Flavour Physics

by Ben Allanach, University of Cambridge $b \to c \tau \bar{\nu}$ $b \to s \ell^+ \ell^-$ **EFT** fits Models and questions for SMEFiT

 $R_{D^{(*)}} = BR(B \to D^{(*)}\tau\nu)/BR(B \to D^{(*)}\ell\nu_{\ell})$

 $R_{D^{(*)}}$: BSM Explanations

 $\mathcal{L}_{WET} = -\frac{2\lambda_1\lambda_2}{M^2} \left(\bar{c}\gamma^{\mu}P_L\nu\right) \left(\bar{\tau}\gamma_{\mu}P_Lb\right) + H.c.$

2022 Measurement

Using BaBar data (not official BaBar analysis) and *semi-leptonic* tag: (2012 used *hadronic*)

$$R(D) = 0.316 \pm 0.062 \pm 0.019$$
$$R(D*) = 0.226 \pm 0.022 \pm 0.012$$
$$\rho = -0.82$$

Yunxuan Li, Search for Beyond Standard Model Physics at BaBar, (2022), Caltech Ph.D. thesis https://resolver.caltech.edu/CaltechTHESIS:05232022-144829107

$b \rightarrow s l^+ l^-$ in Standard Model

$BR(B \to K\mu^+\mu^-) = BR(B \to Ke^+e^-)$

 $BR \sim \mathcal{O}(10^{-6})$: loop+EW+CKM

LHCb 2212.09152

$$R_X(q^2) = \frac{BR(B \to X\mu^+\mu^-)}{BR(B \to Xe^+e^-)}(q^2)$$

Form Factors

Predicting $B \to M\ell^+\ell^-$: **FFs**

 $\mathcal{A} = \texttt{local} + \texttt{non-local}$

local: interpolate lattice at high $q^2 = m_{ll}^2$ and LCSR at low q^2 .

non-local: no lattice. Most use QCD factorisation: perturbative charm loop+ad-hoc EOS approach: interpolate $q^2 < 0$ LCOPE and

measurements of BRs/angular dists at $q^2 = M_{J/\psi}^2$.

 $q^2 \rightarrow z(q^2)$, |z| < 1

 $C_9^{LD} \propto \sum_n a_n z^n$ 1707.07305 truncation 2205.03797

Caveat Emptor

2212.10516

$$B^0 \to K^{*0} (\to K^+ \pi^-) \mu^+ \mu^-$$

Decay fully described by three helicity angles $\vec{\Omega} = (\theta_{\ell}, \theta_K, \phi)$ and $q^2 = m_{\mu\mu}^2 \frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \left[\frac{3}{4}(1 - F_{\mathrm{L}})\sin^2\theta_K + F_{\mathrm{L}}\cos^2\theta_K + \frac{1}{4}(1 - F_{\mathrm{L}})\sin^2\theta_K\cos 2\theta_\ell - F_{\mathrm{L}}\cos^2\theta_K\cos 2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos 2\phi + S_4\sin 2\theta_K\sin 2\theta_\ell\cos\phi + S_5\sin 2\theta_K\sin\theta_\ell\cos\phi + \frac{4}{3}A_{\mathrm{FB}}\sin^2\theta_K\cos\theta_\ell + S_7\sin 2\theta_K\sin\theta_\ell\sin\phi + \frac{4}{3}A_{\mathrm{FB}}\sin^2\theta_K\sin 2\theta_\ell\sin\phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin^2\theta_\ell\sin2\phi\right]$

 $P_5' = S_5 / \sqrt{F_L (1 - F_L)}$

 $B_s \to \phi \mu^+ \mu^-$: $\phi = (s\bar{s})$

 $BR(B \to K\mu^+\mu^-)$

μ Neutral Current Fits

Greljo, Šalko, Smolkovic, Stangl, 2212.10497

Neutral Current Fits Compare

Alguero et al, 2304.07330; Altmannshofer, Stangl, flavio 2212.10497 Ciuchini et al, HEPfit 2212.10516; Hurth et al, superIso 23??.????

$$\mathcal{L} = N[C_{9\mu}^{NP}(\bar{b}_L\gamma^{\alpha}s_L)(\bar{\mu}\gamma_{\alpha}\mu) + C_{10\mu}^{NP}(\bar{b}_L\gamma^{\alpha}s_L)(\bar{\mu}\gamma_{\alpha}\gamma^5\mu)] + H.c.$$

Plot from B Capdevila-Soler Beyond Flavour Anomalies workshop

Tree-level Explanations

${\rm Simple}\,\, Z'\,\, {\rm Models}$

SM-singlet scalar 'flavon' θ

Additional $U(1)_X$ gauge symmetry broken by $\langle\theta\rangle\sim {\rm TeV} \Rightarrow M_{Z'}\sim {\rm TeV}$

 $SM+3\nu_R$ fermion content

Zero charges for first two generations of quark $X = 3B_3 - [L_1L_e + L_2L_\mu + L_3L_\tau]$ postdicts

some small CKM¹. $L_3 = (3 - L_1 - L_2)$ anom free

¹BCA, Mullin, 2306.08669

Important Z' Couplings

SMEFT WCs/ $(g_{Z'}^2/M_{Z'}^2)$

WC	value	WC	value
C_{ll}^{iiii}	$-\frac{1}{2}L_i^2$	$C_{ll}^{iijj} \ (i \neq j)$	$-L_iL_j$
$(C_{lq}^{(1)})^{iijk}$	$L_i(\Lambda_{\Xi}^{(d_L)})_{jk}$		
$C_{ee}^{iijj}(i \neq j)$	$-L_iL_j$	C_{uu}^{3333}	$-\frac{1}{2}$
C_{dd}^{3333}	$-\frac{1}{2}$	C_{ee}^{iiii}	$-\frac{1}{2}L_i^2$
C_{eu}^{ii33}	L_i	C_{ed}^{ii33}	L_i
$C_{ud}^{(1)3333}$	-1	$C_{le_{ijj}}^{iijj}$	$-L_iL_j$
C_{qe}^{ijkk}	$L_k(\Lambda_{\Xi})_{ij}$	$C_{qu}^{(1)ij33}$	$-(\Lambda_{\Xi})_{ij}$
$C_{qd}^{(1)ij33}$	$-(\Lambda_{\Xi})_{ij}$	$C_{qq}^{(1)ijkl}$	$(\Lambda_{\Xi})_{ij}(\Lambda_{\Xi})_{kl} rac{\delta_{ik}\delta_{jl}-2}{2}$
C_{lu}^{ii33}	L_i	C_{ld}^{ii33}	L_i

wilson | flavio | smelli > output

Questions for SMEFiT

Flavour assumption wrong

Can you upgrade to 2499 parameters? RGE done for you in Wilson Matching also done in Wilson Work is in observables: you'd be parallel to flavio

S_3 Leptoquark Model

TeV scale Scalar² $S_3 = (\bar{3}, 3, 1/3)$:

 $\mathcal{L} = \ldots + \lambda Q'_3 S_3 L_2 + Y_{ij} Q_i Q_j S_3^{\dagger} + \text{h.c.}$ = \ldots + \lambda (\cos \theta_{23} Q_3 L_2 + \sin \theta_{23} Q_2 L_2) + \theta.

²Capdevila et al 1704.05340, Hiller and Hisandzic 1704.05444, D'Amico et al 1704.05438

Best fits BCA, Davighi, 2211.11766

2-parameter fits to 247 flavour observables:

parameters | Wilson | flavio | smelli > output

Coupling to electrons as well

Let's now switch on electron couplings in each model (eg $X_e \neq 0$ in Z' model).

Leptoquark Explanation

Coupling a single LQ to electrons as well as muons will lead to trouble:

 $BR(\mu \to e\gamma) < 4.2 \ 10^{-13}$ (MEG 2016)

LEP constraints

Put into flavio (Falkowski, Mimouni 1511.07434) Fit θ_{sb} and $g_{Z'}/M_{Z'}$

Epilogue

Need to upgrade to 2499 EFT parameters Simple model with 2 parameters gives 100s of WCs

La Parilla for tonight

You go for the food and you stay for the art

"He was a nice friendly waiter and the restaurant had delicious food and wine. Try the lamb and mushroom ice cream."

Date of visit: October 2023

Backup

Flavour problem

$$Y_u \sim \begin{pmatrix} \times \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}, \qquad Y_d \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix},$$

Postdicts CKM angles $|V_{cb}|$, $|V_{ub}|$, $|V_{ts}|$, $|V_{td}|$ to be small
$$\begin{split} \mathcal{L}_{X\psi} &= g_X \quad \left(\overline{\mathbf{u}_{\mathbf{L}}} \Lambda_{\xi}^{(u_L)} \mathbf{Z}' \mathbf{u}_{\mathbf{L}} + \overline{\mathbf{u}_{\mathbf{R}}} \Lambda_{\xi}^{(u_R)} \mathbf{Z}' \mathbf{u}_{\mathbf{R}} \right. \\ &\quad + \overline{\mathbf{d}_{\mathbf{L}}} \Lambda_{\xi}^{(d_L)} \mathbf{Z}' \mathbf{d}_{\mathbf{L}} + \overline{\mathbf{d}_{\mathbf{R}}} \Lambda_{\xi}^{(d_R)} \mathbf{Z}' \mathbf{d}_{\mathbf{R}} \\ &\quad - \overline{\mathbf{e}_{\mathbf{L}}} \Lambda_{\Xi}^{(e_L)} \mathbf{Z}' \mathbf{e}_{\mathbf{L}} - \overline{\mathbf{e}_{\mathbf{R}}} \Lambda_{\Xi}^{(e_R)} \mathbf{Z}' \mathbf{e}_{\mathbf{R}} \\ &\quad - \overline{\boldsymbol{\nu}_{L}} \Lambda_{\Xi}^{(\nu_L)} \mathbf{Z}' \boldsymbol{\nu}_{L} - \overline{\boldsymbol{\nu}_{R}} \Lambda_{\Xi}^{(\nu_R)} \mathbf{Z}' \boldsymbol{\nu}_{R} \right), \\ \Lambda_{\xi}^{(I)} &\equiv V_{I\Xi}^{\dagger\xi} V_{I}, \ \xi = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \Xi = \begin{pmatrix} X_{e} & 0 & 0 \\ 0 & X_{\mu} & 0 \\ 0 & 0 & X_{\tau} \end{pmatrix} \\ X_{\tau} &= 3 - X_{e} - X_{\mu} (\text{BCA}, \text{Mullin}, 2306.08669) \end{split}$$

Z' couplings, $I \in \{u_L, d_L, e_L, \nu_L, u_R, d_R, e_R\}$

A simple limiting case

$$V_{u_R} = V_{d_R} = V_{e_L} = V_{e_R} = 1$$

$$V_{d_L} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{sb} & -\sin \theta_{sb} \\ 0 & \sin \theta_{sb} & \cos \theta_{sb} \end{pmatrix}$$

 $\Rightarrow V_{u_L} = V_{d_L} V_{CKM}^{\dagger}$ and $V_{\nu_L} = V_{e_L} U_{PMNS}^{\dagger}$.

•

$B_s - \bar{B}_s$ Mixing

Measurement agrees with SM.

μ/e Neutral Current Fits

Alguero et al, 2304.07330

BCA, Mullin, 2306.08669

 $3B_3 - L_e - 2L_\mu$ model

	$\chi^2 - \chi^2_{SM}$	p-value	measurement	pull
LFU	-0.2	.85	$R_{K^*}(0.1, 1.1)$	-0.1
LEP	-0.4	.58	$R_{K^*}(1.1, 6)$	-1.1
quarks	-14.7	.10	$R_K(0.1, 1.1)$	-0.3
global	-15.3	.28	$R_{K}(1.1, 6)$	-0.1

$g_{Z'}=0.2$, $\theta_{sb}=-0.03$ best-fit

BCA, Mullin, 2306.08669

Flavonstrahlung Models of Z' ilk possess $\mathcal{L} = \lambda H H^{\dagger} \theta \theta^{\dagger} \Rightarrow$ a *flavonstrahlung* signature:

BCA, 2009.02197; BCA, Loisa, 2212.07440

$\mu\mu$ ATLAS 13 TeV 139 fb⁻¹

2 track-based isolated μ , $p_T > 30$ GeV with reconstructed vertex.⁴ Only keep pair with highest $(|p_{T_1}| + |p_{T_2}|)$.

$$m_{\mu_1\mu_2}^2 = (p_1^{\mu} + p_2^{\mu}) \left(p_{1\mu} + p_{2\mu} \right)$$

CMS also has a similar analysis⁵

⁴ATLAS, 1903.06248 ⁵CMS, 2103.02708

Pull=(theory-exp)/error

BCA, Davighi, 2211.11766

 $e \neq \mu$ allowed

Fleischer, Malami, Rehult, Keri Vos, 2303.08764; $C_{9\ell}^{NP} = |C_{9\ell}^{NP}|e^{i\phi_{9\ell}^{NP}}$

$$\mathcal{L} = N(\bar{b}_L \gamma^{\alpha} s_L) [C_{9\mu}^{NP}(\bar{\mu} \gamma_{\alpha} \mu) + C_{9e}^{NP}(\bar{e} \gamma_{\alpha} e)] + H.c.$$

51

Anomaly cancellation

Need to pick X charges for fermions consistent with QFT anomaly cancellation.

$$X = 3B_3 - (X_e L_e + X_\mu L_\mu + [3 - X_e - X_\mu] L_ au)$$
works (proof in 2306.08669).

Trident Neutrino Process

FIG. 10. Neutrino trident process that leads to constraints on the Z^{μ} coupling strength to neutrinos-muons, namely $M_{Z'}/g_{v\mu} \gtrsim 750$ GeV.

t-channel

Z'

 ϑ

$H\vartheta$ potential

 $V = -\mu^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2 - \mu_{\theta}^2 \theta^* \theta +$ $\lambda_{\theta}(\theta^*\theta)^2 + \lambda_{\theta H}\theta^*\theta H^{\dagger}H$ $= -\frac{1}{2} \left(h' \,\vartheta' \right) M^2 \left(\frac{h'}{\vartheta'} \right) + \dots$ $M^{2} = \begin{pmatrix} 2\lambda_{H}v_{H}^{2} & \lambda_{\theta H}v_{H}v_{\theta} \\ \lambda_{\theta H}v_{H}v_{\theta} & 2\lambda_{\theta}v_{\theta}^{2} \end{pmatrix}$

$H\vartheta$ mixing

$$\begin{pmatrix} h \\ \vartheta \end{pmatrix} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} h' \\ \vartheta' \end{pmatrix}$$

$$\sin 2\phi = \frac{2\lambda_{\theta H} v_h v_\theta}{m_{\vartheta}^2 - m_h^2}.$$
(1)

Three parameters: $v_{\theta} = M_{Z'}/g_{Z'}$, m_{ϑ} and ϕ .

Higgs Signal Strength

ϑ **BRs**

Z' Searches⁶

⁶BCA, Banks, 2111.06691

Z^\prime Decay Modes

Mode	BR	Mode	BR	Mode	BR
$t\bar{t}$	0.15	$b\overline{b}$	0.15	$ u \overline{ u}' $	0.23
$\mid \mu^+\mu^-$	0.46				

 $\sigma_{prod} \propto g_X^2 \cos^4 \theta_{sb} = g_X^2 \left(1 - 2\theta_{sb}^2 + \mathcal{O}(\theta_{sb}^4) \right)$

$B_3 - L_2 \text{ model's}^7 Z'$

⁷Bonilla, Modak, Srivastava, Valle, 1705.00915; Alonso, Cox, Han, Yanagida 1705.03858

CMS $\mu^+\mu^-b$ 2307.08708

Y_3 HL-LHC sensitivity⁸

⁸BCA, Banks, 2111.06691

Scalar LQ⁹: eg $S_3 \sim (\bar{3}, 3, 1/3)$

⁹BCA, Corbett, Madigan, 1911.0445