EFT interpretation of low scale CPV and LFV searches

Marc Riembau CERN 6th October 2023

Experiments testing near-global SM symmetries can test dynamics at distances beyond TeV scale

$$\begin{split} H &= -\mu \, \vec{B} \cdot \frac{\vec{S}}{S} \, - \, d \, \vec{E} \cdot \frac{\vec{S}}{S} \\ & \downarrow \quad \text{relativistic limit} \\ \mathcal{L}_{dipole} \, = \, -\frac{\mu}{2} \bar{\Psi} \sigma^{\mu\nu} F_{\mu\nu} \Psi - \frac{d}{2} \bar{\Psi} \sigma^{\mu\nu} i \gamma^5 F_{\mu\nu} \Psi \\ & \downarrow \quad \mathsf{SM} \\ \mathcal{L} \supset \frac{c_W^e}{\Lambda^2} y_e g \, \bar{\ell}_L \sigma_{\mu\nu} e_R \sigma^a H W^a_{\mu\nu} \, + \, \frac{c_B^e}{\Lambda^2} y_e g' \, \bar{\ell}_L \sigma_{\mu\nu} e_R H B_{\mu\nu} \, + \, h.c. \\ \hline d_e(\mu) = \frac{\sqrt{2}v}{\Lambda^2} \mathrm{Im} \left[s_{\theta_W} \, C_{eW}(\mu) - c_{\theta_W} \, C_{eB}(\mu) \right] \end{split}$$

rediction:
$$e^{\frac{2}{3}}$$

SM P

$$\rightarrow d_e/e \sim 10^{-40} \ cm$$

SM contribution is ridiculously small, EDM is a clear sign of New Phisics Hints for this simplicity are old, coming from non-violations of accidental and approximate SM symmetries. In particular, CP:

Larger Higgs-Boson-Exchange Terms in the Neutron Electric Dipole Moment

Steven Weinberg

Theory Group, Department of Physics, University of Texas, Austin, Texas 78712 (Received 25 August 1989)

The neutron electric dipole moment (d_n) due to Higgs-boson exchange is reconsidered, now without assuming that Higgs-boson exchange is solely responsible for $K_L^0 \rightarrow 2\pi$. The dominant contribution to d_n arises from a three-gluon operator, produced in integrating out top quarks and neutral Higgs bosons. The estimated result together with current experimental bounds on d_n show, even for the largest plausible Higgs-boson masses, that *CP* is not maximally violated in neutral-Higgs-boson exchange.

This is very large compared with other contributions, and potentially in conflict with the experimental results for d_n , $(-14\pm 6)\times 10^{-26} e \text{ cm}$ from Leningrad²⁰ and $(-3\pm 5)\times 10^{-26} e \text{ cm}$ from Grenoble.²¹ We do not know m_H or m_t , but the experimental lower bound on m_t is rapidly increasing, and it is hard to imagine that m_H could be larger than $10m_t$. This gives¹⁵ h > 0.015. The experimental bound²¹ $|d_n| < 1.2 \times 10^{-25} e \text{ cm}$ thus requires that $|\text{Im}Z_2| < 8 \times 10^{-5}$. Our conclusion is that *CP* is not maximally violated in the neutral Higgs sector.¹⁴ The only way that I can see for this to be natural is for the Higgs sector to be very simple: no more than two doublets, and with two doublets, no mixing with any scalar singlets.

Evolution of electron EDM constraints

Current: JILA $|d_e| < 4.1 \cdot 10^{-30} \text{ e cm}$

Evolution of electron EDM constraints

Current: JILA $|d_e| < 4.1 \cdot 10^{-30} \text{ e cm}$

Translation of eEDM constraints to particle physics:

$$\frac{d_e}{e} \sim \frac{1}{(16\pi^2)^2} \frac{m_e}{\Lambda^2} \longrightarrow \Lambda > 3 \,\mathrm{TeV}$$

Relevant constraints even at two loops.

We want to characterize all effects that enter with

Two loops

Chirality flip

This is the key to help organize the contributions

$$\frac{d}{d\ln\mu} \operatorname{Im} \begin{pmatrix} C_{eB} \\ C_{eW} \end{pmatrix} = -\frac{y_e g}{16\pi^2} \begin{pmatrix} 0 & 2t_{\theta_W} (Y_L + Y_e) & \frac{3}{2} \\ 1 & 0 & t_{\theta_W} (Y_L + Y_e) \end{pmatrix} \begin{pmatrix} C_{W\widetilde{W}} \\ C_{B\widetilde{B}} \\ C_{W\widetilde{B}} \end{pmatrix}$$

$$\lim_{\substack{k \text{ is useful to write the parameters in a more physical way}} \lim_{\substack{k \text{ or } p \text{ is a more physical way}}} \sum_{\substack{k \text{ in a more physical way}}} \frac{vh}{\Lambda^2} \left(\tilde{\kappa}_{\gamma\gamma} F_{\mu\nu} \widetilde{F}^{\mu\nu} + 2\tilde{\kappa}_{\gamma Z} F_{\mu\nu} \widetilde{Z}^{\mu\nu} \right) + ie\delta \tilde{\kappa}_{\gamma} W^+_{\mu} W^-_{\nu} \widetilde{F}^{\mu\nu}$$

$$\frac{d}{d\ln\mu} d_e(\mu) = \frac{e}{8\pi^2} \frac{m_e}{\Lambda^2} \left[4Q_e \tilde{\kappa}_{\gamma\gamma} - \frac{4}{s_{2\theta_W}} \left(\frac{1}{2} + 2Q_e s_{\theta_W}^2 \right) \tilde{\kappa}_{\gamma Z} + \frac{\Lambda^2}{v^2} \delta \tilde{\kappa}_{\gamma} \right]$$

Due to approximate accidental cancellation, 1/2+2 Qe sin^2 ~ 0.04, Z boson contribution negligible.

11

Two loop, log^2 contribution competes with the single loop, no log contribution

which is O(1) for $\Lambda \sim$ 5TeV

Accidental cancellation makes it smaller and only hypercharge contributes to EDM

$$\frac{d}{d\ln\mu} \mathrm{Im} \begin{pmatrix} C_{eB} \\ C_{eW} \end{pmatrix} = \frac{y_d g^3}{(16\pi^2)^2} \frac{N_c}{4} \begin{pmatrix} 3t_{\theta_W} Y_Q + 4t_{\theta_W}^3 (Y_L + Y_e) (Y_Q^2 + Y_d^2) \\ \frac{1}{2} + 2t_{\theta_W}^2 (Y_L + Y_e) Y_Q \end{pmatrix} C_{le\bar{d}\bar{q}} \qquad \qquad H \qquad H$$

The other 4-fermions enter only at 2 loops, single log Again, a cancellation for ledg: $\sim g^2 \rightarrow \frac{g'^2}{8}$ 16

Impact on BSM

Fix $\Lambda = 10~TeV$

Table uses ACME-II bounds. Multiply by ~0.5 to get current constraints!

neutron EDM

Current constraints: **nEDM (PSI):** $d_n < 1.8 \cdot 10^{-26} e \cdot cm$

Future constraints:

n2EDM (PSI): $d_n < \cdot 10^{-27} \, e \cdot \mathrm{cm}$

$$\mathcal{L} \supset \theta \frac{g_s^2}{32\pi^2} G\widetilde{G} + m_u \bar{u} u e^{i\theta_u} + m_d \bar{d} de^{i\theta_d} \rightarrow \theta + \theta_u + \theta_d < 10^{-10}$$

$$\begin{split} d_n &= -\left(0.204 \pm 0.011\right) \, d_u + \left(0.784 \pm 0.028\right) \, d_d - \left(0.0027 \pm 0.0016\right) \, d_s + \left(0.0027 \pm 0.0016\right) \,$$

neutron EDM

 $\Lambda = 5 \text{TeV}$

Operator	RGE only	RGE + finite
$C_{H\widetilde{G}}$	$9.40 \cdot 10^{-3} g_s^2$	$7.81 \cdot 10^{-3} g_s^2$
$C_{H\widetilde{B}}$	$2.04\cdot 10^0 g'^2$	$1.53\cdot 10^0 g'^2$
$C_{H\widetilde{W}}$	$2.99\cdot10^{-1}g^2$	$2.62\cdot 10^{-1}g^2$
$C_{HW\widetilde{B}}$	$1.76\cdot 10^{-1}gg'$	$1.61\cdot 10^{-1}gg'$
$C_{\widetilde{W}}$		$3.46\cdot 10^0g^3$
$C_{\widetilde{G}}$	$4.74\cdot 10^{-5}g_s^3$	$6.91 \cdot 10^{-5} g_s^3$

Operator	RGE only	RGE + finite
$\operatorname{Im} C_{Hud}_{11}$	$1.87 \cdot 10^{-2} g'^2$	$2.03 \cdot 10^{-2} g'^2$
$\operatorname{Im} C_{\underset{31}{Hud}}$	_	$1.03\cdot 10^{-2}g'^{2}$
$\operatorname{Re} C_{Hud}_{31}$		$3.53\cdot 10^{-3}g'^2$
$\operatorname{Im} C_{\substack{uH\\11}}$		$1.33\cdot 10^9\lambda_u$
$\operatorname{Im} C_{{_{11}}}$		$1.33\cdot 10^9\lambda_d$

+ many 4-fermions...

proton EDM

nEDM (PSI): $d_n < 1.8 \cdot 10^{-26} \, e \cdot \mathrm{cm}$

Current constraints:

pEDM (199Hg) :
$$d_p < \sim 10^{-25} \, e \cdot {
m cm}$$

Future:

Storage ring (COSY, Julich, Germany): $d_p < 10^{-29} \, e \cdot {
m cm}$

PROTON EDM RING

COSY at Jülich supported by EPPSU as possible site for developing the project

proton EDM

nEDM (PSI): $d_n < 1.8 \cdot 10^{-26} \, e \cdot \mathrm{cm}$

Current constraints:

pEDM (199Hg):
$$d_p < \sim 10^{-25} \, e \cdot {
m cm}$$

Future:

Storage ring (COSY, Julich, Germany): $d_p < 10^{-29} \, e \cdot {
m cm}$

proton EDM

J. Pertz (JEDI and CPEDM collaborations) DOI: 10.22323/1.412.0026

$$E_r = \frac{GBc\beta\gamma^2}{1 - GB\beta^2\gamma^2} \qquad - \blacksquare$$

Spin precession sensitive to p EDM

 $\sigma_{\text{stat}}(1 \text{ year}) = 2.4 \times 10^{-29} \,\text{e} \cdot \text{cm}$

Current constraints:		
MEG (PSI)	SINDRUM-II (PSI)	SINDRUM (PSI)
$Br(\mu \to e\gamma) \le 4.2 \cdot 10^{-13}$	$\mathcal{R}(\mu N \to eN) \le 7 \cdot 10^{-13}$	$Br(\mu \to eee) \le 10^{-12}$

Future constraints:		
MEG-II (PSI)	Mu2e (Fermilab)	Mu3e (PSI)
$Br(\mu \to e\gamma) \le 6.0 \cdot 10^{-14}$	$\mathcal{R}(\mu N \to eN) \le 7 \cdot 10^{-17}$	$Br(\mu \to eee) \le 10^{-16}$

LFV

Elias-Miró, Fernandez, Gumus, Pomarol '22

	$\mu \rightarrow e \gamma$	$\mu \to eee$	$\mu N \rightarrow eN$	$h \rightarrow \mu e$
$C_{DB}^{\mu e} - C_{DW}^{\mu e}$	951 TeV	218 TeV	208 TeV	
	(1547 TeV)	(2183 TeV)	(1812 TeV)	
$C_{DB}^{\mu e} + C_{DW}^{\mu e}$	127 TeV	26 TeV	24 TeV	
	(214 TeV)	(309 TeV)	(253 TeV)	
$C_R^{\mu e}$	35 TeV	160 TeV	225 TeV	
	(59 TeV)	(1602 TeV)	(1535 TeV)	
$C_L^{\mu e} + C_{L3}^{\mu e}$	4 TeV	164 TeV	225 TeV	
	(7 TeV)	(1642 TeV)	(1535 TeV)	
aue que	24 TeV	35 TeV	50 TeV	
$C_L^i = C_{L3}^i$	(41 TeV)	(421 TeV)	(395 TeV)	
$C_{LuQe}^{\mu ett}$	304 TeV	63 TeV	59 TeV	
	(510 TeV)	(735 TeV)	(604 TeV)	
quett	80 TeV	14 TeV	5 TeV	
C_{LeQu}	(141 TeV)	(209 TeV)	(57 TeV)	
aucee		207,174 TeV		
$C'_{LL(RR),LR(RL)}$		(2070,1740 TeV)		
анени			352 TeV	
LL,RR,LR			(2693 TeV)	
quedd			376 TeV	
C _{LL,RR,LR}			(2725 TeV)	
audde			18 TeV	
C_{LR}			(164 TeV)	
σμεττ		14,16,14,16 TeV	22 TeV	
C _{LL,RR,LR,RL}		(174,194,174,194 TeV)	(200 TeV)	
σμεττ		20 TeV	55 TeV	
C_{LL3}		(247 TeV)	(476 TeV)	
quett	122 TeV	21 TeV	22,32,32,22 TeV	
C _{LL,RR,LR,RL}	(214 TeV)	(317 TeV)	(200,290,290,200 TeV)	
quett	230 TeV	41 TeV	100 TeV	
C_{LL3}	(401 TeV)	(592 TeV)	(851 TeV)	
auebb		14,16,14,16 TeV	22 TeV	
$C_{LL,RR,LR,RL}$		(174,194,174,194 TeV)	(200 TeV)	
Clife	4 TeV	1 TeV	1 TeV	$0.3 { m TeV}$
$C_y^{\mu e}$	(6 TeV)	(9 TeV)	(7 TeV)	

Present (future)

tree 1-loc

1-loop (1-loop)^2

2-loop

25

Conclusions

In the near future, EDM and LFV searches are expected to improve from one to four orders of magnitude,

constraining generic microscopic sources even at the multi-TeV scale