

2007.10356 2211.02058 2308.05704

Applications of Likelihood Learning Benasque 2023 Alfredo Glioti & Jaco ter Hoeve IPhT & VU Amsterdam

Recap: likelihood ratio from ML

Starting from two balanced datasets \mathscr{D}_{SM} and \mathscr{D}_{EFT} drawn from f(x | SM) and f(x | EFT), we minimise e.g. the cross-entropy loss

$$L[g(\mathbf{x})] = -\frac{1}{N} \sum_{e \in \mathscr{D}_{\text{EFT}}} w_e \log(1 - g(\mathbf{x}_e)) - \frac{1}{N} \sum_{\mathscr{D}_{\text{SM}}} w_e \log g(\mathbf{x}_e) \underset{\{m_{t\bar{t}}, \eta_l, \Delta\phi, \dots\}}{\underbrace{\{m_{t\bar{t}}, \eta_l, \Delta\phi, \dots\}}}$$

The learned decision boundary $g(\mathbf{x})$ is one-to-one with the likelihood ratio (LR) as $N \to \infty$

$$\frac{\delta L}{\delta g} = 0 \implies \hat{g}(\mathbf{x}) = \left(1 + \frac{f(\mathbf{x} \mid \text{EFT})}{f(\mathbf{x} \mid \text{SM})}\right)^{-1} \equiv \frac{1}{1 + r(\mathbf{x})} \xrightarrow{\text{Parameterise with NNs}}$$

►

►

The experimental pipeline

We are progressively moving through the simulation chain (latent space)

 $p(x|c) \sim \int dz_{\text{det}} dz_{\text{shower}} dz_{\text{parton}} p(x|z_{\text{det}}) p(z_{\text{det}}|z_{\text{shower}}) p(z_{\text{shower}}|z_{\text{parton}}) p(z_{\text{parton}}|c)$

The experimental pipeline

We are progressively moving through the simulation chain (latent space)

Why interesting for us?

- Global efforts reinterpret existing "SM measurements" in an EFT context
- But which measurements are the most sensitive to EFT parameters?
 - Inclusive, single to multi-differential (which variables)
 - Binned or unbinned, which binning?

Framework needed to integrate unbinned multivariate observables into global SMEFT fits

- Optimal bounds on the EFT parameters
- Useful diagnosis tool to assess information loss

-1

0

 $c_{tu}^{(8)}$

Applications of likelihood learning

Focusses on global EFT fits

<page-header><page-header><page-header><page-header><page-header><text><text><footnote><section-header><section-header></section-header></section-header></footnote></text></text></page-header></page-header></page-header></page-header></page-header>
<page-header><page-header><page-header><text><text><text><section-header><section-header><section-header></section-header></section-header></section-header></text></text></text></page-header></page-header></page-header>
<page-header><page-header><page-header><text><text><text><section-header><section-header></section-header></section-header></text></text></text></page-header></page-header></page-header>
<page-header><page-header><page-header><section-header><section-header><section-header><section-header><section-header><text></text></section-header></section-header></section-header></section-header></section-header></page-header></page-header></page-header>
<page-header><page-header><page-header><text><section-header><section-header><section-header></section-header></section-header></section-header></text></page-header></page-header></page-header>
1

Reweighting for more accurate learning

Boosting likelihood learning with event reweighting

Siyu Chen¹, Alfredo Glioti², Giuliano Panico^{3,4}, and Andrea Wulzer^{5,6}

 ¹Institut de Théorie des Phénomenes Physiques, EPFL, Lausanne, Switzerland
 ²Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique, 91191, Gif-sur-Yvette, France
 ³Dipartimento di Fisica e Astronomia, Università di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
 ⁴INFN, Sezione di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
 ⁵Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona, Spain
 ⁶ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys 23, 08010 Barcelona, Spain

Abstract

2023

arXiv:2308.05704v1 [hep-ph] 10 Aug

Extracting maximal information from experimental data requires access to the likelihood function, which however is never directly available for complex experiments like those performed at high energy colliders. Theoretical predictions are obtained in this context by Monte Carlo events, which do furnish an accurate but abstract and implicit representation of the likelihood. Strategies based on statistical learning are currently being developed to infer the likelihood function explicitly by training a continuous-output classifier on Monte Carlo events. In this paper, we investigate the usage of Monte Carlo events that incorporate the dependence on the parameters of interest by reweighting. This enables more accurate likelihood learning with less training data and a more robust learning scheme that is more suited for automation and extensive deployment. We illustrate these advantages in the context of LHC precision probes of new Effective Field Theory interactions.

Alfredo

Applications of likelihood learning

Focusses on global EFT fits

Nikhef-2022-015	
Unbinned multivariate observables for global SMEFT analyses from machine learning	
Raquel Gomez Ambrosio, 1,2 Jaco ter Hoeve, 3,4 Maeve Madigan, 5 Juan Rojo, 3,4 and Veronica Sanz 6,7	
 ¹ Dipartimento di Fisica "G. Occhialini", Universita degli Studi di Milano-Bicocca, and INFN, Sezione di Milano Bicocca, Piazza della Scienza 3, I – 20126 Milano, Italy ² Dipartimento di Fisica, Università di Torino, and INFN, Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy ³Department of Physics and Astronomy, VU Amsterdam, 1081HV Amsterdam, The Netherlands ⁴Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands ⁵DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK ⁶ Instituto de Física Corpuscular (IFIC), Universidad de Valencia-CSIC, E-46980 Valencia, Spain ⁷ Department of Physics and Astronomy, University of Sussez, Brighton BN1 9QH, UK 	
Abstract	
<page-header><page-header><page-header></page-header></page-header></page-header>	

Reweighting for more accurate learning

Boosting likelihood learning with event reweighting

Siyu Chen¹, Alfredo Glioti², Giuliano Panico^{3,4}, and Andrea Wulzer^{5,6}

 ¹Institut de Théorie des Phénomenes Physiques, EPFL, Lausanne, Switzerland
 ²Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique, 91191, Gif-sur-Yvette, France
 ³Dipartimento di Fisica e Astronomia, Università di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
 ⁴INFN, Sezione di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
 ⁵Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona, Spain
 ⁶ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys 23, 08010 Barcelona, Spain

Abstract

Extracting maximal information from experimental data requires access to the likelihood function, which however is never directly available for complex experiments like those performed at high energy colliders. Theoretical predictions are obtained in this context by Monte Carlo events, which do furnish an accurate but abstract and implicit representation of the likelihood. Strategies based on statistical learning are currently being developed to infer the likelihood function explicitly by training a continuous-output classifier on Monte Carlo events. In this paper, we investigate the usage of Monte Carlo events that incorporate the dependence on the parameters of interest by reweighting. This enables more accurate likelihood learning with less training data and a more robust learning scheme that is more suited for automation and extensive deployment. We illustrate these advantages in the context of LHC precision probes of new Effective Field Theory interactions.

Alfredo

The ML4EFT framework

pip install ml4eft

https://lhcfitnikhef.github.io/ML4EFT

2211.02058 R. Gomez Ambrosio, JtH, M. Madigan, J. Rojo, V.Sanz

Open-source NN-based python framework for the integration of unbinned multivariate observables into global SMEFT fits

- Goal: provide optimal constraints on the SMEFT
- Diagnostic tool: what is the information loss incurred by a particular choice of bins?
- Projections: how will SMEFT constraints improve if unbinned data are made available?

	≡	[] 🛓		
ML4EFI documentation	ml4eft.core.classifier.Fitter			
Q. Search the docs				
	<pre>class ml4eft.core.classifier.Fitter(json_pa</pre>	ath, mc_run, c_name, output_dir,		
CODE	print_log=False)	[source]		
Installation	Bases: object			
Tutorial	Training class			
ml4eft ^				
ml4eft.analyse 🗸 🗸	<pre>init(json_path, mc_run, c_name, out</pre>	<pre>put_dir, print_log=False) [source]</pre>		
ml4eft.core				
ml4eft.core.classifier	Fitter constructor			
ml4eft.core.classifier.Classifier	Parameters: • ison path (str) - Path to iso	Parameters: • ison path (str) – Path to ison run card		
ml4eft.core.classifier.ConstraintAc	• mc_run (int) – Replica num	• mc_run (<i>int</i>) – Replica number		
ml4eft.core.classifier.CustomActiv	 c_name (str) – EFT coefficient 	• c_name (str) – EFT coefficient for which to learn the ratio function		
ml4eft.core.classifier.EventDatase	 output_dir (str) – Path to w 	 output_dir (str) – Path to where the models should be stored 		
ml4eft.core.classifier.Fitter	 print_log (bool, optional) – Set to true to print training progress to 			
ml4eft.core.classifier.MLP	stdout, otherwise it prints to	stdout, otherwise it prints to a log file only		
ml4eft.core.classifier.PreProcessi				
ml4eft.core.th_predictions V	Methods			
ml4eft.core.truth V	init (icon noth mo run o nome output dir)	Fitter constructor		
ml4eft.limits V	(son_path, mc_run, c_name, output_un)	Filler constructor		
ml4eft.plotting	load_data()	Constructs training and validation sets		
ml4eft.preproc V				
RESULTS	<pre>loss_fn(outputs, labels, w_e)</pre>	Loss function		
Unbinned multivariate observables for global SMEFT analyses from machine learning	<pre>train_classifier(data_train, data_val)</pre>	Starts the training of the binary classifier		
BIBLIOGRAPHY	training_loop(optimizer, train_loader,)	Optimize the classifier with optimizer on the training data set train_loader.		
որուցուցիլլչ				
Theme by the Executable Book Project	weight_reset(m)	Reset the weights and blases associated with the model m.		

Modular structure, easy to maintain, well documented

Anticipating global fits

- Global EFT fits typically feature ~50 WCs and thus efficient scaling with the number of WCs becomes essential
- ML4EFT 1.0: learn the coefficient functions separately and combine afterwards

$$r(\boldsymbol{x}, \boldsymbol{c}) = 1 + \sum_{j=1}^{n_{\text{eft}}} r^{(j)}(\boldsymbol{x})c_j + \sum_{j=1}^{n_{\text{eft}}} \sum_{k \ge j}^{n_{\text{eft}}} r^{(j,k)}(\boldsymbol{x})c_jc_k$$
Assumes no sign flips in interferences
Fix is part of ML4EFT2.0

Example: to learn a single $r^{(j)}$, generate \mathscr{D}_{sm} and \mathscr{D}_{eft} at c_j up to $\mathscr{O}(\Lambda^{-2})$. Then $r(\mathbf{x}, \mathbf{c}) = 1 + r^{(j)}(\mathbf{x})c_i^{(tr)}$ and training means

$$g(\boldsymbol{x}, c_j^{(\mathrm{tr})}) = \left(1 + \left[1 + c_j^{(\mathrm{tr})} \cdot \mathrm{NN}^{(j)}(\boldsymbol{x})\right]\right)^{-1} \qquad \mathrm{NN}^{(j)}(\boldsymbol{x}) \to r^{(j)}(\boldsymbol{x})$$

Uncertainty treatment

- We only have finite training data and NNs are subject to methodological uncertainties
- Propagate uncertainties as well as finite training set effects to the space of models by training multiple replicas

$$\hat{r}^{(i)}(x,c) \equiv 1 + \sum_{j=1}^{n_{\text{eft}}} NN_i^{(j)}(x)c_j + \sum_{j=1}^{n_{\text{eft}}} \sum_{k\geq j}^{n_{\text{eft}}} NN_i^{(j,k)}(x)c_jc_k, \qquad i = 1, \dots, N_{\text{rep}}$$

Marginalised 95 % C.L. intervals, $\mathcal{O}(\Lambda^{-4})$ at $\mathcal{L} = 300 \text{ fb}^{-1}$

Unbinned observables in Higgs + Z associated production

Marginalised 95 % C.L. intervals, $\mathcal{O}(\Lambda^{-4})$ at $\mathcal{L} = 300 \text{ fb}^{-1}$

$$pp \to hZ \to b\bar{b}\ell^+\ell^-$$

- Unbinned multivariate data is advantageous to constrain the EFT parameter space
- Degeneracies get lifted

Ongoing efforts

1. Hadronised level

Marginalised 95 % C.L. intervals, $\mathcal{O}(\Lambda^{-4})$ at $\mathcal{L} = 300 \text{ fb}^{-1}$

2. Integration into global fits

Applications of likelihood learning

Focusses on global EFT fits

<page-header><page-header><page-header><text><text><text><footnote></footnote></text></text></text></page-header></page-header></page-header>		
<page-header><page-header><page-header><text><text><text><text></text></text></text></text></page-header></page-header></page-header>	Nikhef-2022-015	
<page-header><page-header><page-header><text><text><footnote><list-item><list-item><section-header></section-header></list-item></list-item></footnote></text></text></page-header></page-header></page-header>		
<page-header><page-header><page-header><text><text><text><text></text></text></text></text></page-header></page-header></page-header>	Unbinned multivariate observables for global SMEFT analyses	
<page-header><page-header><page-header><text><text><text></text></text></text></page-header></page-header></page-header>	from machine learning	
<page-header><page-header><page-header><text><text><text></text></text></text></page-header></page-header></page-header>	Raquel Gomez Ambrosio, ^{1,2} Jaco ter Hoeve, ^{3,4} Maeve Madigan, ⁵ Juan Rojo, ^{3,4} and Veronica Sanz ^{6,7}	
	<page-header><text><section-header><section-header></section-header></section-header></text></page-header>	
	1	

Reweighting for more accurate learning

Boosting likelihood learning with event reweighting

Siyu Chen¹, Alfredo Glioti², Giuliano Panico^{3,4}, and Andrea Wulzer^{5,6}

 ¹Institut de Théorie des Phénomenes Physiques, EPFL, Lausanne, Switzerland
 ²Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique, 91191, Gif-sur-Yvette, France
 ³Dipartimento di Fisica e Astronomia, Università di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
 ⁴INFN, Sezione di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
 ⁵Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona, Spain
 ⁶ICREA, Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys 23, 08010 Barcelona, Spain

Abstract

10 Aug 2023

arXiv:2308.05704v1 [hep-ph]

Extracting maximal information from experimental data requires access to the likelihood function, which however is never directly available for complex experiments like those performed at high energy colliders. Theoretical predictions are obtained in this context by Monte Carlo events, which do furnish an accurate but abstract and implicit representation of the likelihood. Strategies based on statistical learning are currently being developed to infer the likelihood function explicitly by training a continuous-output classifier on Monte Carlo events. In this paper, we investigate the usage of Monte Carlo events that incorporate the dependence on the parameters of interest by reweighting. This enables more accurate likelihood learning with less training data and a more robust learning scheme that is more suited for automation and extensive deployment. We illustrate these advantages in the context of LHC precision probes of new Effective Field Theory interactions.