢ Limited beam instrumentation

➢ Can be a real RL show-stopper

• Parameter drifts

➢ Dependencies we can not easily include in our state

• Safety

➢ Particularly a concern during exploration

➢ There are ways to add safety to RL agents
https://arxiv.org/abs/2205.10330

https://arxiv.org/abs/2205.10330
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https://arxiv.org/abs/2205.10330


RL challenges
Sample efficiency

How to improve sample efficiency?

• Reliable simulations / surrogate models
Train RL agent on model, then deploy in real world (sim2real)

• Choice of algorithm

➢ Model-based RL: learn model explicitly and train agent on that (= planning)

➢ Quantum RL?

quantum RL (?)
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Beyond classical RL
Free energy based approach

Q-learning performance depends on type of 
function approximator we use for 𝑄(𝑠, 𝑎)

➢ Classical deep Q-learning (DQN)
Feed-forward neural net

➢ Free-energy based RL (FERL)
Quantum Boltzmann machine (QBM)

DQN FERL

𝝅∗

https://arxiv.org/pdf/1706.00074.pdf

https://www.jmlr.org/papers/volume5/sallans04a/sallans04a.pdf
https://arxiv.org/pdf/1706.00074.pdf


1D beam steering
North Area transfer line

50x fewer 
training steps

DQN

FERL

300x fewer network 
parameters

Beyond classical RL
Motivation: 1st study for 1D beam steering

Our first attempt: 1D beam steering problem for SPS NA

• Continuous state: beam position (1D)

• Discrete action: ±Δ on magnet kick angle (1D)

• Reward: amount of beam on target

• This looks interesting

• How does FERL work?
Quantum Boltzmann machine 
combined with quantum annealing

• Can we test it on other accelerator 
physics problems?



• Network of stochastic, binary (spin up / down) nodes: coupled qubits

• Every time we measure qubit states, they assume values according to probability distribution over spin states

• Different spin configurations correspond to the system’s different energy levels (2N states)

• Qubits influence each other through coupling weights 𝒘𝒋𝒌: this is how we “train” the QBM

• How to ensure system reaches ground state E0?

Beyond classical RL
Quantum Boltzmann machine

Ground state energy is what we care 
about, our Q-value approximator: 
𝑄 𝑠, 𝑎 ≈ 𝐸0

(simulated) quantum annealing

E

c

E0

E3

E2
E1

……

Hamiltonian of Ising spin model



• Simulated annealing

➢ Method for function optimization inspired by metallurgy:
heating followed by controlled cooling for metals strong crystalline structure

➢ 𝑻 high: exploration

➢ 𝑻 → 𝟎: system assumes final configuration, ideally in global optimum

• Quantum annealing: higher efficiency thanks to quantum tunneling

• Way to bring QBM into ground state and reliably get Q value for RL

En
e

rg
y 

E

Spin configuration c

Thermal 
annealing

quantum annealing
(tunneling allowed)

Annealing: looking for the system’s ground state

Think of objective 
function as landscape 
with hills and valleys

Quantum annealers

➢ Different type of quantum computer: 
non-gate based

➢ More qubits, but not as generic as 
gate-based QPUs

➢ Suited for quadratic minimization 
problems

Beyond classical RL



DQN

• Network: typically fully connected feed-forward

• Provide state at input

• Q-value estimates at output for discrete set of actions

Comparison to deep Q-learning

FERL

• Network: quantum Boltzmann machine

• Implements energy model: e.g. Ising spin model

• Provide state and action at input

• Get 𝑄(𝑠, 𝑎) through quantum annealing

• Why: allows mapping to real physical system
(= quantum annealer) with 1000s of qubits

𝑄(𝑠, 𝑎1)

𝑄(𝑠, 𝑎𝑚−1)
𝑄(𝑠, 𝑎𝑚)

Difference lies in how we approximate and predict Q

Beyond classical RL



∈ ℝ𝑛

DDPG family

• Q-learning: only discrete action-space environments

• Accelerator optimization requires continuous action space        develop hybrid actor-critic algorithm

• Based on Deep Deterministic Policy Gradient family: DDPG, TD3, etc.

➢ QBM replaces classical critic, train with FERL approach

➢ Does it work? Can we exploit high learning efficiency of FERL?
Intuitively: if critic learns faster, should benefit actor training via policy gradient

QBMClassical

Developing a hybrid actor-critic scheme for continuous action-space problems

Q-learning

𝑄(𝑠, 𝑎1)

𝑄(𝑠, 𝑎𝑚−1)
𝑄(𝑠, 𝑎𝑚)

Discrete set 
of 𝑚 actions

Beyond classical RL
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2nd study: 10D continuous beam steering
RL problem and training on quantum annealer

Framing the RL problem

➢ Action: deflection angles at 10 correctors

➢ State: beam positions at 10 BPMs

➢ Objective: minimize beam trajectory rms

reward: negative rms from 10 BPMs
🤯

Training: on D-Wave Advantage quantum annealer (QA)

Exploring & learning Success

Objective



2nd study: 10D continuous beam steering
Evaluation

• But it works ☺ !

• Hyperparameter tuning with 
simulated quantum annealing

• Consistent performance on 
simulated line

• Agents minimize rms in 1 step 
for 60 – 70 % cases

• Both also perform fine on real 
beamline

• SQA-agent better on real line 
compared to QA agent

Real (QA) vs simulated (SQA) quantum annealing
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2nd study: 10D continuous beam steering

• Slight improvement in terms of sample efficiency
50 vs 70 interactions

• Very few interactions sufficient for both approaches

• Dynamics potentially too simple (linear problem)

Move towards non-linear RL benchmarks

Comparison to a classical actor-critic



3rd study: Cart-Pole v1
Overview

• Cart-Pole v1: official env from classic control problems domain

➢ Continuous state (4D): cart position & velocity, pole angle & angular velocity

➢ Discrete action (1D): push cart left or right

➢ Reward: +1 per iteration

➢ Max. episode length: 500 iterations

• Non-linear dynamics

• Agents

➢ Deep Q-learning: various architectures optimized with ray-tune

➢ FERL: 2x2 unit cell QBM (32 qubits), simulated QA and on D-Wave

https://www.gymlibrary.dev/environments/classic_control/cart_pole/


3rd study: Cart-Pole v1
Comparing DQN vs FERL

FERL (simulated QA)Deep Q-learning

Preliminary



3rd study: Cart-Pole v1
Comparing with D-Wave hardware

FERL (simulated QA)

Preliminary

FERL (trained on D-Wave)

b
e
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r

• Big gain in sample efficiency and robustness for FERL vs DQN

• Similar performance on D-Wave hardware

Deep Q-learning



3rd study: Cart-Pole v1
More detailed study on FERL

• Distribution of episode length before and after different 
numbers of training iterations

➢ 50 independent agents
➢ 40 evaluation episodes

• Same 40 initial states for every agent

• Ntrain = 100: all agents optimal

Incredibly fast convergence
Next: how about non-linear 
continuous action problems? 



4th study: Pendulum-v1
Continuous action space

Classic DDPG (baseline)
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Some speculation

Why we think FERL could be more efficient than a classical approach?
Based on observations made …

• Thought 1

➢ QBMs have higher expressivity compared to classical networks:
every node is defined by a probability distribution, rather than a simple marix multiplication

➢ Hence require fewer nodes than classical networks to represent Q-function

➢ This means fewer parameters to fit and hence less training data needed

➢ N.B.: classical network with few nodes failed to solve the task

• Thought 2

➢ QBM training itself is more efficient, i.e. fewer weight updates needed to reach convergence

➢ Reason: quantum annealing finds global optimum more reliably



Final remarks & outlook

• RL is powerful, but comes with a number of challenges, such as 
achieving good sample efficiency

• Depends on Q-approximator & algorithm:
FERL shown to be more sample efficient than classical approach

• Developed hybrid actor-critic to solve continuous action problems

• Successfully trained on simulated & real quantum annealer
and evaluated on simulated & real AWAKE beam line

• FERL on non-linear Cart-Pole problem shows very fast convergence

• Outlook: try different quantum hardware, progress on non-linear 
continuous action problem, explore alternative algorithm(s)

Questions?



Backup



Beyond classical RL
Motivation: 1st study for 1D beam steering

Online Learning
• Learn directly from latest experience
• Highly correlated data
• Agent learns from each interaction once 

and discards it immediately after

103 x fewer

https://www.endtoend.ai/paper-unraveled/cer/

Experience Replay
• Save transitions into memory buffer
• Sample batch B from buffer to train agent at 

every step

50 x fewer

https://www.endtoend.ai/paper-unraveled/cer/


3rd study: Cart-Pole v1
Coupling weights evolution: simulated vs real QA

• QBM coupling weights trained with SQA and on QPU

➢ Similar distribution and convergence time scales



Alternative approaches

• QAOA: Quantum Approximate Optimization Algorithm

• Solver for combinatorial optimization problems: finds spin configuration with 
minimum energy; not based on annealing, but more generic gate-based QPU

• Can solve quadratic unconstrained binary optimization (QUBO) problems

• Works well, but simulations compute-intensive (~5.5 h for 100 interactions)

• On hardware (e.g. IBM), could be affected by noise

Training Evaluation

RL with QAOA

https://qiskit.org/textbook/ch-applications/qaoa.html


Alternative approaches: quantum fuzzy logic controller
Evaluation on AWAKE beam line

• Alternative control algorithm

• Fuzzy Logic is used to develop control systems based on linguistic rules highly interpretable

• Quantum Fuzzy Control System (G. Acampora, R. Schiattarella, A. Vitiello)

Exploit exponential advantage in computing fuzzy rules on quantum computers

• Successfully evaluated on AWAKE beam line (no training required)

Evaluation: on AWAKE beam line
Objective reached typically in 1 step

https://ieeexplore.ieee.org/document/9869303


QUBO formulation

• QUBO: quadratic unconstrained binary optimization problems

• The kind of problems that quantum computers (annealers) solve efficiently

• Example with 3 qubits

𝑓 𝑥1, 𝑥2, 𝑥3 = −3𝑥1 + 𝑥1 𝑥2 − 𝑥2 𝑥3

• QUBO matrix

• On diagonal terms describe self-couplings, i.e. biases

• Off diagonal terms describe quadratic couplings between qubits

• Run annealing 5000 times

Corresponds to our solution table

𝑄 =
−3 1 0
0 0 −1
0 0 0


