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Fundamental physics at colliders

The main goal of the collider program is to deepen our knowledge
of fundamental physics

In practical terms, this means testing the SM

looking for its possible failures -4 evidence of New Physics (BSM)



Testing the SM

Complementarity

devising different strategies to test the SM predictions
and to cover different types of new physics

Optimality

improve and optimize the new-physics probes to achieve better sensitivity



How to look for new physics

Direct searches:

look for signals of production
of new particles

e resonant effects in kinematic distributions

e "bump’ on top of a smooth SM background
(that can be often extracted from the data)
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collider energy range

Limrtations: ' !
e new particle must be resonantly produced 0 M//”? “
and must decay to reconstructable final state SM } /
o limited by collider energy range //
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Direct searches:

look for signals of production
of new particles

e resonant effects in kinematic distributions
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Looking for the tall:  Indirect searches

even If we can not directly produce
the new particles,
we can test their indirect effects

» LEP data at 200 GeV tested new particles with
masses up to 3 TeV !
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Tails are “universal”
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Indirect searches have important > /
advantages / //

“universality”
e deviations from SM exhibit small number of behaviors dictated by symmetries

e simple parametrization in terms of EFT operators

"model independence”

e captures a huge class of new-physics models

“ubiqurty”
e deviations are present also In channels with non-resonant new physics production

e can often be seen also in channels where the final state can not be fully reconstructed



The challenges of indirect searches

Performing indirect searches is a challenging task
that requires several key ingredients

» Accurate theoretical knowledge of the SM and BSM predictions
(1.e. small theoretical systematic uncertainty)

—$ needed to compare theoretical expectation with the experimental data

» Accurate experimental measurements
(1.e. small experimental systematic and statistical uncertainty)

—§ IN Many cases we expect small deviations with respect to the SM

» Use of effective search strategies and optimized statistical analysis



A simple example

Simplest approach: exploit partial kinematic information

» keep only few kinematic variables and ‘ignore’ the others
» reconstruct the distributions through binning
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Example: di-lepton production
pp = 7€~

three kinematic variables o+
invariant mass e - /

, q q
scattering angle 6 /
y
-

c.om. rapidity y
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1000 =[]

» can focus only on invariant mass

> distribution reconstructed with simple I -
: : ; - Z oL :b
| -dimensional binning :

do(my.,; C)

My+p—



A simple example

Simplest approach: exploit partial kinematic information

» keep only few kinematic variables and ‘ignore’ the others
» reconstruct the distributions through binning
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Example: di-lepton production
pp = 7€~

[G.R, L Rica, A-Wulzer 21]
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Big loss in sensitivity!
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Interference resurrection

Interference resurrection can provide significant improvements
but requires differential measurements [GP, Riva, Wulzer '1 7]

example: trilinear gauge couplings in Wy production
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Interference resurrection

Interference resurrection can provide significant improvements
but requires differential measurements [GP, Riva, Wulzer '1 7]

example: trilinear gauge couplings in Wy production
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» significant gain for operators that do not interfere with SM

» improved sensitivity to linear terms confirmed by experimental analysis
(present sensitivity still dominated by quadratic terms)



Assessing optimality

| Assessing optimality is cruciall

» Important to know If search strategies are close to optimal

» If not, help to design more efficient analyses
(eg. identifying more sensitive observables)



Optimal tests of new physics

The differential distribution contain the maximal information about a process

do(x; C)
measurable _/ \_ new-physics

kinematic quantities parameters

» basis to perform optimal statistical tests (eg. likelihood ratio test)
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How to determine the theoretical kinematic distributions?

» not known in analytic form

» only available knowledge are Monte Carlos event samples following do(x; C)

» “latent” Monte Carlo variables z do not coincide with measurable quantities x

'\)V

* higher-order effects generate "unphysical” events (negative weights)

* showering, hadronization, detector effects not known “analytically”



A Machine Learning approach



Full distributions through ML

[Baldi, Cranmer et al.'| 6;
Brehmer, Cranmer, Louppe, Pavez "1 8;
Cranmer, Pavez, Louppe "1 8;
Stoye, Brehmer at al. "1 8;
Brehmer, Louppe at al. " | 8;
Brehmer, Cranmer at al. | 8;
Brehmer, Kling at al."MadMiner” '19;
Chen, Glioti, G.R, Wulzer "20;

]

Basic idea: reconstruct do(x; C) with Neural Networks

kinematic variables
X

» fully differential (analytic) result in all measurable quantrties

N\

neural networks

full distribution ratio

do(x; C)

do(x;0)

J

C

» obtained with a relatively small amount of Monte Carlo data

» systematically improvable

e With more data, reacher NN structure, ...

reference
hypothesis

e with more accurate Monte Carlo samples (eg. higher-order effects, backgrounds, ...)



The Binary Classifier trick

A binary classifier can be used to reconstruct the distribution ratio

from Monte Carlo data

» two samples, following new physics (C = C) and reference (C = 0) distributions

Se={x; ~do(x;C)} Sy = {x; ~ do(x;0)}

notice that C is fixed

» binary classifier (eg. with quadratic loss)

L= Y NN = 1P+ > [NNP

» In the infinite training sample limit

5L do(x; C) do(x;C)

2= 0 . NN =
SNN —s NN

+ weighted samples can be treated in an analogous way introducing weights in L

NN(x)

do(x;C) +do(x;0) % do(x;0) 1-NNQ)



Application to W/Z production

pp = W*Z = (£*0)(f7¢)

Final state described
by 6 kinematic variables!

Invariant mass my,, scattering angle 6

W decay angles 0y, ¢y Z decay angles 8, ¢,

» standard binned analysis can not take into account all kinematic variables
(at most two or three)

- Important features characterizing new-physics distributions are lost

—gp huge loss In sensitivity



Simple Classifier performance

» The Simple Classifier approach works, but there s still some gap

[Chen, Glioti, G.P, Wulzer '20]
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Drawbacks:

» must be trained for‘every’ value of C  (with new Monte Carlo sample!)

» becomes inefficient for small values of C
(differential distribution very close to reference, large amount of training data are needed

to reconstruct the ratio)
15



Joining Machine Learning with Theory:

Parametrized Neural Networks



The Quadratic Classifier

Theory fixes the structure of the differential distribution

do(x; C) = do(x; 0)[(1 + C a(x))* + C* f*(x)]

\ positive quadratic

polynomial in C

We can exploit this information to solve the drawbacks
of the Simple Classifier approach



The Quadratic Classifier

Theory fixes the structure of the differential distribution

do(x; C) = do(x; 0)[(1 + C a(x))* + C* f*(x)]

\ positive quadratic

polynomial in C

» we use a standard binary classifier loss

L=y { Y FoC) = 1P+ Y [F(x; C,->]2}

{1C} XES XE€S ¢,

» but the distribution ratio Is parametrized in terms of two neural networks
1

F(x;C) = L+ (1 + CNN,(x)? + C> NN3(x)

» training data must include different values of C
NN,(x) = a(x) NNy(x) = p(x)



The Quadratic Classifier

» The Quadratic Classifier provides a significantly better performance
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[Chen, Glioti, G.R, Wulzer "20]

» a single training can reconstruct the distribution ratio for any C

» training with “large” values of C avoids small differences from reference

-~ |[Imit C — 0 properly reconstructed
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The Quadratic Classifier

Additional effects can be included by changing the training data

3)
G(Pq
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- ToyData MG LO
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» realistic Monte Carlo data can be used (eg. MadGraph @ LO or @ NLO)

» performance remains very stable
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Conclusions and Outlook



Conclusions

Machine learning provides new tools to optimize the sensitivity in model-
independent new-physics searches at colliders

Key ingredient: reconstruction of differential distributions from MC data

‘™inimal’ ML approach: Simple binary Classifier
> fair performance

> some drawbacks (lack of embedded theory knowledge)

Improved ML approach: Quadratic Classifier
> directly embeds theory knowledge (analytic dependence on parameters)

> only one training needed to test different new-physics parameters
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Outlook

Further developments:

+ Simultaneous treatment of many new-physics deformations
[see talk by |. Ter Hoeve]

+ Exploitation of event ‘reweighting’ to improve performance
> faster generation of training data

> better NN reconstruction (significantly smaller training sets needed)
[see talk by A. Glioti]

4+ Inclusion of systematic errors (eg. pdf errors)
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