

Probing heavy New Physics through entanglement at the LHC

Luca Mantani

In collaboration with: R. Aoude, E. Madge, F. Maltoni

European Research Council Established by the European Commission

Unveil the inner behaviour of quantum mechanics.

Entanglement is a pure quantum phenomenon. A measurement at the high energies of the LHC would be a first.

Unveil the inner behaviour of quantum mechanics.

Entanglement is a pure quantum phenomenon. A measurement at the high energies of the LHC would be a first.

Weak bosons and top quarks are the ideal candidates: EW interactions allow for spin reconstruction from decay

Unveil the inner behaviour of quantum mechanics.

Entanglement is a pure quantum phenomenon. A measurement at the high energies of the LHC would be a first.

Weak bosons and top quarks are the ideal candidates: EW interactions allow for spin reconstruction from decay

W decay: lepton decays along W spin

Unveil the inner behaviour of quantum mechanics.

Entanglement is a pure quantum phenomenon. A measurement at the high energies of the LHC would be a first.

Weak bosons and top quarks are the ideal candidates: EW interactions allow for spin reconstruction from decay

W decay: lepton decays along W spin

Top decay: lepton decay correlated with top spin

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\phi} = \frac{1+\cos\phi}{2}$$

 ϕ angle between lepton and spin

Unveil the inner behaviour of quantum mechanics.

Entanglement is a pure quantum phenomenon. A measurement at the high energies of the LHC would be a first.

Weak bosons and top quarks are the ideal candidates: EW interactions allow for spin reconstruction from decay

W decay: lepton decays along W spin

Top decay: lepton decay correlated with top spin

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\phi} = \frac{1+\cos\phi}{2}$$

 ϕ angle between lepton and spin

Z boson more complicated but doable: spin can be reco if right/left asymmetry Given a bipartite system, with Hilbert space $\mathscr{H} = \mathscr{H}_1 \otimes \mathscr{H}_2$

Given a bipartite system, with Hilbert space $\mathscr{H} = \mathscr{H}_1 \otimes \mathscr{H}_2$

If state separable
$$|\Psi
angle=|\Psi
angle_1\otimes|\Psi
angle_2$$
 No entanglement

Given a bipartite system, with Hilbert space $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$

If state separable $|\Psi\rangle =$

=
$$|\Psi
angle_1\otimes|\Psi
angle_2$$

No entanglement

Maximally entangled states: spin 1/2

$$|\Phi^{\pm}\rangle = \frac{|\uparrow\uparrow\rangle \pm |\downarrow\downarrow\rangle}{\sqrt{2}} \quad |\Psi^{\pm}\rangle = \frac{|\uparrow\downarrow\rangle \pm |\downarrow\uparrow\rangle}{\sqrt{2}}$$

Given a bipartite system, with Hilbert space $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$

If state separable $|\Psi
angle=|\Psi
angle_1\otimes|\Psi
angle_2$ No entanglement

Maximally entangled states: spin 1/2

$$|\Phi^{\pm}\rangle = \frac{|\uparrow\uparrow\rangle \pm |\downarrow\downarrow\rangle}{\sqrt{2}} \quad |\Psi^{\pm}\rangle = \frac{|\uparrow\downarrow\rangle \pm |\downarrow\uparrow\rangle}{\sqrt{2}}$$

In the case of a statistical ensemble (mixed state)

$$\rho = \sum_{k} p_k \rho_k$$

entangled if
$$\rho_k \neq \rho_1 \otimes \rho_2$$

The fundamental object to study quantum observables is the spin density matrix

One particle of spin s:
$$\rho = \frac{1}{d}\mathbb{I} + \sum_{i=1}^{d^2-1} a_i \lambda_i$$

d=2s+1 Generalised Gell-Mann matrix

The fundamental object to study quantum observables is the spin density matrix

One particle of spin s:
$$\rho = \frac{1}{d}\mathbb{I} + \sum_{i=1}^{d^2-1} a_i \lambda_i$$

d=2s+1
Generalised Gell-Mann matrix

Two particles, each of spin s:

$$\rho = \frac{1}{d^2} \mathbb{I} \otimes \mathbb{I} + \frac{1}{d} \sum_{i=1}^{d^2 - 1} a_i \lambda_i \otimes \mathbb{I} + \frac{1}{d} \sum_{j=1}^{d^2 - 1} b_j \mathbb{I} \otimes \lambda_j + \sum_{i=1}^{d^2 - 1} \sum_{j=1}^{d^2 - 1} c_{ij} \lambda_i \otimes \lambda_j$$

The fundamental object to study quantum observables is the spin density matrix

One particle of spin s:

$$\rho = \frac{1}{d} \mathbb{I} + \sum_{i=1}^{d^2 - 1} a_i \lambda_i$$
Generalised Gell-Mann matrix
Two particles, each of spin s:

$$\rho = \frac{1}{d^2} \mathbb{I} \otimes \mathbb{I} + \frac{1}{d} \sum_{i=1}^{d^2 - 1} a_i \lambda_i \otimes \mathbb{I} + \frac{1}{d} \sum_{j=1}^{d^2 - 1} b_j \mathbb{I} \otimes \lambda_j + \sum_{i=1}^{d^2 - 1} \sum_{j=1}^{d^2 - 1} c_{ij} \lambda_i \otimes \lambda_j$$

The parameters completely characterise the quantum spin state of the system

How do we build the spin density matrix?

We define the R-matrix

How do we build the spin density matrix?

We define the R-matrix

$$\begin{split} R_{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}}^{I} &\equiv \frac{1}{N_{a}N_{b}} \sum_{\substack{\text{colors} \\ \mathbf{a}, \mathbf{b} \text{ spins}}} \mathcal{M}_{\alpha_{2}\beta_{2}}^{*} \mathcal{M}_{\alpha_{1}\beta_{1}} \\ \mathcal{M}_{\alpha\beta} &\equiv \langle t(k_{1},\alpha)\bar{t}(k_{2},\beta)|\mathcal{T}|a(p_{1})b(p_{2})\rangle & \text{Matrix-element} \\ R &= \tilde{A}\mathbb{I} \otimes \mathbb{I} + \sum_{i=1}^{d^{2}-1} \tilde{a}_{i} \lambda_{i} \otimes \mathbb{I} + \sum_{j=1}^{d^{2}-1} \tilde{b}_{j}\mathbb{I} \otimes \lambda_{j} + \sum_{i=1}^{d^{2}-1} \sum_{j=1}^{c} \tilde{c}_{ij} \lambda_{i} \otimes \lambda_{j} \end{split}$$

How do we build the spin density matrix?

We define the R-matrix

Sum over initial state only

$$R_{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}}^{I} \equiv \frac{1}{N_{a}N_{b}} \sum_{\substack{\text{colors} \\ a,b \text{ spins}}} \mathcal{M}_{\alpha_{2}\beta_{2}} \mathcal{M}_{\alpha_{1}\beta_{1}}$$

$$\mathcal{M}_{\alpha\beta} \equiv \langle t(k_{1},\alpha)\bar{t}(k_{2},\beta)|\mathcal{T}|a(p_{1})b(p_{2})\rangle \qquad \text{Matrix-element}$$

$$R = \tilde{A}\mathbb{I} \otimes \mathbb{I} + \sum_{i=1}^{d^{2}-1} \tilde{a}_{i}\lambda_{i} \otimes \mathbb{I} + \sum_{j=1}^{d^{2}-1} \tilde{b}_{j}\mathbb{I} \otimes \lambda_{j} + \sum_{i=1}^{d^{2}-1} \sum_{j=1}^{c} \tilde{c}_{ij}\lambda_{i} \otimes \lambda_{j}$$

$$\rho = \frac{R}{tr(R)}$$

The R matrix can be decomposed in the spin space

$$R = \tilde{A} \mathbb{1}_2 \otimes \mathbb{1}_2 + \tilde{B}_i^+ \sigma^i \otimes \mathbb{1}_2 + \tilde{B}_i^- \mathbb{1}_2 \otimes \sigma^i + \tilde{C}_{ij} \sigma^i \otimes \sigma^j$$

The R matrix can be decomposed in the spin space

$$R = \tilde{A} \mathbb{1}_2 \otimes \mathbb{1}_2 + \tilde{B}_i^+ \sigma^i \otimes \mathbb{1}_2 + \tilde{B}_i^- \mathbb{1}_2 \otimes \sigma^i + \tilde{C}_{ij} \sigma^i \otimes \sigma^j$$

Cross section
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega\mathrm{d}\hat{s}} = \frac{\alpha_s^2\beta}{\hat{s}^2}\tilde{A}\left(\hat{s},\boldsymbol{k}\right)$$

The R matrix can be decomposed in the spin space

$$R = \tilde{A} \mathbb{1}_2 \otimes \mathbb{1}_2 + \tilde{B}_i^+ \sigma^i \otimes \mathbb{1}_2 + \tilde{B}_i^- \mathbb{1}_2 \otimes \sigma^i + \tilde{C}_{ij} \sigma^i \otimes \sigma^j$$

Cross section
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega\mathrm{d}\hat{s}} = \frac{\alpha_s^2\beta}{\hat{s}^2}\tilde{A}\left(\hat{s},\boldsymbol{k}\right)$$

Degree of top and anti-top polarisation (zero if interactions P-invariant)

The R matrix can be decomposed in the spin space

$$R = \tilde{A} \mathbb{1}_2 \otimes \mathbb{1}_2 + \tilde{B}_i^+ \sigma^i \otimes \mathbb{1}_2 + \tilde{B}_i^- \mathbb{1}_2 \otimes \sigma^i + \tilde{C}_{ij} \sigma^i \otimes \sigma^j$$

Cross section
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega\mathrm{d}\hat{s}} = \frac{\alpha_s^2\beta}{\hat{s}^2}\tilde{A}\left(\hat{s},\boldsymbol{k}\right)$$

Degree of top and anti-top polarisation (zero if interactions P-invariant)

Spin correlations

The R matrix can be decomposed in the spin space

$$R = \tilde{A} \mathbb{1}_2 \otimes \mathbb{1}_2 + \tilde{B}_i^+ \sigma^i \otimes \mathbb{1}_2 + \tilde{B}_i^- \mathbb{1}_2 \otimes \sigma^i + \tilde{C}_{ij} \sigma^i \otimes \sigma^j$$

Cross section
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega\mathrm{d}\hat{s}} = \frac{\alpha_s^2\beta}{\hat{s}^2}\tilde{A}\left(\hat{s},\boldsymbol{k}\right)$$

Degree of top and anti-top polarisation (zero if interactions P-invariant)

Spin correlations

If normalised, we define the density matrix of the system

$$\rho = \frac{\mathbb{1}_2 \otimes \mathbb{1}_2 + B_i^+ \sigma^i \otimes \mathbb{1}_2 + B_i^- \mathbb{1}_2 \otimes \sigma^i + C_{ij} \sigma^i \otimes \sigma^j}{4}.$$

With the density matrix we can build various observables

With the density matrix we can build various observables

$$\begin{array}{l} \textbf{Concurrence} \qquad \mathcal{C}(\rho) = \inf\left[\sum_{i} p_{i} c(|\psi_{i}\rangle)\right] \qquad \textbf{Entangled if > 0} \\ \\ (\mathcal{C}(\rho))^{2} \geq 2 \max\left(0, \operatorname{Tr}\left[\rho^{2}\right] - \operatorname{Tr}\left[\rho^{2}_{A}\right], \operatorname{Tr}\left[\rho^{2}\right] - \operatorname{Tr}\left[\rho^{2}_{B}\right]\right) \equiv \mathcal{C}_{\mathrm{LB}}^{2} \\ \\ (\mathcal{C}(\rho))^{2} \leq 2 \min\left(1 - \operatorname{Tr}[\rho^{2}_{A}], 1 - \operatorname{Tr}[\rho^{2}_{B}]\right) \equiv \mathcal{C}_{\mathrm{UB}}^{2} \end{array}$$

With the density matrix we can build various observables

Concurrence
$$C(\rho) = \inf\left[\sum_{i} p_{i}c(|\psi_{i}\rangle)\right] \quad \text{Entangled if > 0}$$
$$(C(\rho))^{2} \ge 2\max\left(0, \operatorname{Tr}\left[\rho^{2}\right] - \operatorname{Tr}\left[\rho^{2}_{A}\right], \operatorname{Tr}\left[\rho^{2}\right] - \operatorname{Tr}\left[\rho^{2}_{B}\right]\right) \equiv C_{\mathrm{LB}}^{2}$$
$$(C(\rho))^{2} \le 2\min\left(1 - \operatorname{Tr}[\rho^{2}_{A}], 1 - \operatorname{Tr}[\rho^{2}_{B}]\right) \equiv C_{\mathrm{UB}}^{2}$$

Purity

 $P(\rho) \equiv \operatorname{tr}[\rho^2]$ Pure if P=1

 $\mathbf{2}$

With the density matrix we can build various observables

$$\begin{array}{ll} \textbf{Concurrence} \qquad \mathcal{C}(\rho) = \inf\left[\sum_{i} p_{i}c(|\psi_{i}\rangle)\right] & \textbf{Entangled if > 0} \\ (\mathcal{C}(\rho))^{2} \geq 2\max\left(0, \operatorname{Tr}\left[\rho^{2}\right] - \operatorname{Tr}\left[\rho^{2}_{A}\right], \operatorname{Tr}\left[\rho^{2}\right] - \operatorname{Tr}\left[\rho^{2}_{B}\right]\right) \equiv \mathcal{C}_{\mathrm{LB}}^{2} \\ (\mathcal{C}(\rho))^{2} \leq 2\min\left(1 - \operatorname{Tr}[\rho^{2}_{A}], 1 - \operatorname{Tr}[\rho^{2}_{B}]\right) \equiv \mathcal{C}_{\mathrm{UB}}^{2} \\ \end{array}$$

$$\begin{array}{ll} \textbf{Purity} \qquad P(\rho) \equiv \operatorname{tr}[\rho^{2}] & \textbf{Pure if P=1} \\ \end{array}$$

$$\begin{array}{ll} \textbf{Bell inequality} \qquad \langle \mathcal{B} \rangle_{\max} = \max_{U,V} \left(\operatorname{Tr}\left(\rho\left(U^{\dagger} \otimes V^{\dagger}\right) \mathcal{B}\left(U \otimes V\right)\right)\right) \geq \varepsilon \end{array}$$

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{1}{\Lambda} \mathcal{O}_{i}^{5} + \sum_{i} \frac{1}{\Lambda^{2}} \mathcal{O}_{i}^{6} + \dots$$

- Modified interactions among SM particles
- Higher dimensional operators preserve SM symmetries.
- Mappable to a large class of BSM models.
- Truncate at dim 6: leading corrections

Scale of NP

 $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{1}{\Lambda} \mathcal{O}_{i}^{5} + \sum_{i} \frac{1}{\Lambda^{2}} \mathcal{O}_{i}^{6} + \dots$

- Modified interactions among SM particles
- Higher dimensional operators preserve SM symmetries.
- Mappable to a large class of BSM models.
- Truncate at dim 6: leading corrections

Scale of NP

 $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{1}{\Lambda} \mathcal{O}_{i}^{5} + \sum_{i} \frac{1}{\Lambda^{2}} \mathcal{O}_{i}^{6} + \dots$

- Modified interactions among SM particles
- Higher dimensional operators preserve SM symmetries.
- Mappable to a large class of BSM models.
- Truncate at dim 6: leading corrections

- Define target operators: e.g. top-philic EFT [arXiv:1802.07237]
- Find optimal observables to probe them
- Compute with precision theoretical predictions (both SM and EFT)
- Make accurate measurements

Scale of NP

 $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{1}{\Lambda} \mathcal{O}_{i}^{5} + \sum_{i} \frac{1}{\Lambda^{2}} \mathcal{O}_{i}^{6} + \dots$

- Modified interactions among SM particles
- Higher dimensional operators preserve SM symmetries.
- Mappable to a large class of BSM models.
- Truncate at dim 6: leading corrections

Define target operators: e.g. top-philic EFT [arXiv:1802.07237]

Find optimal observables to probe them

- Compute with precision theoretical predictions (both SM and EFT)
- Make accurate measurements

The density matrix opens the window to new sensitivities

 $e^+e^- \rightarrow W^+W^-$

$(\lambda_1\lambda_2 lphaeta)$	\mathbf{SM}	EFT $\Lambda^{-2}: c_{WWW}$
+ - 00	$-2\sqrt{2}G_Fm_Z^2\sin heta$	-
+ +	$2\sqrt{2}G_F m_W^2 \sin heta$	-
+ - + -	$-rac{1}{\sqrt{2}}G_F m_W^2 \sin^3 heta \csc^4(heta/2)$	-
$+-\pm\pm$	-	$3 \cdot 2^{1/4} \sqrt{G_F} m_W \sin heta \left(4 m_W^2 x^2 - m_Z^2 ight)$
$+-0\pm$	-	$-3\cdot 2^{3/4}\sqrt{G_F}m_W^3(\pm 1+\cos heta)x$
$+-\pm 0$	-	$-3\cdot 2^{3/4}\sqrt{G_F}m_W^3(\mp 1+\cos heta)x$
-+00	$2\sqrt{2}G_F(m_Z^2-m_W^2)\sin heta$	_
-+±±	-	$6\cdot 2^{1/4}\sqrt{G_F}m_W(m_Z^2-m_W^2)\sin heta$

The density matrix opens the window to new sensitivities

$$e^+e^- \to W^+W^-$$

$(\lambda_1\lambda_2 lphaeta)$	\mathbf{SM}	EFT $\Lambda^{-2}: c_{WWW}$
+-00	$-2\sqrt{2}G_F m_Z^2 \sin heta$	<u> </u>
+ +	$2\sqrt{2}G_F m_W^2 \sin heta$ –	
+ - + -	$-rac{1}{\sqrt{2}}G_F m_W^2 \sin^3 heta \csc^4(heta/2)$	
$+-\pm\pm$		$\rightarrow 3 \cdot 2^{1/4} \sqrt{G_F} m_W \sin \theta \left(4m_W^2 x^2 - m_Z^2 \right)$
$+-0\pm$		$-3 \cdot 2^{3/4} \sqrt{G_F} m_W^3(\pm 1 + \cos \theta) x$
$+-\pm 0$	-	$-3 \cdot 2^{3/4} \sqrt{G_F} m_W^3 (\mp 1 + \cos \theta) x$
-+00	$2\sqrt{2}\overline{G_F(m_Z^2-m_W^2)}\sin heta$	
-+±±		$\longrightarrow 6 \cdot 2^{1/4} \sqrt{G_F} m_W (m_Z^2 - m_W^2) \sin \theta$

Cross section

 $\tilde{A}(\mathcal{O}_W) \sim 0$

$(\lambda_1\lambda_2 lphaeta)$	\mathbf{SM}	EFT $\Lambda^{-2}: c_{WWW}$
+-00	$-2\sqrt{2}G_Fm_Z^2\sin heta$	-
++	$2\sqrt{2}G_F m_W^2 \sin heta$	-
+ - + -	$-rac{1}{\sqrt{2}}G_F m_W^2 \sin^3 heta \csc^4(heta/2)$	-
$+-\pm\pm$	-	$3 \cdot 2^{1/4} \sqrt{G_F} m_W \sin heta \left(4 m_W^2 x^2 - m_Z^2 ight)$
$+-0\pm$	-	$-3\cdot 2^{3/4}\sqrt{G_F}m_W^3(\pm 1+\cos heta)x$
$+-\pm 0$	-	$-3\cdot 2^{3/4}\sqrt{G_F}m_W^3(\mp 1+\cos heta)x$
-+00	$2\sqrt{2}G_F(m_Z^2-m_W^2)\sin heta$	_
-+±±	-	$6\cdot 2^{1/4}\sqrt{G_F}m_W(m_Z^2-m_W^2)\sin heta$

$(\lambda_1\lambda_2 lphaeta)$	\mathbf{SM}	EFT $\Lambda^{-2}: c_{WWW}$
+-00	$-2\sqrt{2}G_Fm_Z^2\sin heta$	-
++	$2\sqrt{2}G_F m_W^2 \sin heta$	-
+ - + -	$-rac{1}{\sqrt{2}}G_F m_W^2 \sin^3 heta \csc^4(heta/2)$	-
$+-\pm\pm$	-	$> 3 \cdot 2^{1/4} \sqrt{G_F} m_W \sin \theta \left(4m_W^2 x^2 - m_Z^2 \right)$
$+-0\pm$	-	$-3 \cdot 2^{3/4} \sqrt{G_F} m_W^3(\pm 1 + \cos \theta) x$
$+-\pm 0$	-	$-3 \cdot 2^{3/4} \sqrt{G_F} m_W^3(\mp 1 + \cos \theta) x$
-+00	$2\sqrt{2}G_F(m_Z^2-m_W^2)\sin heta$	_
-+±±	-	$6\cdot 2^{1/4}\sqrt{G_F}m_W(m_Z^2-m_W^2)\sin heta$

$(\lambda_1\lambda_2 lphaeta)$	\mathbf{SM}	EFT $\Lambda^{-2}: c_{WWW}$		
+ - 00	$-2\sqrt{2}G_Fm_Z^2\sin heta$	-		
+ +	$2\sqrt{2}G_F m_W^2 \sin heta$	-		
+ - + -	$-rac{1}{\sqrt{2}}G_F m_W^2 \sin^3 heta \csc^4(heta/2)$	-		
$+-\pm\pm$	-	$> 3 \cdot 2^{1/4} \sqrt{G_F} m_W \sin \theta \left(4 m_W^2 x^2 - m_Z^2 \right)$		
$+-0\pm$	-	$-3 \cdot 2^{3/4} \sqrt{G_F} m_W^3(\pm 1 + \cos \theta) x$		
$+-\pm 0$	-	$-3 \cdot 2^{3/4} \sqrt{G_F} m_W^3(\mp 1 + \cos \theta) x$		
-+00	$2\sqrt{2}G_F(m_Z^2-m_W^2)\sin heta$	_		
±±	-	$6\cdot 2^{1/4}\sqrt{G_F}m_W(m_Z^2-m_W^2)\sin heta$		
$\rho = \begin{bmatrix} \mathcal{M}_{++} \mathcal{M}_{++}^* & \mathcal{M}_{++} \mathcal{M}_{+-}^* & \cdots \\ \mathcal{M}_{+-} \mathcal{M}_{++}^* & \mathcal{M}_{+-} \mathcal{M}_{+-}^* & \cdots \\ \vdots & \ddots & \vdots \end{bmatrix}$				

 $\tilde{a}_1(\mathcal{O}_W) \simeq \tilde{b}_1(\mathcal{O}_W) \simeq \bar{c}_W 2^{5/4} x \cos^4(\theta/2)(\cos\theta+3) \csc\theta$

Resurrected sensitivity: energy growth!

Top pairs

Luca Mantani

Top pairs ideal probe: spin correlations preserved after decay

$$R^{I}_{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}} \equiv \frac{1}{N_{a}N_{b}} \sum_{\substack{\text{colors} \\ a,b \text{ spins}}} \mathcal{M}^{*}_{\alpha_{2}\beta_{2}} \mathcal{M}_{\alpha_{1}\beta_{1}}$$

At LO in QCD $I = gg, q \bar{q}$

[arXiv: 2203.05619]

 $\mathcal{M}_{\alpha\beta} \equiv \langle t(k_1,\alpha)\bar{t}(k_2,\beta)|\mathcal{T}|a(p_1)b(p_2)\rangle$

Top pairs ideal probe: spin correlations preserved after decay

$$R_{\alpha_1\alpha_2,\beta_1\beta_2}^I \equiv \frac{1}{N_a N_b} \sum_{\substack{\text{colors} \\ a,b \text{ spins}}} \mathcal{M}_{\alpha_2\beta_2}^* \mathcal{M}_{\alpha_1\beta_1}$$

At LO in QCD
$$I = gg, q\bar{q}$$

[arXiv: 2203.05619]

 $\mathcal{M}_{\alpha\beta} \equiv \langle t(k_1,\alpha)\bar{t}(k_2,\beta)|\mathcal{T}|a(p_1)b(p_2)\rangle$

Top pairs ideal probe: spin correlations preserved after decay

$$R^{I}_{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}} \equiv \frac{1}{N_{a}N_{b}} \sum_{\substack{\text{colors} \\ a,b \text{ spins}}} \mathcal{M}^{*}_{\alpha_{2}\beta_{2}} \mathcal{M}_{\alpha_{1}\beta_{1}}$$

At LO in QCD $I = gg, q\bar{q}$

[arXiv: 2203.05619]

 $\mathcal{M}_{\alpha\beta} \equiv \langle t(k_1,\alpha)\bar{t}(k_2,\beta)|\mathcal{T}|a(p_1)b(p_2)\rangle$

Full correlation matrix is mixed state, weighted by parton luminosity

Definitions

Luca Mantani

$$\{k, n, r\}: \ r = rac{(p - zk)}{\sqrt{1 - z^2}}, \quad n = k imes r,$$

To expand in this basis, e.g.

$$C_{nn} = \operatorname{tr}[C_{ij} \, \boldsymbol{n} \otimes \boldsymbol{n}]$$

Definitions

Luca Mantani

$$\{k, n, r\}: \ r = rac{(p - zk)}{\sqrt{1 - z^2}}, \quad n = k imes r,$$

To expand in this basis, e.g.

$$C_{nn} = \operatorname{tr}[C_{ij} \, \boldsymbol{n} \otimes \boldsymbol{n}]$$

$$\Delta = -C_{nn} + |C_{kk} + C_{rr}| - 1 > 0 \quad \text{entangled}$$

Definitions

Luca Mantani

$$\{\boldsymbol{k},\boldsymbol{n},\boldsymbol{r}\}:\ \boldsymbol{r}=rac{(\boldsymbol{p}-z\boldsymbol{k})}{\sqrt{1-z^2}},\quad \boldsymbol{n}=\boldsymbol{k} imes \boldsymbol{r},$$

To expand in this basis, e.g.

$$C_{nn} = \operatorname{tr}[C_{ij} \, \boldsymbol{n} \otimes \boldsymbol{n}]$$

$$\Delta = -C_{nn} + |C_{kk} + C_{rr}| - 1 > 0 \quad \text{entangled}$$

We can then define the concurrence

$$C[\rho] = \max(\Delta/2, 0)$$

$$C[\rho] = 1$$

Max entanglement

[arXiv:2003.02280]

R-matrix in SMEFT

At $\mathcal{O}(1/\Lambda^2)$

$$\begin{split} \tilde{A}^{gg,(1)} &= \frac{g_s^2}{\Lambda^2} \frac{1}{1 - \beta^2 z^2} \bigg[\frac{g_s^2 v m_t (9\beta^2 z^2 + 7)}{12\sqrt{2}} c_{tG} - \frac{\beta^2 m_t^4}{4m_t^2 - (1 - \beta^2)m_h^2} c_{\varphi G} + \frac{9g_s^2 \beta^2 m_t^2 z^2}{8} c_G \bigg], \\ \tilde{C}_{nn}^{gg,(1)} &= \frac{g_s^2}{\Lambda^2} \frac{1}{1 - \beta^2 z^2} \bigg[\frac{-7g_s^2 v m_t}{12\sqrt{2}} c_{tG} - \frac{\beta^2 m_t^4}{4m_t^2 - (1 - \beta^2)m_h^2} c_{\varphi G} + \frac{9g_s^2 \beta^2 m_t^2 z^2}{8} c_G \bigg], \\ \tilde{C}_{kk}^{gg,(1)} &= \frac{g_s^2}{\Lambda^2} \frac{1}{1 - \beta^2 z^2} \bigg[\frac{g_s^2 v m_t \left(9\beta^2 z^2 + 7\right) \left(\beta^2 \left(z^4 - z^2 - 1\right) + 1\right)}{12\sqrt{2} \left(\beta^2 z^2 - 1\right)} c_{tG} \\ &+ \frac{\beta^2 m_t^4}{4m_t^2 - (1 - \beta^2) m_h^2} c_{\varphi G} - \frac{9g_s^2 \beta^2 m_t^2 z^2}{8} c_G \bigg], \end{split}$$

$$\bar{R} = (4\pi)^{-1} \int d\Omega R(\hat{s}, \boldsymbol{k}), \qquad \qquad \delta \equiv -C_z + |2C_{\perp}| - 1 > 0$$
$$C[\rho] = \max(\delta/2, 0)$$

$$\bar{R} = (4\pi)^{-1} \int d\Omega R(\hat{s}, \boldsymbol{k}), \qquad \qquad \delta \equiv -C_z + |2C_{\perp}| - 1 > 0$$
$$C[\rho] = \max(\delta/2, 0)$$

gg-induced

$$\rho_{gg}^{\text{EFT}}(0,z) = p_{gg} |\Psi^+\rangle_{p} \langle \Psi^+|_{p} + (1-p_{gg}) |\Psi^-\rangle_{p} \langle \Psi^-|_{p}$$
$$p_{gg} = \frac{72}{7\Lambda^4} m_t^2 (3\sqrt{2}m_t c_G + v c_{tG})^2 \quad \text{Only quadratic effects!}$$

Quantum state: threshold

gg-induced

$$\rho_{gg}^{\text{EFT}}(0,z) = p_{gg} |\Psi^+\rangle_{\boldsymbol{p}} \langle \Psi^+|_{\boldsymbol{p}} + (1-p_{gg})|\Psi^-\rangle_{\boldsymbol{p}} \langle \Psi^-|_{\boldsymbol{p}}$$
$$p_{gg} = \frac{72}{7\Lambda^4} m_t^2 (3\sqrt{2}m_t c_G + v c_{tG})^2 \quad \text{Only quadratic effects!}$$

qq-induced

$$\begin{split} \rho_{q\bar{q}}^{\mathrm{EFT}}(0,z) &= p_{q\bar{q}} \left|\uparrow\uparrow\rangle_{p} \left\langle\uparrow\uparrow\right|_{p} + \left(1 - p_{q\bar{q}}\right) \left|\downarrow\downarrow\rangle_{p} \left\langle\downarrow\downarrow\right|_{p} \\ p_{q\bar{q}} &= \frac{1}{2} - 4\frac{c_{VA}^{(8),u}}{\Lambda^{2}} + \frac{8m_{t}^{4}}{\Lambda^{4}} \left(\frac{v\sqrt{2}}{m_{t}}c_{VA}^{(8),u}c_{tG} - 9c_{VA}^{(1),u}c_{VV}^{(1),u} + 2c_{VA}^{(8),u}c_{VV}^{(8),u}\right) \end{split}$$

Quantum state: threshold

Stolen slide

[arXiv:2210.09330]

The structure of spin correlations in phase space makes a differential measurement ~ 10x more effective than an inclusive one.

 $O_{Qq}^{(1,1)}$ $cos\theta \le 0.33$ $0.33 \le cos\theta \le 0.67$ 0.67 ≤ cosθ $m_{t\bar{t}} \le 420$ $m_{t\bar{t}} \leq 420$ $m_{t\bar{t}} \le 420$ 0.1 $B_r + \bar{B}_r$ 0.0 $B_k + \overline{B}_k$ -0.1Difference from SM C_{nn} C_{rr} $0.33 \le \cos\theta \le 0.67$ $0.67 \le cos\theta$ $cos\theta \le 0.33$ $420 \leq m_{t\bar{t}} \leq 600$ $420 \le m_{t\bar{t}} \le 600$ $420 \le m_{t\bar{t}} \le 600$ 0.1 C_{kk} $C_{rk} + C_{kr}$ 0.0 - $C_{nk} + C_{kn}$ -0.1 $\Delta^{+}/3$ $\Delta^{-}/3$ $0.33 \le \cos\theta \le 0.67$ $cos\theta \le 0.33$ 0.67 ≤ cosθ 600 ≤ m_t[∓] $600 \le m_{t\bar{t}}$ 600 ≤ m_t[∓] 0.1 0.0 -0.11.5 -1.50.0 1.5 - 1.5 0.0-1.5 0.0 1.5 $c_{Oq}^{(1,1)}$ [$\Lambda = 1 \text{ TeV}$]

Quantum observables and spin correlations in general will yield remarkable improvements to BSM searches and SMEFT global fits.

Claudio Severi

[arXiv: 2307.10370] Diboson production is also a promising candidate: broad sensitivity to SMEFT operators Diboson

[arXiv: 2307.10370] Diboson production is also a promising candidate: broad sensitivity to SMEFT operators

> Density matrix more complex: spin components not sufficient for complete characterisation

$$\rho = \frac{1}{9} \mathbb{I} \otimes \mathbb{I} + \frac{1}{3} \sum_{i=1}^{8} a_i \lambda_i \otimes \mathbb{I} + \frac{1}{3} \sum_{j=1}^{8} b_j \mathbb{I} \otimes \lambda_j + \sum_{i=1}^{8} \sum_{j=1}^{8} c_{ij} \lambda_i \otimes \lambda_j$$

Diboson

[arXiv: 2307.10370] Diboson production is also a promising candidate: broad sensitivity to SMEFT operators

> Density matrix more complex: spin components not sufficient for complete characterisation

$$\rho = \frac{1}{9} \mathbb{I} \otimes \mathbb{I} + \frac{1}{3} \sum_{i=1}^{8} a_i \lambda_i \otimes \mathbb{I} + \frac{1}{3} \sum_{j=1}^{8} b_j \mathbb{I} \otimes \lambda_j + \sum_{i=1}^{8} \sum_{j=1}^{8} c_{ij} \lambda_i \otimes \lambda_j$$

We studied both lepton and hadron collider

18

Diboson

Luca Mantani

[arXiv: 2307.10370] Diboson production is also a promising candidate: broad sensitivity to SMEFT operators

> Density matrix more complex: spin components not sufficient for complete characterisation

$$\rho = \frac{1}{9} \mathbb{I} \otimes \mathbb{I} + \frac{1}{3} \sum_{i=1}^{8} a_i \lambda_i \otimes \mathbb{I} + \frac{1}{3} \sum_{j=1}^{8} b_j \mathbb{I} \otimes \lambda_j + \sum_{i=1}^{8} \sum_{j=1}^{8} c_{ij} \lambda_i \otimes \lambda_j$$

We studied both lepton and hadron collider

WW production

EFT effects

EFT effects

EFT effects

Proton collider

Proton collider

Quantum tomography

Measure angular distributions of the decay products

Quantum tomography

Measure angular distributions of the decay products

For example, for the density matrix of a W boson [arXiv: 2209.13990]

- $$\begin{split} \Phi_1^{P\pm} &= \sqrt{2} (5\cos\theta \pm 1)\sin\theta\cos\phi \\ \Phi_2^{P\pm} &= \sqrt{2} (5\cos\theta \pm 1)\sin\theta\sin\phi \\ \Phi_3^{P\pm} &= \frac{1}{4} (\pm 4\cos\theta + 15\cos2\theta + 5) \\ \Phi_4^{P\pm} &= 5\sin^2\theta\cos2\phi \end{split}$$
- $\Phi_5^{P\pm} = 5\sin^2\theta\sin 2\phi$ $\Phi_6^{P\pm} = \sqrt{2}(\pm 1 - 5\cos\theta)\sin\theta\cos\phi$ $\Phi_7^{P\pm} = \sqrt{2}(\pm 1 - 5\cos\theta)\sin\theta\sin\phi$ $\Phi_8^{P\pm} = \frac{1}{4\sqrt{3}}(\pm 12\cos\theta - 15\cos 2\theta - 5)$

Quantum tomography

Measure angular distributions of the decay products

For example, for the density matrix of a W boson [arXiv: 2209.13990]

$$\begin{split} \Phi_1^{P\pm} &= \sqrt{2} (5\cos\theta \pm 1)\sin\theta\cos\phi \qquad \Phi_5^{P\pm} = \\ \Phi_2^{P\pm} &= \sqrt{2} (5\cos\theta \pm 1)\sin\theta\sin\phi \qquad \Phi_6^{P\pm} = \\ \Phi_3^{P\pm} &= \frac{1}{4} (\pm 4\cos\theta + 15\cos2\theta + 5) \qquad \Phi_7^{P\pm} = \\ \Phi_4^{P\pm} &= 5\sin^2\theta\cos2\phi \qquad \Phi_8^{P\pm} = \end{split}$$

$$\Phi_5^{P\pm} = 5\sin^2\theta\sin 2\phi$$

$$\Phi_6^{P\pm} = \sqrt{2}(\pm 1 - 5\cos\theta)\sin\theta\cos\phi$$

$$\Phi_7^{P\pm} = \sqrt{2}(\pm 1 - 5\cos\theta)\sin\theta\sin\phi$$

$$\Phi_8^{P\pm} = \frac{1}{4\sqrt{3}}(\pm 12\cos\theta - 15\cos 2\theta - 5)$$

$$a_{j} = \frac{1}{2} \int d\Omega_{\hat{\mathbf{n}}} p(\ell_{\hat{\mathbf{n}}}^{\pm}; \rho) \Phi_{j}^{P\pm} \qquad \begin{array}{c} \text{Expectation value} \\ \text{of the Wigner P functions} \end{array}$$
$$c_{ij} = \left(\frac{1}{2}\right)^{2} \iint d\Omega_{\hat{\mathbf{n}}_{1}} \ d\Omega_{\hat{\mathbf{n}}_{2}} p\left(\ell_{\hat{\mathbf{n}}_{1}}^{+}, \ell_{\hat{\mathbf{n}}_{2}}^{-}; \rho\right) \Phi_{i}^{P}\left(\hat{\mathbf{n}}_{1}\right) \Phi_{j}^{P}\left(\hat{\mathbf{n}}_{2}\right)$$

In the case of top pair things are simpler [arXiv

[arXiv: 2003.02280]

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{+}\mathrm{d}\Omega_{-}} = \frac{1 + \mathbf{B}^{+} \cdot \hat{\mathbf{q}}_{+} - \mathbf{B}^{-} \cdot \hat{\mathbf{q}}_{-} - \hat{\mathbf{q}}_{+} \cdot \mathbf{C} \cdot \hat{\mathbf{q}}_{-}}{(4\pi)^{2}}$$

In the case of top pair things are simpler

[arXiv: 2003.02280]

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{+}\mathrm{d}\Omega_{-}} = \frac{1 + \mathbf{B}^{+} \cdot \hat{\mathbf{q}}_{+} - \mathbf{B}^{-} \cdot \hat{\mathbf{q}}_{-} - \hat{\mathbf{q}}_{+} \cdot \mathbf{C} \cdot \hat{\mathbf{q}}_{-}}{(4\pi)^{2}}$$

Direction of decay produced lepton

Angle between leptons

Angle between leptons

However not trivial!

Despite high degree of entanglement in certain phase space, when integrating we wash out the effects: design of optimal signal region needed.

ATLAS CONF Note

ATLAS-CONF-2023-069

28th September 2023

Observation of quantum entanglement in top-quark pair production using pp collisions of $\sqrt{s} = 13$ TeV with the ATLAS detector

entanglement detection is expected to be significant. The entanglement observable is measured in a fiducial phase-space with stable particles. The entanglement witness is measured to be $D = -0.547 \pm 0.002$ (stat.) ± 0.021 (syst.) for $340 < m_{t\bar{t}} < 380$ GeV. The large spread in predictions from several mainstream event generators indicates that modelling this property is challenging. The predictions depend in particular on the parton-shower algorithm used. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes the first observation of entanglement in a pair of quarks, and the observation of entanglement at the highest energy to date.
- Possibility to exploit quantum spin observables as entanglement proposed.
- Measurement of entanglement at LHC would be highest energy evidence ever.
- In the SM, specific spin configurations are expected, dictated by interactions.
- SMEFT effects induce presence of different quantum states, modifying the overall pattern.
- Quantum observables probe complementary directions to the cross-section in EFT param space and can resurrect the interference.

- Possibility to exploit quantum spin observables as entanglement proposed.
- Measurement of entanglement at LHC would be highest energy evidence ever.
- In the SM, specific spin configurations are expected, dictated by interactions.
- SMEFT effects induce presence of different quantum states, modifying the overall pattern.
- Quantum observables probe complementary directions to the cross-section in EFT param space and can resurrect the interference.

25

Backup

$$\mathcal{O}_{tG} = g_s (\bar{Q}\sigma^{\mu\nu}T^A t)\tilde{\varphi}G^A_{\mu\nu} + \text{h.c.}$$

SM

$$\Delta = -C_{nn} + |C_{kk} + C_{rr}| - 1 > 0$$

 $\Delta_1 \equiv \Delta - \Delta_0$ Δ computed up to $\mathcal{O}(1/\Lambda^2)$

 $\Delta_2 \equiv \Delta - \Delta_1 - \Delta_0$ Δ computed up to $\mathcal{O}(1/\Lambda^4)$

$$\Delta = -C_{nn} + |C_{kk} + C_{rr}| - 1 > 0$$

 $\Delta_1 \equiv \Delta - \Delta_0$ Δ computed up to $\mathcal{O}(1/\Lambda^2)$

 $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{1}{\Lambda} \mathcal{O}_{i}^{5} + \sum_{i} \frac{1}{\Lambda^{2}} \mathcal{O}_{i}^{6} + \dots$

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{1}{\Lambda} \mathcal{O}_{i}^{5} + \sum_{i} \frac{1}{\Lambda^{2}} \mathcal{O}_{i}^{6} + \dots$$

$$\begin{split} \mathcal{O}_{G} &= g_{s} f^{ABC} G_{\nu}^{A,\mu} G_{\rho}^{B,\nu} G_{\mu}^{C,\rho} \\ \mathcal{O}_{\varphi G} &= \left(\varphi^{\dagger} \varphi - \frac{v^{2}}{2} \right) G_{A}^{\mu\nu} G_{\mu\nu}^{A} \\ \mathcal{O}_{tG} &= g_{s} (\bar{Q} \sigma^{\mu\nu} T^{A} t) \tilde{\varphi} G_{\mu\nu}^{A} + \text{h.c.} \end{split}$$

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{1}{\Lambda} \mathcal{O}_{i}^{5} + \sum_{i} \frac{1}{\Lambda^{2}} \mathcal{O}_{i}^{6} + \dots$$

$$\begin{split} \mathcal{O}_{G} &= g_{s} f^{ABC} G_{\nu}^{A,\mu} G_{\rho}^{B,\nu} G_{\mu}^{C,\rho} & \textbf{4-Fermion operators} \\ \mathcal{O}_{\varphi G} &= \left(\varphi^{\dagger} \varphi - \frac{v^{2}}{2}\right) G_{A}^{\mu\nu} G_{\mu\nu}^{A} & \mathcal{O}_{Qq}^{(8,1)}, \mathcal{O}_{Qq}^{(8,3)}, \mathcal{O}_{tu}^{(8)}, \mathcal{O}_{du}^{(8)}, \mathcal{O}_{Qu}^{(8)}, \mathcal{O}_{Qd}^{(8)}, \mathcal{O}_{tq}^{(8)} \\ \mathcal{O}_{tG} &= g_{s} (\bar{Q} \sigma^{\mu\nu} T^{A} t) \tilde{\varphi} G_{\mu\nu}^{A} + \text{h.c.} \end{split}$$

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{1}{\Lambda} \mathcal{O}_i^5 + \sum_{i} \frac{1}{\Lambda^2} \mathcal{O}_i^6 + \dots$$

$$\begin{split} \mathcal{O}_{G} &= g_{s} f^{ABC} G_{\nu}^{A,\mu} G_{\rho}^{B,\nu} G_{\mu}^{C,\rho} & \text{4-Fermion operators} \\ \mathcal{O}_{\varphi G} &= \left(\varphi^{\dagger} \varphi - \frac{v^{2}}{2} \right) G_{A}^{\mu\nu} G_{\mu\nu}^{A} & \mathcal{O}_{Qq}^{(8,1)}, \mathcal{O}_{Qq}^{(8,3)}, \mathcal{O}_{tu}^{(8)}, \mathcal{O}_{du}^{(8)}, \mathcal{O}_{Qd}^{(8)}, \mathcal{O}_{Qd}^{(8)}, \mathcal{O}_{tq}^{(8)} \\ \mathcal{O}_{tG} &= g_{s} (\bar{Q} \sigma^{\mu\nu} T^{A} t) \tilde{\varphi} G_{\mu\nu}^{A} + \text{h.c.} \end{split}$$

What are the effects of NP on the entanglement regions?

Is NP affecting the quantum state?

Given a bipartite system, with Hilbert space $\mathcal{H}=\mathcal{H}_1\otimes\mathcal{H}_2$

If state separable
$$|\Psi
angle=|\Psi
angle_1\otimes|\Psi
angle_2$$
 No entanglement

Operative definition of entanglement: Peres-Horodecki criterion

$$\Delta = -C_{nn} + |C_{kk} + C_{rr}| - 1 > 0 \quad \text{entangled}$$

Given a bipartite system, with Hilbert space $\mathscr{H} = \mathscr{H}_1 \otimes \mathscr{H}_2$

If state separable
$$|\Psi\rangle = |\Psi\rangle_1 \otimes |\Psi\rangle_2$$
 No entanglement

Operative definition of entanglement: Peres-Horodecki criterion

$$\Delta = -C_{nn} + |C_{kk} + C_{rr}| - 1 > 0 \quad \text{entangled}$$

We can then define the concurrence

 $C[\rho] = \max(\Delta/2, 0)$

 $C[\rho] = 1$

Max entanglement

$$p_{\Psi^+} = \langle \Psi^+ |_{\boldsymbol{n}} \rho | \Psi^+ \rangle_{\boldsymbol{n}}$$

Probability triplet state

LO coefficients - gg channel

LO coefficients - qq channel

$$\begin{split} \tilde{A}^{q\bar{q},(1)} &= \frac{4g_s^2 m_t^2}{9\Lambda^2 (1-\beta^2)} \bigg[\sqrt{2}g_s^2 \frac{v}{m_t} (1-\beta^2) c_{tG} + \left(2 - (1-z^2)\beta^2\right) c_{VV}^{(8),u} + 2z\beta c_{AA}^{(8),u} \bigg], \\ \tilde{C}^{q\bar{q},(1)}_{nn} &= -\frac{g_s^2 m_t^2}{\Lambda^2} \frac{4\beta^2 (1-z^2)}{9(1-\beta^2)} c_{VV}^{(8),u}, \\ \tilde{C}^{q\bar{q},(1)}_{kk} &= \frac{2g_s^2 m_t^2}{9\Lambda^2 (1-\beta^2)} \bigg[2\sqrt{2}g_s^2 \frac{v}{m_t} (1-\beta^2) z^2 c_{tG} + \left(2 + \beta^2 - (2-\beta^2)(1-2z^2)\right) c_{VV}^{(8),u} + 4\beta z c_{AA}^{(8),u} \bigg], \\ \tilde{C}^{q\bar{q},(1)}_{rr} &= \frac{4g_s^2 m_t^2 (1-z^2)}{9\Lambda^2 (1-\beta^2)} \bigg[\sqrt{2}g_s^2 \frac{v}{m_t} (1-\beta^2) c_{tG} + (2-\beta^2) c_{VV}^{(8),u} \bigg], \\ \tilde{C}^{q\bar{q},(1)}_{rk} &= -\frac{2g_s^2 m_t^2}{9\Lambda^2} \sqrt{\frac{1-z^2}{1-\beta^2}} \bigg[\sqrt{2}g_s^2 \frac{v}{m_t} (2-\beta^2) z c_{tG} + 4z c_{VV}^{(8),u} + 2\beta c_{AA}^{(8),u} \bigg], \\ \tilde{C}^{q\bar{q},(1)}_{rk} &= -\frac{2g_s^2 m_t^2}{9\Lambda^2} \sqrt{\frac{1-z^2}{1-\beta^2}} \bigg[\sqrt{2}g_s^2 \frac{v}{m_t} (2-\beta^2) z c_{tG} + 4z c_{VV}^{(8),u} + 2\beta c_{AA}^{(8),u} \bigg], \\ B^{\pm,q\bar{q},(1)}_{k} &= 4g_s^2 \frac{m_t^2}{9\Lambda^2} \frac{1}{1-\beta^2} \left(\beta (z^2+1) c_{AV}^{(8),u} + 2z c_{VA}^{(8),u} \right), \\ B^{\pm,q\bar{q},(1)}_{r} &= -4g_s^2 \frac{m_t^2}{9\Lambda^2} \sqrt{\frac{1-z^2}{1-\beta^2}} \left(\beta z c_{AV}^{(8),u} + 2c c_{VA}^{(8),u} \right). \\ c_{VV}^{(8),u} &= (c_{\Omega}^{(8),1} + c_{\Omega}^{(8),1} + c_{\Omega}^{(8)} + c_{\Omega}^{(8)} + c_{\Omega}^{(8)} + c_{\Omega}^{(8),u} + 2c c_{VA}^{(8),u} \bigg). \end{split}$$

$$c_{VV}^{(8)} = (c_{Qq}^{(8)} + c_{Qq}^{(8)} + c_{tu}^{(8)} + c_{tq}^{(8)} + c_{Qu}^{(8)})/4, \qquad c_{AA}^{(AA)} = (c_{Qq}^{(8)} + c_{Qq}^{(8)} + c_{tu}^{(4)} - c_{Qu}^{(4)})/4, \\ c_{AV}^{(8),u} = (-c_{Qq}^{(8,1)} - c_{Qq}^{(8,3)} + c_{tu}^{(8)} + c_{tq}^{(8)} - c_{Qu}^{(8)})/4, \qquad c_{VA}^{(8),u} = (-c_{Qq}^{(8,1)} - c_{Qq}^{(8,3)} + c_{tu}^{(8)} - c_{Qu}^{(8)})/4,$$