## Automated global bounds on UV models via SMEFT observables

### **The LHC Precision Program Workshop**

Benasque, Spain 5 October 2023

### Alejo N. Rossia

Department of Physics and Astronomy The University of Manchester

With J. ter Hoeve, G. Magni, J. Rojo and E. Vryonidou arXiv: 2309.04523 (submitted to JHEP)



The University of Manchester

### **UV model**

See Javier's, Tommaso and Jaco's, Guilherme's talks.

#### Apologies for not including all tools/codes due to space-time restrictions.







See Javier's, Tommaso and Jaco's, Guilherme's talks.

### **SM Effective Field Theory**

#### Apologies for not including all tools/codes due to space-time restrictions.





See Javier's, Tommaso and Jaco's, Guilherme's talks.

### **SM Effective Field Theory**



Matchmakereft

<u>МАТСНЕТЕ</u>

CoDEx

[2112.10787]

[2212.04510]

[1808. 04403]

SMEFT@NLO [2008. 11743]



### **Observables and Data**

#### Apologies for not including all tools/codes due to space-time restrictions.





### **Observables and Data**

#### Apologies for not including all tools/codes due to space-time restrictions.



### **UV model**



### **Observables and Data**

#### Apologies for not including all tools/codes due to space-time restrictions.







## UV matching imposes constrains on WCs

### **Tree-level matching**

See Javier's talk on Tuesday and Guilherme's just before.

$$\frac{\left(c_{qd}^{(1)}\right)_{3333}}{\Lambda^2} = -\frac{\left(y_{\phi}^d\right)_{33}^2}{6\,m_{\phi}^2}, \quad \frac{\left(c_{qd}^{(8)}\right)_{3333}}{\Lambda^2} = -\frac{\left(y_{\phi}^d\right)_{33}^2}{m_{\phi}^2}, \qquad \frac{\left(c_{d\varphi}\right)_{33}}{\Lambda^2} = \frac{\lambda_{\phi}\left(y_{\phi}^d\right)_{33}}{m_{\phi}^2}, \quad \frac{c_{\varphi}}{\Lambda^2} = \frac{\lambda_{\phi}^2}{m_{\phi}^2}$$



## UV matching imposes constrains on WCs

### **Tree-level matching**

See Javier's talk on Tuesday and Guilherme's just before.

$$\frac{\left(c_{qd}^{(1)}\right)_{3333}}{\Lambda^2} = -\frac{\left(y_{\phi}^d\right)_{33}^2}{6\,m_{\phi}^2}, \quad \frac{\left(c_{qd}^{(8)}\right)_{3333}}{\Lambda^2} = -\frac{\left(y_{\phi}^d\right)_{33}^2}{m_{\phi}^2}, \qquad \frac{\left(c_{d\varphi}\right)_{33}}{\Lambda^2} = \frac{\lambda_{\phi}\left(y_{\phi}^d\right)_{33}}{m_{\phi}^2}, \quad \frac{c_{\varphi}}{\Lambda^2} = \frac{\lambda_{\phi}^2}{m_{\phi}^2}$$

### One loop-level matching

$$\begin{split} \frac{c_{\varphi\square}}{\Lambda^2} &= -\frac{g_1^4}{7680\pi^2} \frac{1}{m_{\phi}^2} - \frac{g_2^4}{2560\pi^2} \frac{1}{m_{\phi}^2} - \frac{3}{32\pi^2} \frac{\lambda_{\phi}^2}{m_{\phi}^2}, \\ \frac{c_{t\varphi}}{\Lambda^2} &= -\frac{\lambda_{\phi} \left(y_{\phi}^u\right)_{33}}{m_{\phi}^2} - \frac{g_2^4 y_t^{\text{SM}}}{3840\pi^2} \frac{1}{m_{\phi}^2} + \frac{y_t^{\text{SM}}}{16\pi^2} \frac{\lambda_{\phi}^2}{m_{\phi}^2} + \frac{\left(4\left(y_b^{\text{SM}}\right)^2 - 13\left(y_t^{\text{SM}}\right)^2\right)}{64\pi^2} \frac{\lambda_{\phi} \left(y_{\phi}^u\right)_{33}}{m_{\phi}^2} \\ &- \left(12\lambda_{\varphi}^{\text{SM}} + \left(y_b^{\text{SM}}\right)^2 - 11\left(y_t^{\text{SM}}\right)^2\right) \frac{y_t^{\text{SM}}}{64\pi^2} \frac{\left(y_{\phi}^u\right)_{33}^2}{m_{\phi}^2} + \frac{3}{128\pi^2} \frac{\lambda_{\phi} \left(y_{\phi}^u\right)_{33}^3}{m_{\phi}^2}, \end{split}$$

MANCHESTER 1824

The University of Manchester

### **Modifications on SMEFiT**

See Tommaso and Jaco's talk on Wednesday.

SMEFiT supports relations among fit parameters like:

$$\sum_{i} a_i \left( c_1 \right)^{n_{1,i}} \dots \left( c_N \right)^{n_{N,i}} = 0$$
  
Could be used to relate WCs or...



### **Modifications on SMEFiT**

See Tommaso and Jaco's talk on Wednesday.

SMEFiT supports relations among fit parameters like:

$$\sum_{i} a_i (c_1)^{n_{1,i}} \dots (c_N)^{n_{N,i}} = 0$$
Could be used to relate WCs or ...

Directly change the fit variables to the parameters of the UV model.

### **Caveat: support only for polynomial matching expressions (and a bit more).**



The University of Manchester

Automated global bounds on UV models via SMEFT observables | Alejo N. Rossia, 5 Oct 23

11.

### **Modifications on SMEFiT**

See Tommaso and Jaco's talk on Wednesday.

SMEFiT supports relations among fit parameters like:

$$\sum_{i} a_i (c_1)^{n_{1,i}} \dots (c_N)^{n_{N,i}} = 0$$
Could be used to relate WCs or

Directly change the fit variables to the parameters of the UV model.

$$\sigma(\mathbf{c}) \xrightarrow{\text{Automated in SMEFiT}} \sigma(\mathbf{g}_{\text{UV}})$$
$$\mathbf{c} = f(\mathbf{g}_{\text{UV}})$$

We assume flat priors on the couplings of the UV model.

### **Caveat: support only for polynomial matching expressions (and a bit more).**

Automated global bounds on UV models via SMEFT observables | Alejo N. Rossia, 5 Oct 23

The University of Manchester

MANCHESTER

## **UV** invariants

• Sensitive only to combinations of UV couplings that enter the WCs.

$$h: U \to I \qquad \text{"UV invariants"} \qquad \mathbf{c} = f(\mathbf{g}_{\mathrm{UV}})$$
$$f(h(g)) = f(h(g')) \iff h(g) = h(g') \qquad \mathbf{c} = f(h(\mathbf{g}_{\mathrm{UV}}))$$



#### Disclaimer: not necessary to do the fit, but useful to understand the results.



### match2fit

https://github.com/arossia94/match2fit/

- A Wolfram Mathematica™ package
- Reads results from Matchmakereft and produces run cards that can be fed into smefit to perform a fit.
- Uses the same WC basis than SMEFiT.
- Automates the computation of the "UV invariants".
- It runs Matchmakereft to perform matching and print the cards at once.
- Plus additional features (live demo in a few slides).

### **Caveat: v.1.0 supports only tree-level matching. 1-loop support is WIP.**



## **Bounding vector-like fermions at tree level**

NLO  $\mathcal{O}(\Lambda^{-2})$  NLO  $\mathcal{O}(\Lambda^{-4})$ 

|            | $\begin{bmatrix}  (\lambda_N^e)_3  \\ 0.00 \end{bmatrix}$ | $(\lambda_E)_3 $           | 0.             | $\begin{bmatrix} E \\ 0.0 \end{bmatrix} \begin{bmatrix}  (\lambda_{\Delta_1})_3  \\ 0.0 \end{bmatrix}$ | $\begin{array}{c} \Delta_1 \\ \hline \\ 0.2 \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | λ) <sub>3</sub>   Δ <sub>3</sub><br>Δ <sub>3</sub><br>0.2 |
|------------|-----------------------------------------------------------|----------------------------|----------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|            | Fermions                                                  |                            | Model          | UV invariants                                                                                          | NLO $\mathcal{O}\left(\Lambda^{-2}\right)$                                                                                                                                                                        | NLO $\mathcal{O}\left(\Lambda^{-4}\right)$                |
| Particle   | Irrep                                                     |                            | N              | $ (\lambda_N^e)_{\alpha} $                                                                             | [0, 0.47]                                                                                                                                                                                                         | [0, 0.48]                                                 |
| N          | $(1,1)_{0}$                                               | $m_{\rm UV} = 1 { m TeV}$  | $\overline{F}$ | $ (\lambda_{T}) $                                                                                      | [0, 0.25]                                                                                                                                                                                                         | [0, 0.25]                                                 |
| E          | $(1,1)_{-1}$                                              |                            |                | $ \langle XE \rangle_3 $                                                                               | [0, 0.25]                                                                                                                                                                                                         | [0, 0.25]                                                 |
| $\Delta_1$ | $(1,2)_{-1/2}$                                            |                            | $\Delta_1$     | $\left \left(\lambda_{\Delta_{1}} ight)_{3} ight $                                                     | [0, 0.21]                                                                                                                                                                                                         | [0, 0.20]                                                 |
| $\Delta_3$ | $(1,2)_{-3/2}$                                            |                            | $\Delta_3$     | $\left \left(\lambda_{\Delta_3} ight)_3 ight $                                                         | [0.0015, 0.26]                                                                                                                                                                                                    | [0, 0.27]                                                 |
| Σ          | $(1,3)_{0}$                                               | Coupling only              | Σ              | $\left  (\lambda_{\Sigma})_3 \right $                                                                  | [0, 0.28]                                                                                                                                                                                                         | [0, 0.29]                                                 |
| $\Sigma_1$ | $(1,3)_{-1}$                                              | to                         | $\Sigma_1$     | $\left \left(\lambda_{\Sigma_1} ight)_3 ight $                                                         | [0,  0.43]                                                                                                                                                                                                        | [0, 0.42]                                                 |
| U          | $(3,1)_{2/3}$                                             | 3 <sup>rd</sup> generation | U              | $\left  (\lambda_U)_3 \right $                                                                         | [0, 0.82]                                                                                                                                                                                                         | [0, 0.84]                                                 |
| D          | $(3,1)_{-1/3}$                                            | 000000                     | D              | $ (\lambda_D)_3 $                                                                                      | [0, 0.24]                                                                                                                                                                                                         | [0, 0.23]                                                 |
| $Q_1$      | $(3,2)_{1/6}$                                             |                            | $Q_1$          | $\left  \left( \lambda_{2}^{u} \right) \right $                                                        | [0, 0.93]                                                                                                                                                                                                         | [0, 0.92]                                                 |
| $Q_7$      | $(3,2)_{7/6}$                                             |                            |                | $ \langle 2 \rangle_1 \rangle_3 $                                                                      |                                                                                                                                                                                                                   |                                                           |
| $T_1$      | $(3,3)_{-1/3}$                                            |                            | $Q_7$          | $ (\lambda Q_7)_3 $                                                                                    | [0, 0.91]                                                                                                                                                                                                         | [0 0.91]                                                  |
| $T_2$      | $(3,3)_{2/3}$                                             |                            | $T_1$          | $\left \left(\lambda_{T_{1}} ight)_{3} ight $                                                          | [0, 0.45]                                                                                                                                                                                                         | [0, 0.47]                                                 |
| $Q_5$      | $(3,2)_{-5/6}$                                            |                            | $T_2$          | $\left \left(\lambda_{T_2} ight)_3 ight $                                                              | [0, 0.38]                                                                                                                                                                                                         | [0, 0.38]                                                 |

Bounds mostly from EWPOs

MANCHESTER

Automated global bounds on UV models via SMEFT observables | Alejo N. Rossia, 5 Oct 23

The University of Manchester

## **Vector bosons at tree level**



## **Multi-particle models at tree level**





## **One-loop matching makes a difference**





# match2fit

Live in Benasque



## Conclusions

- Flexible code to do fits on UV models.
- Capable to handle great variety of models.
- Designed for improvement and expansion
- Several ways of improving it:
  - Full 1-loop support
  - Interface to other matching and fitting codes.
  - Inclusion of RGEs
  - More general flavor symmetries



The University of Manchester

## Thanks for your attention!

#### Contact:

Alejo N. Rossia

HEP Theory Group – Dept. Of Physics and Astronomy

E-mail: alejo dot rossia at manchester dot ac dot uk

http://www.hep.man.ac.uk/

