Flavour physics: status and prospects

Marzia Bordone

QCD Seminars 18.03.2024

Outline:

- 1. The problem of flavour
- 2. Open problems in semileptonic and rare B decays
- 3. A glance into BSM physics

The (two) flavour problems

1. The SM flavour problem: The measured Yukawa pattern doesn't seem accidental

 \Rightarrow Is there any deeper reason for that?

- 2. The NP flavour problem: If we regard the SM as an EFT valid below a certain energy cutoff Λ , why don't we see any deviations in flavour changing processes?
 - \Rightarrow Which is the flavour structure of BSM physics?

$$\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$$

$$\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$$

Exact $U(2)^n$ limit

$$\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$$

An approximate $U(2)^n$ is acting on the light families!

$$\mathcal{L}_{\text{Yukawa}} \supset Y_u^{ij} \bar{Q}_L^i H u_R^j$$

An approximate $U(2)^n$ is acting on the light families!

• In the SM: accidental $U(3)^5 \rightarrow \text{approx } U(2)^n$

- In the SM: accidental $U(3)^5 \rightarrow \text{approx } U(2)^n$
- What happens when we switch on NP?

no breaking of the $U(2)^n$ flavour symmetry at low energies

Partonic vs Hadronic

Fundamental challenge to match partonic and hadronic descriptions

What's the problem for BSM?

What's the problem for BSM?

What's the problem for BSM?

How to satisfy all the constraints at the same time?

Semileptonic *B* decays

Long-standing puzzles in semileptonic decays

Inclusive vs Exclusive determination:

- Inclusive $B \to X_c \ell \bar{\nu}$ decays
- Exclusive decays

$$\begin{array}{l} \Rightarrow \ B \to D^{(*)} \ell \bar{\nu} \\ \Rightarrow \ \Lambda_b \to \Lambda_c \mu \bar{\nu} / \Lambda_b \to p \mu \nu \\ \Rightarrow \ B_s \to D_s^{(*)} \ell \bar{\nu} \\ \Rightarrow \ B_s \to K \mu \nu / B_s \to D_s \mu \nu \end{array}$$

Lepton flavour universality

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau\bar{\nu})}{\mathcal{B}(B \to D^{(*)}\ell\bar{\nu})}$$

- Current discrepancy at the order of 3.3σ
- Theory prediction is the arithmetic average of before 2021 estimates

Inclusive decays

Theory framework for $B \to X_c \ell \bar{\nu}$

Double expansion in 1/m and α_s

$$\Gamma_{sl} = \Gamma_0 f(\rho) \Big[1 + a_1 \left(\frac{\alpha_s}{\pi}\right) + a_2 \left(\frac{\alpha_s}{\pi}\right)^2 + a_3 \left(\frac{\alpha_s}{\pi}\right)^3 - \left(\frac{1}{2} - p_1 \left(\frac{\alpha_s}{\pi}\right)\right) \frac{\mu_{\pi}^2}{m_b^2}$$
$$+ \left(g_0 + g_1 \left(\frac{\alpha_s}{\pi}\right)\right) \frac{\mu_G^2(m_b)}{m_b^2} + d_0 \frac{\rho_D^3}{m_b^3} - g_0 \frac{\rho_{LS}^3}{m_b^3} + \dots \Big]$$

- The coefficients are known
- $\mu_{\pi}^{2}(\mu) = \frac{1}{2m_{B}} \langle B|\bar{b}_{v}(i\vec{D})^{2}b_{v}|B\rangle_{\mu}$ $\mu_{G}^{2}(\mu) = \frac{1}{2m_{B}} \langle B|\bar{b}_{v}\frac{i}{2}\sigma_{\mu\nu}G^{\mu\nu}b_{v}|B\rangle_{\mu}$

 \Rightarrow No Lattice QCD determinations are available yet

• Use for the first time of α_s^3 corrections

[Fael, Schönwald, Steinhauser, '20]

- Ellipses stands for higher orders
 - ⇒ proliferation of terms and loss of predictivity

How do we constrain the hadronic parameters?

We need information from kinematic distributions

- Traditional method: Extract the hadronic parameters from moments of kinematic distributions in E_l and M_X
- New idea: Use q^2 moments to exploit the reduction of free parameters due to RPI [Fael, Mannel, Vos, '18, Bernlochner et al, '22]
- Measurements of branching fractions are needed and are at the moment quite old
- Can we do it on the lattice? [Gambino, Hashimoto, '20, '23, Hashimoto, Jüttner, et al, '23]

Global fit

[MB, Capdevila, Gambino, '21, Finauri, Gambino, '23]

	$m_b^{\rm kin}$	\overline{m}_c	μ_{π}^2	μ_G^2	ρ_D^3	ρ_{LS}^3	$10^2 {\rm BR}_{c\ell\nu}$	$10^3 V_{cb} $	$\chi^2_{\rm min}(/{\rm dof})$
without	4.573	1.092	0.477	0.306	0.185	-0.130	10.66	42.16	22.3
q^2 -moments	0.012	0.008	0.056	0.050	0.031	0.092	0.15	0.51	0.474
Dalla II	4.573	1.092	0.460	0.303	0.175	-0.118	10.65	42.08	26.4
Belle II	0.012	0.008	0.044	0.049	0.020	0.090	0.15	0.48	0.425
Dalla	4.572	1.092	0.434	0.302	0.157	-0.100	10.64	41.96	28.1
Belle	0.012	0.008	0.043	0.048	0.020	0.089	0.15	0.48	0.476
Belle &	4.572	1.092	0.449	0.301	0.167	-0.109	10.65	42.02	41.3
Belle II	0.012	0.008	0.042	0.048	0.018	0.089	0.15	0.48	0.559

About QED effects in inclusive decays

Why do we care about QED Effects?

- We want to match the theory description with the experimental measurements that are always affected by photon emissions
- The MC PHOTOS accounts for QED effects, reporting results which can be compared with the non-radiative theory predictions
- PHOTOS knows only about real emission and obtains the virtual part by normalisation

$$\frac{d\Gamma}{dzdx} = \mathcal{F}^{(0)}(\omega_{\text{virtual}} + \omega_{\text{real}}) \Rightarrow \int dx(\omega_{\text{virtual}} + \omega_{\text{real}}) = 1$$

Are virtual corrections under control?

Leading contributions

1. Collinear logs: captured by splitting functions

$$\sim rac{lpha_e}{\pi} \log^2\left(rac{m_b^2}{m_e^2}
ight)$$

2. Threshold effects or Coulomb terms

3. Wilson Coefficient

 $\sim \frac{4\pi\alpha_e}{9}$

 $\sim \frac{\alpha_e}{\pi} \left[\log \left(\frac{M_Z^2}{\mu^2} - \frac{11}{6} \right) \right]$

Branching ratio

[Bigi, MB, Gambino, Haisch, Piccione, '23]

- The total branching ratio is not affected by large logs due to KLN theorem
- The large corrections are from the Wilson Coefficient and the threshold effects

- Large shift of the branching ratio of the same order of the current error on V_{cb}
- How do we incorporate in the current datasets?
- Moments are less sensitive because they are normalised

Global fit + QED

- Implementation of QED corrections are analysis dependent
- BaBar provides branching fractions with and without radiation

 $R_{\rm QCD}^{\rm new} = \zeta_{\rm QED} R_{\rm QCD}^{\rm Babar}$

 $\Rightarrow \zeta_{\rm QED} \text{ accounts for the misalignment between the corrected BaBar results and the results from the full <math display="inline">\mathcal{O}(\alpha_e)$ computation

$m_b^{\rm kin}$	$\overline{m}_c(2{ m GeV})$	μ_{π}^2	$\mu_G^2(m_b)$	$\rho_D^3(m_b)$	ρ_{LS}^3	$\mathrm{BR}_{c\ell\nu}$	$10^{3} V_{cb} $
4.573	1.090	0.453	0.288	0.176	-0.113	10.62	41.95
0.012	0.010	0.043	0.049	0.019	0.090	0.15	0.48

- The central value shifts slightly
- Belle II data are needed to understand how to apply the correction
- Can we go beyond scalar QED?

Exclusive decays

Exclusive matrix elements

$$\langle H_c | J_\mu | H_b \rangle = \sum_i S^i_\mu \mathcal{F}_i$$

Exclusive matrix elements

 $\langle H_c | J_\mu | H_b \rangle = \sum_i S^i_\mu \mathcal{F}_i \quad \mbox{form factor}$ independent scale Λ_{QCD} Lorentz structures

Exclusive matrix elements

Form factors determinations

- Lattice QCD
- QCD SR, LCSR

Form factors parametrisations

- HQET (CLN + improvements) ⇒ reduce independent degrees of freedom
- Analytic properties \rightarrow BGL

only points at specific kinematic points

data points needed to fix the coefficients of the expansion

The *z*-expansion and unitarity

[Boyd, Grinstein, Lebed, '95, Caprini, Lellouch, Neubert, '98]

- in the complex plane form factors are real analytic functions
- q^2 is mapped onto the conformal complex variable z

$$z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

• q^2 is mapped onto a disk in the complex z plane, where $|z(q^2,t_0)|<1$

$$F_{i} = \frac{1}{P_{i}(z)\phi_{i}(z)} \sum_{k=0}^{n_{i}} a_{k}^{i} z^{k}$$
$$\sum_{k=0}^{n_{i}} |a_{k}^{i}|^{2} < 1$$

$B \to D^*$ after 2021

- FNAL/MILC '21
- HQE $@1/m_c^2$
- Exp data (BGL)
- JLQCD '23
- HPQCD '23

- Are the Lattice QCD datasets compatible?
- What's the source of the discrepancy with HQET?
- Why are experimental data so different?

[MB, Harrison, Jung, ongoing]
What can we learn?

[MB, Jüttner, Tsang, in preparation]

- Unitarity is essential to contain uncertainties [Flynn, Jüttner, Tsang, '23]
- Difference in slope is the real issue
- Pheno still ongoing, not all kinematic distribution yield a good fit for V_{cb}

$B \to D$

• Belle+Babar data and HPQCD+FNAL/MILC Lattice points

 $|V_{cb}| = (40.49 \pm 0.97) \times 10^{-3}$

Pheno Status 1

 V_{cb}

- The inclusive determination is solid
- No evident issues for $B \to D$
- Spread between inclusive and exclusive up to $3-4\sigma$
- Work in progress for the theory predictions of $B \to D^*$ to understand the various tensions
 - \Rightarrow Do we have to correct for QED?
- New experimental data are available are under scrutiny

Pheno status 2

• New Lattice QCD results point to larger values for R_{D^*}

 \Rightarrow Difference in the slopes is crucial and has to be understood

• No change in R_D , where Lattice QCD results, LCSRs, HQET and experimental data agree very well with each other

Rare *B* decays

"Anomalies" in $b \rightarrow s\mu^+\mu^-$ transitions

EFT for b decays

Energy (Λ)

$b ightarrow s\ell\ell$

$$\mathcal{H}_{\text{eff}} = -4\frac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[-\mathcal{C}_1 \mathcal{O}_1 - \mathcal{C}_2 \mathcal{O}_2 + \mathcal{C}_7 \mathcal{O}_7 + \mathcal{C}_9 \mathcal{O}_9 + \mathcal{C}_{10} \mathcal{O}_{10} \right]$$

$$\mathcal{O}_{1} = (\bar{s}\gamma^{\mu}P_{L}b)(\bar{c}\gamma_{\mu}c) \qquad \qquad \mathcal{O}_{2} = (\bar{s}\gamma^{\mu}T^{a}P_{L}b)(\bar{c}\gamma_{\mu}T^{a}c) \\ \mathcal{O}_{9} = (\bar{s}\gamma^{\mu}P_{L}b)(\bar{\ell}\gamma_{\mu}\ell) \qquad \qquad \mathcal{O}_{10} = (\bar{s}\gamma^{\mu}P_{L}b)(\bar{\ell}\gamma_{\mu}\gamma_{5}\ell) \\ \mathcal{O}_{7} = (\bar{s}\sigma^{\mu\nu}P_{R}b)F_{\mu\nu}$$

• Wilson coefficients are calculated at NNLO

Gorbahn, Haisch, '04, Bobeth, Gambino, Gorbahn, Haisch, '11

• The running to $\mu = m_b$ is known

$$B
ightarrow K^{(*)} \ell^+ \ell^-$$

$$\mathcal{A}_{\lambda}^{L,R} = \mathcal{N}_{\lambda} \left\{ (\mathcal{C}_9 \mp \mathcal{C}_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[\mathcal{C}_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

$$B
ightarrow K^{(*)} \ell^+ \ell^-$$

$$\mathcal{A}_{\lambda}^{L,R} = \mathcal{N}_{\lambda} \left\{ (\mathcal{C}_9 \mp \mathcal{C}_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[\mathcal{C}_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

local: $\mathcal{O}_9, \mathcal{O}_{10}, \mathcal{O}_7$

 $B \rightarrow K^{(*)}\ell^+\ell^-$

local: $\mathcal{O}_9, \mathcal{O}_{10}, \mathcal{O}_7$

Local form factors

 $\mathcal{F}_{\lambda}^{(T)} = \langle K^{(*)}(k) | \bar{s} \Gamma_{\lambda}^{(T)} b | \bar{B}(k+q) \rangle$

Non-local form factors

$$\mathcal{H}_{\lambda}(q^2) = i P^{\lambda}_{\mu} \int d^4 x \, e^{iqx} \langle K^{(*)}(k) | T \left\{ \mathcal{J}^{\mu}_{\mathsf{em}}, C_i \mathcal{O}_i(0) \right\} | \bar{B}(k+q) \rangle$$

$$C_9 \to C_9^{\text{eff}}(q^2) = C_9 + C_9^{\text{LD}}(q^2)$$

How do we parametrise these long-distance effects?

Charm-loop effects in $b \to s \ell^+ \ell^-$

- Conformal transformation $q^2 \mapsto z(q^2)$, with |z| < 1
- $C_9^{
 m LD} \propto \alpha_n z^n$ [1707.07305]
- Dispersive analysis allow to determine the truncation order of the series

[2011.09813,2206.03797]

• Effects are small

Charm-loop effects in $b \to s \ell^+ \ell^-$

- Conformal transformation $q^2 \mapsto z(q^2)$, with |z| < 1
- $C_9^{
 m LD} \propto \alpha_n z^n$ [1707.07305]
- Dispersive analysis allow to determine the truncation order of the series

[2011.09813,2206.03797]

• Effects are small

Is this all?

Charm-loop effects in $b \to s \ell^+ \ell^-$

- Conformal transformation $q^2 \mapsto z(q^2)$, with |z| < 1
- $C_9^{
 m LD} \propto \alpha_n z^n$ [1707.07305]
- Dispersive analysis allow to determine the truncation order of the series

[2011.09813,2206.03797]

• Effects are small

Is this all?

- Are these contributions included?
- Are they large that they can reconcile the tension in $B \rightarrow K^* \mu \mu$?

Charm loop effects in $B \to K^{(*)} \mu^+ \mu^-$

MB, Isidori, Maechler, Tinari, 2401.18007

• Can we extract some hints of the shape of $C_9^{\rm LD}(q^2)$ from data?

 \Rightarrow NP yields a **constant** effect in the whole kinematic region

• Is the current sensitivity enough to claim anything?

$$C_9^{\text{eff}} = C_9 + \sum_V \eta_V^\lambda e^{i\delta_V^\lambda} \frac{q^2}{(m_V^2)} \frac{m_V \Gamma_V}{m_V^2 - q^2 - im_V \Gamma_V}$$

A glance into BSM physics

Status of high energy bounds

universal new physics

Flavour Non-Universal New Physics

Dvali, Shifman, '00 Panico, Pomarol, '16 <u>MB</u>, Cornella, Fuentes-Martin, Isidori '17 Allwicher, Isidori, Thomsen '20 Barbieri, Cornella, Isidori, '21 Davighi, Isidori '21

Basic idea:

- 1st and 2nd have small masses and small couplings to NP because they are generated by dynamics at a heavier scale
- 3rd generation is linked to dynamics at lower scales and has stronger couplings

Flavour deconstruction:

fermion families interact with different gauge groups and flavour hierarchies emerge as accidental symmetries

Energy

Energy

$B^+ \to K^+ \nu \bar{\nu}$ from Belle II

• First evidence of the $B^+ \to K^+ \nu \bar{\nu}$ process at 3.6σ with

 $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = (2.4 \pm 0.5 (\text{stat})^{+0.5}_{-0.4} (\text{syst})) \times 10^{-5}$

• Tension with the SM of $\sim 2.8\sigma$

What do we expect in the SMEFT?

Using $SU(2)_L$ invariance, we have

$$\mathcal{L}_{\rm EFT} \supset \frac{C_{bs\tau\tau}}{\Lambda^2} (\bar{b}_L^i \gamma_\nu s_L^j) (\bar{\nu}_\tau \gamma^\mu \nu_\tau)$$
From $U(2)^n \Rightarrow C_{bs\tau\tau} \sim V_{cb} \mathcal{O}(1)$
Belle II measurement of $B \to K \nu \bar{\nu}$
in agreement with $U(2)^n$

The present hints align well together, but it is too soon to claim victory...

Conclusions

- Flavour physics is a powerful test for new physics living at different energy scales
- At the current status, we haven't observed any clear sign of new physics
- No clear sign of new physics can hint to a peculiar structure for the flavour structure of NP and to flavour deconstruction
 - ⇒ Theoretical and Experimental efforts will shed light on puzzles in hadronic predictions, aiming to a deeper understanding of the SM
 - ⇒ From the phenomenological point of view, a few hints point to a strong link between new physics and the third generations, with possible new physics reach close to the current searches

Appendix

Measuring V_{cb}

Interaction basis

$$-\mathcal{L}_{\mathrm{Y}} = Y_{d}^{ij} \bar{Q}_{L}^{i} H d_{R}^{j} + Y_{u}^{ij} \bar{Q}_{L}^{i} \tilde{H} u_{R}^{j} + \mathrm{h.c.}$$

Non-diagonal Yukawa

Mass basis

$$\mathcal{L}_{cc} \propto ar{u}_L^i \gamma^\mu d_L^j W^+_\mu V_{ij}$$

 V_{cb} extraction

$$\mathcal{O}_{\mathrm{theory}}(V_{cb},ec{\mu}) = \mathcal{O}_{\mathrm{exp}}$$

theory inputs needed

$B \to D^{(*)}$ form factors

- 7 (SM) + 3 (NP) form factors
- Lattice computation for $q^2 \neq q^2_{\max}$ only for $B \rightarrow D$
- · Calculation usually give only a few points
- q^2 dependence must be inferred
- Conformal variable z

$$z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

- $t_+ = (m_B + m_{D^{(*)}})^2$ pair production threshold
- $t_0 < t_+$ free parameter that can be used to minimise $|z_{\max}|$
- $|z| \ll 1$, in the $B \rightarrow D$ case |z| < 0.06

The HQE parametrisation 1

• Expansion of QCD Lagrangian in $1/m_{b,c}$ + α_s corrections

[Caprini, Lellouch, Neubert, '97]

• In the limit $m_{b,c} \to \infty$: all $B \to D^{(*)}$ form factors are given by a single Isgur-Wise function

 $F_i \sim \xi$

• at higher orders the form factors are still related \Rightarrow reduction of free parameters

$$F_i \sim \left(1 + \frac{\alpha_s}{\pi}\right)\xi + \frac{\Lambda_{\text{QCD}}}{2m_b}\xi^i_{\text{SL}} + \frac{\Lambda_{\text{QCD}}}{2m_c}\xi^i_{\text{SL}}$$

- at this order 1 leading and 3 subleading functions enter
- ξ^i are not predicted by HQE, they have to be determined using some other information

The HQE parametrisation 2

- Important point in the HQE expansion: $q^2=q^2_{\max}$
- At this point Luke's Theorem applies: the subleading corrections vanish for some form factors
- The leading Isgur-Wise function is normalised: $\xi(q^2=q^2_{\max})=1$
- Problem: contradiction with lattice data!
- $1/m_c^2$ corrections have to be systematically included

[Jung, Straub, [']18, <u>MB</u>, M.Jung, D.van Dyk, [']19]

• well motivated also since $\alpha_s/\pi \sim 1/m_b \sim 1/m_c^2$

Comparison with kinematical distributions

0.00

 $\cos \theta_{\ell}$

0.50 0.75 1.00

good agreement with kinematical distributions

Fit stability

- BGL fit to Belle 2017 and 2018 data (yellow)
- HQE fit 2/1/0 (red)
- HQE fit 3/2/1 (blue)

- compatibily of HQE fit with data driven one
- 2/1/0 underestimates massively uncertainties

3/2/1 is our nominal fit

HQET in a nutshell

- In HQET it is convenient to work with velocities instead of momenta
- Instead of q^2 we use the dimensionless variable $w = v_B \cdot v_{D^*}$
- When the B(b) decays such that the $D^*(c)$ is at rest in the B(b) frame

$$v_B = v_{D^*} \Rightarrow w = 1$$

- The brown muck doesn't realise that anything changed
- At zero recoil, the leading IW function is normalized

$$\xi(w=1) = 1$$

BGL vs CLN parametrisations

<u>CLN</u>

[Caprini, Lellouch, Neubert, '97]

- Expansion of FFs using HQET
- $1/m_{b,c}$ corrections included
- Expansion of leading IW function up to 2nd order in (w-1)

BGL

[Boyd, Grinstein, Lebed, '95]

- Based on analyticity of the form factors
- Expansion of FFs using the conformal variable \boldsymbol{z}
- Large number of free parameters

Results: unitary bounds

Unitarity Bounds

$$= i \int d^4x \, e^{iqx} \langle 0|T\left\{j_{\mu}(x), j_{\nu}^{\dagger}(0)\right\}|0\rangle = (g_{\mu\nu} - q_{\mu}q_{\nu})\Pi(q^2)$$

- If $q^2 \ll m_b^2$ we can calculate $\Pi(q^2)$ via perturbative techniques $\Rightarrow \chi(0)$
- Dispersion relations link ${\rm \,Im}\left(\Pi(q^2)\right)$ to sum over matrix elements

$$\sum_{i} \left| F_i(0) \right|^2 < \chi(0)$$

[Boyd, Grinstein,Lebed, '95 Caprini, Lellouch, Neubert, '97]

- The sum runs over all possible states hadronic decays mediated by a current $\bar{c}\Gamma_{\mu}b$
 - The unitarity bounds are more effective the most states are included in the sum
 - The unitarity bounds introduce correlations between FFs of different decays
 - $B_s \to D_s^{(*)}$ decays are expected to be of the same order of $B_{u,d} \to D_{u,d}^{(*)}$ decays due to $SU(3)_F$ simmetry
$$\Gamma = \frac{1}{m_B} \operatorname{Im} \int d^4 x \langle B(p) | T \left\{ \mathcal{H}_{\text{eff}}^{\dagger}(x) \mathcal{H}_{\text{eff}}(0) \right\} | B(p) \rangle$$

$$\Gamma = \frac{1}{m_B} \operatorname{Im} \int d^4 x \langle B(p) | T \left\{ \mathcal{H}_{\text{eff}}^{\dagger}(x) \mathcal{H}_{\text{eff}}(0) \right\} | B(p) \rangle$$

$$\uparrow$$

$$\sum_{n,i} \frac{1}{m_b^n} \mathcal{C}_{n,i} \mathcal{O}_{n+3,i}$$

$$\Gamma = \frac{1}{m_B} \operatorname{Im} \int d^4 x \langle B(p) | T \left\{ \mathcal{H}_{\text{eff}}^{\dagger}(x) \mathcal{H}_{\text{eff}}(0) \right\} | B(p) \rangle$$

$$\uparrow$$

$$\sum_{n,i} \frac{1}{m_b^n} \mathcal{C}_{n,i} \mathcal{O}_{n+3,i}$$

- The Wilson coefficients are calculated perturbatively
- The matrix elements $\langle B(p)|\mathcal{O}_{n+3,i}|B(p)
 angle$ are non perturbative
 - \Rightarrow They need to be determined with non-perturbative methods, e.g. Lattice QCD
 - ⇒ They can be extracted from data
 - \Rightarrow With large n, large number of operators

$$\Gamma = \frac{1}{m_B} \operatorname{Im} \int d^4 x \langle B(p) | T \left\{ \mathcal{H}_{\text{eff}}^{\dagger}(x) \mathcal{H}_{\text{eff}}(0) \right\} | B(p) \rangle$$

$$\uparrow$$

$$\sum_{n,i} \frac{1}{m^n} \mathcal{C}_{n,i} \mathcal{O}_{n+3,i}$$

- The Wilson coefficients are calculated perturbatively
- The matrix elements $\langle B(p)|\mathcal{O}_{n+3,i}|B(p)
 angle$ are non perturbative
 - \Rightarrow They need to be determined with non-perturbative methods, e.g. Lattice QCD
 - \Rightarrow They can be extracted from data
 - \Rightarrow With large n, large number of operators

f loss of predictivity

How do we constrain the OPE parameters?

- Lepton energy and hadronic invariant mass distributions can be used to extract non perturbative information
- Moments of the kinematic distributions

$$\begin{split} E_{\ell}^{n} \rangle &= \frac{\int_{E_{\ell} > E_{\ell, \text{cut}}} dE_{\ell} E_{\ell}^{n} \frac{d\Gamma}{dE_{\ell}}}{\Gamma_{E_{\ell} > E_{\ell, \text{cut}}}} \\ R^{*} &= \frac{\int_{E_{\ell} > E_{\ell, \text{cut}}} dE_{\ell} \frac{d\Gamma}{dE_{\ell}}}{\int dE_{\ell} \frac{d\Gamma}{dE_{\ell}}} \end{split}$$

- Similar definition for hadronic mass moments
- The moments give access to the distribution, but not to the normalisation
- They admit an HQE as the rate
 - $\Rightarrow~{\rm No}~{\mathcal O}(\alpha_s^3)$ terms are known yet

SMEFT with Flavour 1

[Allwicher, Cornella, Isidori, Stefanek, in preparation]

SMEFT with Flavour 2

[Allwicher, Cornella, Isidori, Stefanek, in preparation]

Lepton Flavour Universality violation

$$R_X = \frac{\mathcal{B}(H_b \to X\mu^+\mu^-)}{\mathcal{B}(H_b \to Xe^+e^-)}$$

- Test of Lepton Flavour Universality, which is one of the building principles of the SM
- With ratios, we reduce hadronic uncertainties at large extent
- For $q^2 \gg m_\ell^2 \to R_X = 1$
- Leading theoretical uncertainty coming from QED effects $\sim 1\%$ MB, Isidori, Pattori, '16 Isidori, Lancerini, Nabeebaccus, Zwicky, '22

$C_9 {\rm \ from \ } B ightarrow K^{(*)} \mu^+ \mu^- {\rm \ data}$

The inclusive case

- If wrt QCD the hadronic and leptonic system are separated, QED corrections mix them
 - \Rightarrow Defining fully inclusive observables is harder
 - \Rightarrow Analogy with experiments is essential
- The OPE is still valid for the total decay width
- At the differential level, this is generally not true
 - \Rightarrow Large contributions factorise wrt to tree-level
 - \Rightarrow Useful to go beyond NLO

Two calculation approaches

1. Splitting Functions

$$\begin{pmatrix} \frac{d\Gamma}{dy} \end{pmatrix}^{(1)} = \frac{\alpha}{2\pi} \bar{L}_{b/e} \int_{y}^{1-\rho} \frac{dx}{x} P_{ee}^{(0)} \left(\frac{y}{x}\right) \left(\frac{d\Gamma}{dx}\right)^{(0)} \\ \log(m_{b}^{2}/m_{e}^{2}) \qquad \text{plus distribution}$$

- Correction vanishes for the inclusive branching fraction
- Suitable for evaluating $\mathcal{O}(\alpha^2)$ and $\mathcal{O}(\alpha/m_b^n)$ corrections

2. Full $\mathcal{O}(\alpha)$ corrections

- · Access all corrections, not only the one that factorise
- Real corrections are computationally expensive
 - \Rightarrow Cuba library employed to carry out the 4-body integration
 - \Rightarrow Phase space splitting used to reduce the size of the integrands

Lepton Energy spectrum

[Bigi, MB, Gambino, Haisch, Piccione, '23]

- We compute bins in the lepton energy using the full $\mathcal{O}(\alpha)$ calculation
- We compare them to the results given by the splitting functions
- The difference the two calculations for the lepton energy spectrum and obtain a full analytic formula for the radiative corrections
 - \Rightarrow Relatively small, easy-to-use formula to obtain branching fractions, lepton energy moments w/o cuts

$$f^{(1)}(y) = \frac{\bar{L}_{b/e}}{2} f^{(1)}_{\rm LL}(y) + \Delta f^{(1)}(y)$$

Comparison with data

- Babar provides data with and without applying PHOTOS to subtract QED effects
 - \Rightarrow Perfect ground to test our calculations
 - ⇒ Not the same for Belle at the moment, could be possible for future analysis?

- The moments, since they are normalised, are not affected by the large threshold corrections
- The agreement with BaBar is very good

$$\langle E_{\ell}^{n} \rangle = \frac{\int_{E_{\ell} > E_{\ell, \text{cut}}} dE_{\ell} E_{\ell}^{n} \frac{d\Gamma}{dE_{\ell}}}{\Gamma_{E_{\ell} > E_{\ell, \text{cut}}}}$$

QED for exclusive decays

• For $B^0 \to D^+ \ell \bar{\nu}$, the threshold effects were calculated and are $1 + \alpha \pi$

[Ginsberg, '66, De Boer, Kitahara, Nisandzic, '18]

• For $B^0\to D^{*+}\ell\bar\nu$, the threshold effects might have a different structure because the hadronic matrix element is different

 \Rightarrow To verify explicitly

- Structure-dependent terms are unknown, but maybe something is doable in the HQE?
- How do we reconcile the threshold effects between the exclusive and the inclusive?

$$\mathcal{B}(B \to X_c \ell \nu) = \mathcal{B}(B \to D \ell \nu) + \mathcal{B}(B \to D^* \ell \nu) + \mathcal{B}(B \to D^{**} \ell \nu) + \dots$$