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Fundamental physics at colliders
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The main goal of the collider program is to deepen our knowledge 
of fundamental physics

looking for its possible failures            evidence of New Physics (BSM)

In practical terms, this means testing the SM



Testing the SM
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Complementarity

devising different strategies to test the SM predictions 
and to cover different types of new physics

Optimality

improve and optimize the new-physics probes to achieve better sensitivity 



How to look for new physics
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• resonant effects in kinematic distributions

• “bump” on top of a smooth SM background 
(that can be often extracted from the data)

Direct searches:

look for signals of production 
of new particles



How to look for new physics

4

�

E

SM

New physics

• resonant effects in kinematic distributions

• “bump” on top of a smooth SM background 
(that can be often extracted from the data)

Limitations:

• new particle must be resonantly produced 
and must decay to reconstructable final state

• limited by collider energy range

�

E

SM

New physics

collider energy range

Direct searches:

look for signals of production 
of new particles



How to look for new physics

4

�

E

SM

New physics

• resonant effects in kinematic distributions

• “bump” on top of a smooth SM background 
(that can be often extracted from the data)

�

E

SM

New physics

collider energy range

Direct searches:

look for signals of production 
of new particles

Looking for the tail:    Indirect searches

even if we can not directly produce 
the new particles,

we can test their indirect effects

‣ LEP data at 200 GeV tested new particles with 
masses up to 3 TeV !



Tails are “universal”

5

�

E

SM

New physics

Indirect searches have important 
advantages

“universality”
• deviations from SM exhibit small number of behaviors dictated by symmetries

• simple parametrization in terms of EFT operators

“model independence”
• captures a huge class of new-physics models

“ubiquity”
• deviations are present also in channels with non-resonant new physics production

• can often be seen also in channels where the final state can not be fully reconstructed



The challenges of indirect searches
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Performing indirect searches is a challenging task 
that requires several key ingredients

‣ Accurate theoretical knowledge of the SM and BSM predictions 
(i.e. small theoretical systematic uncertainty)

‣ Accurate experimental measurements 
(i.e. small experimental systematic and statistical uncertainty)

‣ Use of effective search strategies and optimized statistical analysis

needed to compare theoretical expectation with the experimental data

in many cases we expect small deviations with respect to the SM



A simple example

7

Simplest approach: exploit partial kinematic information
‣ keep only few kinematic variables and ‘ignore’ the others
‣ reconstruct the distributions through binning
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Simplest approach: exploit partial kinematic information
‣ keep only few kinematic variables and ‘ignore’ the others
‣ reconstruct the distributions through binning

three kinematic variables
            invariant mass  
          scattering angle  
             c.o.m. rapidity  

mℓ+ℓ−

θ
y

‣ can focus only on invariant mass

‣ distribution reconstructed with simple 
1-dimensional binning 
                dσ(mℓ+ℓ−; C) �
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Example: di-lepton production  
pp → ℓ+ℓ−



A simple example
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Simplest approach: exploit partial kinematic information
‣ keep only few kinematic variables and ‘ignore’ the others
‣ reconstruct the distributions through binning

Example: di-lepton production  
pp → ℓ+ℓ−

Big loss in sensitivity!

1-dim analysis

analysis with
full kinematic distribution

[G.P., L. Ricci, A. Wulzer ’21]



Interference resurrection
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Interference resurrection can provide significant improvements 
but requires differential measurements [GP, Riva, Wulzer ’17]

example:   trilinear gauge couplings in  productionWγ
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Figure 3: Reconstructed azimuthal angular distribution in the SM (black lines) and BSM (blue area, with C3W = 0.2 TeV
�2

), normalized to

unity with Delphes detector study (right) and without (left). Same selection cuts as fig. 2.

cuts of fig. 2. The SM is nearly flat, as expected5, while
BSM (taking C3W = 0.2 TeV�2 for illustration) introduces
a cos 2' behaviour. The little bumps at ±⇡/2 are due to
m? > mW configurations. Aside from those, the e↵ect of
the Delphes smearing on the distribution is mild.

The rest of the analysis is straightforward. We simu-
late leptonic decays of W+

� where, in addition to the cuts
for fig. 2, we consider p?� bins of {150, 210, 300, 420, 600,
850, 1200} GeV, increasing linearly in size to accomodate
experimental resolution on p?� , but as fine as possible to
maximize the sensitivity to BSM e↵ects. In addition, we
consider 10 azimuthal angular bins 2 [�⇡,⇡], where we
fit the number of events to a quadratic function of C3W .
We repeat the simulation with and without Delphes de-
tector simulation, to quantify the impact of these e↵ects.
Notice that when quoting generator-level results, we take
into account an overall reconstruction e�ciency ⇠ 0.6 ex-
tracted from the comparison with Delphes. Reducible
backgrounds are not taken into account in the simulation,
in spite of the fact that jets faking photons give nearly
50% of the SM W� contribution in existing run-1 studies
of the W� final state [28]. However ref. [28] focuses on
lower photon momenta (p?� . 200GeV) than those that
are relevant for our analysis. We thus expect the jet back-
ground to be less relevant in our case because the photon
mistag rate for jets decreases with p?� [29] and because
the Wj cross section should decrease faster than W� due
to the steeply falling gluon parton distribution function.
Still, we expect this background to be significant.

The results are shown in fig. 4, in terms of the projected
sensitivity at the end of the High-Luminosity LHC pro-
gram (3ab�1, left panel) and at an earlier stage (100fb�1,
right panel). The left vertical axis shows the reach in terms

5In fact, even in the SM, interference between the±⌥ and the lon-
gitudinal 0⌥ amplitudes – which are suppressed by only one power
of the energy in the boosted regime – induces a mild ⇠ cos' be-
haviour, that is however invisible due to the reconstruction ambigu-
ity of eq. (12).

of anomalous couplings �� while the right axis is expressed
in terms of C3W . As in ref. [5], we show how the reach de-
teriorates when high-energy (high-p?�) bins are ignored in
the fit, with the aim of outlining which kinematical regime
(p?� . 1 TeV, in this case) is relevant for the limit. Accu-
rate experimental measurements are needed in this regime,
together with a trustable EFT prediction, i.e. an EFT cut-
o↵ ⇤ > 1 TeV.6 The full simulation, with a 10% systematic
relative uncertainty, summed in quadrature with the sta-
tistical one, is portrayed in black in the figure, while the
analogous analysis, but without binning in the azimuthal
angle ', is shown dashed. The comparison of these two
lines shows the added value of our analysis. Detector ef-
fects can be quantified instead by comparing with the gray
line, while the impact of systematic errors is captured by
comparison with the blue line.

For reference, we also show in green (dotted, dashed)
theoretical curves corresponding to di↵erent power count-
ings, C3W = g/⇤2 and C3W = g

3
/(16⇡2⇤2), reflecting dif-

ferent BSM hypotheses, see ref. [33]. Here we approximate
⇤ ' 2p?� to argue that, for models that reflect the first
power counting (dotted curve), the bounds we obtain are
well within the EFT validity, in all transverse-momentum
bins. For weakly coupled models, where these e↵ects arise
at loop-level (dashed curve), the projected sensitivity is
instead not enough. A popular heuristic method to as-
sess the validity of the EFT expansion is to present re-
sults with and without the BSM-squared contributions in
the cross-section. We have checked that, with this proce-
dure, bounds without interference resurrection deteriorate
by one order of magnitude, while interference-resurrection
bounds are much more stable.

Our analysis could be improved by considering addi-
tional variables, such as the polar angle ✓. A central cut
in ✓ would indeed enhance the interference term (9) com-
pared to the non-interference ones that are proportional to

6This way of assessing the EFT validity was advocated in [14, 30–
32].

6

λγ = 0.012
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Interference resurrection can provide significant improvements 
but requires differential measurements [GP, Riva, Wulzer ’17]

example:   trilinear gauge couplings in  productionWγ
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Figure 13: Best-fit values of C3W and the corresponding 95% CL confidence intervals as a func-
tion of the maximum p

g
T bin included in the fit (left). Measurements with and without the

pure BSM term are given by the black and red lines, respectively. The limits without the pure
BSM term given with and without the binning in |f f | are also shown (right), with black and
blue lines, respectively. Please note the different vertical scales; the black lines in both figures
correspond to the same limits.

other processes that are sensitive to the O3W operator. An ATLAS measurement of WW pro-
duction [83], in which the coefficient is denoted cW , uses an alternative technique to improve
sensitivity to the interference. The presence of an additional high-pT jet is required, which par-
tially mitigates the helicity suppression effect [13], and gives an interference-only sensitivity
that is around a factor of eight lower. The ATLAS measurement of electroweak Z boson pro-
duction in association with two jets [84] gives comparable sensitivity to our result. It exploits
the distribution of the azimuthal angle between the jets, which is sensitive to the interference
contribution.

The response matrix Rij for the 2D differential cross section measurement of p
g
T and |f f | is

shown in Fig. 14. Although the migration between p
g
T bins is small, the migration between |f f |

bins is larger, owing both to the limited p
miss
T resolution and the fundamental limitations of the

method used to reconstruct the neutrino four-momentum via the mW pole mass constraint.

The resulting cross section measurements are shown in Fig. 15. The measured values are com-
pared with the prediction from the NLO MG5 aMC+PY8 simulation. The correlation matrix is
presented in Fig. 16. Unlike the 1D p

g
T cross section, the correlations between different p

g
T bins

are relatively small, since these measurements at high p
g
T are much more dominated by the sta-

tistical uncertainties. For a given p
g
T bin the (anti-)correlation between |f f | bins is larger, owing

to the migration in the response matrix discussed previously.

10 Summary
This paper has presented an analysis of W±g production in

p
s = 13 TeV proton-proton colli-

sions using data recorded with the CMS detector at the LHC, corresponding to an integrated
luminosity of 138 fb�1. Differential cross sections have been measured for several observables
and compared with standard model (SM) predictions computed at next-to-leading and next-

[CMS-SMP-20-005]

‣ significant gain for operators that do not interfere with SM
‣ improved sensitivity to linear terms confirmed by experimental analysis 

(present sensitivity still dominated by quadratic terms)



Assessing optimality
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Assessing optimality is crucial!

‣ Important to know if search strategies are close to optimal

‣ If not, help to design more efficient analyses 
(eg. identifying more sensitive observables)



Optimal tests of new physics
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The differential distribution contain the maximal information about a process

dσ(x; C)
measurable 

kinematic quantities 
new-physics 
parameters

‣ basis to perform optimal statistical tests  (eg. likelihood ratio test)



Optimal tests of new physics
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The differential distribution contain the maximal information about a process

dσ(x; C)
measurable 

kinematic quantities 
new-physics 
parameters

‣ basis to perform optimal statistical tests  (eg. likelihood ratio test)

How to determine the theoretical kinematic distributions?

‣ not known in analytic form

‣ only available knowledge are Monte Carlos event samples following  
• “latent” Monte Carlo variables  do not coincide with measurable quantities  

                                          

• higher-order effects generate “unphysical” events (negative weights)

• showering, hadronization, detector effects not known “analytically”

dσ(x; C)
z x

z x



A Machine Learning approach



Full distributions through ML

12

p(x|θ) through Machine Learning

14/04/2021 Alfredo Glioti (EPFL) - 2007.10356 6

The result will be fully differential on all observables, quick to evaluate and it can be 

obtained with a relatively small amount of Monte Carlo points. 

No transfer functions modeling required.

Universal and systematically improvable

Brehmer & al. 1805.00013

Basic idea: approximate              with Neural Networks: 

Basic idea: reconstruct  with Neural Networksdσ(x; C)

kinematic variables
x

full distribution ratio
dσ(x; C)
dσ(x; 0)

reference 
hypothesisneural networks

‣ fully differential (analytic) result in all measurable quantities

‣ obtained with a relatively small amount of Monte Carlo data

‣ systematically improvable
• with more data, reacher NN structure, …
• with more accurate Monte Carlo samples (eg. higher-order effects, backgrounds, …)

[Baldi, Cranmer et al. ’16; 
Brehmer, Cranmer, Louppe, Pavez ’18;

Cranmer, Pavez, Louppe ’18;
Stoye, Brehmer at al. ’18;

Brehmer, Louppe at al. ’18;
Brehmer, Cranmer at al. ’18;

Brehmer, Kling at al. “MadMiner” ’19;
Chen, Glioti, G.P., Wulzer ’20;

…]



The Binary Classifier trick
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A binary classifier can be used to reconstruct the distribution ratio
from Monte Carlo data

‣ two samples, following new physics ( ) and reference ( ) distributionsC = C C = 0

𝒮C = {xi ∼ dσ(x; C)} 𝒮0 = {xi ∼ dσ(x; 0)}
notice that  is fixedC

‣ binary classifier (eg. with quadratic loss)

 L = ∑
xi∈𝒮C

[NN(xi) − 1]2 + ∑
xi∈𝒮0

[NN(xi)]2

‣ in the infinite training sample limit

 δL
δNN

= 0 NN(x) =
dσ(x; C )

dσ(x; C ) + dσ(x; 0)
dσ(x; C )
dσ(x; 0)

=
NN(x)

1 − NN(x)

✦ weighted samples can be treated in an analogous way introducing weights in L



Application to WZ production
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Final state described
by 6 kinematic variables!

  invariant mass            scattering angle 

W decay angles         Z decay angles 

mWZ θ

θW, ϕW θZ, ϕZ

‣ standard binned analysis can not take into account all kinematic variables 
(at most two or three)

             important features characterizing new-physics distributions are lost

huge loss in sensitivity

pp → W±Z → (ℓ±ν)(ℓ+ℓ−)
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Simple Classifier performance
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‣ must be trained for ‘every’ value of     (with new Monte Carlo sample!)

‣ becomes inefficient for small values of  
(differential distribution very close to reference, large amount of training data are needed 
to reconstruct the ratio)

C

C

‣ The Simple Classifier approach works, but there is still some gap

Drawbacks:

deformation of 
ZWW coupling

deformation of 
W,Z-quark couplings

[Chen, Glioti, G.P., Wulzer ’20]



Joining Machine Learning with Theory:

Parametrized Neural Networks



The Quadratic Classifier
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Theory fixes the structure of the differential distribution

 dσ(x; C) = dσ(x; 0)[(1 + C α(x))2 + C2 β2(x)]
positive quadratic 
polynomial in C

We can exploit this information to solve the drawbacks 
of the Simple Classifier approach



The Quadratic Classifier
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Theory fixes the structure of the differential distribution

 dσ(x; C) = dσ(x; 0)[(1 + C α(x))2 + C2 β2(x)]
positive quadratic 
polynomial in C

‣ but the distribution ratio is parametrized in terms of two neural networks

 F(x; C) =
1

1 + (1 + C NNα(x))2 + C2 NN2
β(x)

‣ we use a standard binary classifier loss

 L = ∑
{Ci}

{ ∑
xi∈𝒮0

[F(xi; Ci) − 1]2 + ∑
xi∈𝒮Ci

[F(xi; Ci)]2}

‣ training data must include different values of 
 

C
NNα(x) → α(x) NNβ(x) → β(x)



The Quadratic Classifier
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Exact Quadratic Classifier
Simple Classifier Binned analysis
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‣ The Quadratic Classifier provides a significantly better performance

‣ a single training can reconstruct the distribution ratio for any 

‣ training with “large” values of  avoids small differences from reference 
          limit  properly reconstructed

C

C

C → 0

[Chen, Glioti, G.P., Wulzer ’20]



The Quadratic Classifier

19

Additional effects can be included by changing the training data
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‣ realistic Monte Carlo data can be used  (eg. MadGraph @ LO or @ NLO)

‣ performance remains very stable



Conclusions and Outlook



Conclusions
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Key ingredient: reconstruction of differential distributions from MC data

Machine learning provides new tools to optimize the sensitivity in model-
independent new-physics searches at colliders

‘Minimal’ ML approach:   Simple binary Classifier

‣ fair performance
‣ some drawbacks (lack of embedded theory knowledge)

Improved ML approach:   Quadratic Classifier

‣ directly embeds theory knowledge (analytic dependence on parameters)

‣ only one training needed to test different new-physics parameters 



Outlook
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Further developments:

✦ Simultaneous treatment of many new-physics deformations

✦ Exploitation of event ‘reweighting’ to improve performance
‣ faster generation of training data
‣ better NN reconstruction   (significantly smaller training sets needed)

✦ Inclusion of systematic errors  (eg. pdf errors)

[see talk by J. Ter Hoeve]

[see talk by A. Glioti]


