
FlashAttention: Fast and Memory-Efficient
Exact Attention with IO-Awareness

Tri Dao
https://tridao.me

https://tridao.me

Generate Art
(Stable Diffusion – Stability.AI)

Machine Learning Has Made Exciting Progress

Fix Bugs
(ChatGPT/GPT4 - OpenAI)

Design Drugs
(AlphaFold – DeepMind)

What enabled these advances? What are outstanding problems? How do we approach them?
2

c

Scale Brings Quality and Capabilities

100 million

2018

500 billion
2022

Scale is more closely tied to advances in ML than ever before
3

Input: I tried 10000 random restarts of my neural network, but I
was accused of overfitting. I guess no good seed goes unpunished.

1.3B model: The joke is that if you try 10000 different seed choices,
you'll eventually find one that works, but you'll be accused of
overfitting.

175B model: This joke is a play on words related to neural networks,
a type of machine learning algorithm.
The punchline, "I guess no good seed goes unpunished," is a play on
the phrase "no good deed goes unpunished." In this case, "good
seed" refers to a starting point for the random restarts, and the joke
implies that even when trying to improve the neural network's
performance, the person is still accused of overfitting.

Language models explaining jokes

Core Challenge with Scale: Efficiency

Smaller/faster
model

Is it possible to get there?

Efficiency

Ac
cu

ra
cy

Larger/slower
 model

Efficiency unlocks new capabilities
(e.g., long context)

4

Efficiency eases training, deployment,
and facilitates research

My Approach to Efficiency: Understanding Algorithms & Systems

Fundamental algorithms Hardware accelerators & distributed systems

x

5

Fast matrix-vector multiply Attention mechanism Block-oriented device Asymmetric memory hierarchy

Main Idea: Hardware-aware Algorithms

IO-awareness:
reducing reads/writes to GPU memory yields significant speedup

FlashAttention: fast and memory-efficient attention
algorithm, with no approximation

7

Text Generation
(Llama - Meta, Falcon - TII UAE, MPT - Mosaic)

Image Generation
(Stable Diffusion - Stability.AI)

FlashAttention Adoption Areas

Drug Discovery
(OpenFold, UniFold)

8

Outl ine

Attention is bottlenecked by memory reads/writes
Tiling and recomputation to reduce IOs
Applications: faster Transformers, better Transformers with long context

Software-hardware co-design, Long context for new workflow

Outlines

9

FlashAttention

Future Directions

Outl ine

Attention is bottlenecked by memory reads/writes
Tiling and recomputation to reduce IOs
Applications: faster Transformers, better Transformers with long context

Software-hardware co-design, Long context for new workflow

Outlines

10

FlashAttention

Future Directions

Motivation: Modeling Long Sequences

NLP: Large context required to
understand books, plays,

codebases.

Computer vision: higher
resolution can lead to better,

more robust insight.

Time series, audio, video,
medical imaging data naturally

modeled as sequences of
millions of steps.

12

Enable
New Capabilities

Close Reality Gap Open New Areas

Efficiency is the Bottleneck for Modeling Long Sequences with Attention

How to efficiently scale models to longer sequences?
13

Context length: how many other
elements in the sequence does
the current element interact with.

2x↓

Increasing context length slows down (or stops) training

Background: Attention is the Heart of Transformers

14

Background: Attention Mechanism

O = Softmax(QKT)V

15

Q
(N x d)

K
(N x d)

x

V
(N x d)

x

O
(N x d)

=

Query Key Similarity
Score

Attention prob
= row-wise normalized

similarity score

Value Output

Softmax 𝑠!, ⋯ , 𝑠" =
𝑒#!

∑$ 𝑒#"
, ⋯ ,

𝑒##

∑$ 𝑒#"

→ →

Typical sequence length N: 1K – 8K
Head dimension d: 64 – 128

S = 	𝑄	𝐾!
(N x N)

A = Softmax(𝑆)
(N x N)

Attention scales quadratically in sequence length N

Is there a fast, memory-efficient, and exact attention algorithm?
16

Background: Approximate Attention

Survey: Tay et al. Long Range Arena : A Benchmark for Efficient Transformers. ICLR 2020.

Approximate attention: tradeoff quality for speedApproximate attention: tradeoff quality for speed fewer FLOPs

Our Observation: Attention is Bottlenecked by Memory Reads/Writes

17

Q
(N x d)

K
(N x d)

S = 	𝑄	𝐾!
(N x N)

x

A = Softmax(𝑆)
(N x N)

V
(N x d)

x

O
(N x d)

=

Query Key Similarity
Score

Attention prob
= row-wise normalized

similarity score

Value Output

→ →

Typical sequence length N: 1K – 8K
Head dimension d: 64-128

The biggest cost is in moving the bits!
Standard implementation requires repeated R/W

from slow GPU memory

Background: GPU Compute Model & Memory Hierarchy

Can we exploit the memory asymmetry to get speed up?
With IO-awareness (accounting for R/W to different levels of memory)

Blogpost: Horace He, Making Deep Learning Go Brrrr From First Principles.

18

1. Inputs start out in
HBM (GPU memory)

2. Data moved to
compute units & SRAM

for computation

3. Output written
back to HBM

https://horace.io/brrr_intro.html

How to Reduce HBM Reads/Writes: Compute by Blocks

Approaches:

(1) Tiling: Restructure algorithm to load block by
block from HBM to SRAM to compute attention.

(2) Recomputation: Don’t store attn. matrix
from forward, recompute it in the backward.

Challenges:

(1) Compute softmax normalization without access
to full input.

(2) Backward without the large attention matrix from
forward.

19

Attention Computation Overview

𝑺 = 𝑸	𝑲𝑻

𝑨 = exp(𝑺) 𝑨
𝒍 	 - 	 𝑽

𝒍 =/
𝒊

exp 𝑺 𝒊

𝑸

𝑲𝑻

𝑽- =

Output

Softmax row-wise
normalization constant 20Compute by blocks: easy to split Q, but how do we split K & V?

𝑨(𝟏)

𝒍
	 - 	𝑽 𝟏

+
𝑨(𝟐)

𝒍
	 - 	𝑽(𝟐)

Tiling – 1st Attempt: Computing Attention by Blocks

𝑸

𝑽(𝟏)

- =

Output

(𝑲 𝟏)𝑻	 (𝑲 𝟐)𝑻	

𝑺(𝟏) = 𝑸 𝑲 𝟏 𝑻
𝑺(𝟐) = 𝑸 𝑲 𝟐 𝑻

𝑨(𝟏) = exp(𝑺(𝟏)) 𝑨(𝟐) = exp(𝑺(𝟐))

𝑽(𝟐)

Challenge: How to compute softmax normalization with just
local results?

𝒍 =/
𝒊

exp 𝑺 𝟏
𝒊 +/

𝒊

exp 𝑺𝟐 𝒊

Example: Split K into 2 blocks

Softmax row-wise
normalization constant

Goal:
Load each block from HBM to
SRAM & do local computation

21

𝑶(𝟐) =
𝒍(𝟏)

𝒍(𝟐)
	𝑶(𝟏)

	 +
𝑨(𝟐)

𝒍(𝟐)
	 - 	𝑽(𝟐)

Tiling – 2nd Attempt: Computing Attention by Blocks, with Softmax Rescaling

𝑸

𝑽(𝟏)

- =

Output

(𝑲 𝟏)𝑻	 (𝑲 𝟐)𝑻	

𝑺(𝟏) = 𝑸 𝑲 𝟏 𝑻
𝑺(𝟐) = 𝑸 𝑲 𝟐 𝑻

𝑨(𝟏) = exp(𝑺(𝟏)) 𝑨(𝟐) = exp(𝑺(𝟐))

𝑽(𝟐)

𝒍(𝟏) =/
𝒊

exp 𝑺 𝟏
𝒊

𝒍(𝟐) = 𝒍(𝟏) +	/
𝒊

exp 𝑺 𝟐
𝒊

𝑶(𝟏) =
𝑨(𝟏)

𝒍(𝟏)
	 - 	𝑽(𝟏)

Local
computation

Tiling + Rescaling allows local computation in SRAM, without
writing to HBM, and get the right answer!

Stored in HBM

Computed in SRAM
(not materialized in HBM)

22

Goal:
Load each block from HBM to
SRAM & do local computation

Wrong
denominator L

𝒍 =/
𝒊

exp 𝑺 𝟏
𝒊 +/

𝒊

exp 𝑺𝟐 𝒊
Output we want:

𝑶 =
𝑨(𝟏)

𝒍 	 - 	𝑽 𝟏 +
𝑨(𝟐)

𝒍 	 - 	𝑽(𝟐)

Rescaling to
correct

denominator

Tiling
Decomposing large softmax into smaller ones by scaling.

1. Load inputs by blocks from HBM to SRAM.

2. On chip, compute attention output with respect to
that block.

3. Update output in HBM by scaling.

Animation credit: Francisco Massa
24

Recomputation (Backward Pass)

By storing softmax normalization from forward (size N),
quickly recompute attention in the backward from
inputs in SRAM.

FlashAttention speeds up backward pass even with increased FLOPs.

Attention Standard FlashAttention

GFLOPs 66.6 75.2 (↑13%)

HBM reads/writes (GB) 40.3 4.4 (↓9x)

Runtime (ms) 41.7 7.3 (↓6x)

25

𝑺 = 𝑸	𝑲𝑻

𝑨 = exp(𝑺)
𝑨
𝒍
	 - 	 𝑽

𝑸

𝑲𝑻

𝑽- =

Output

Stored in HBM

Recomputed in SRAM
(not materialized in HBM)

𝒍 =/
𝒊

exp 𝑺 𝒊

FlashAttention: 2-4x speedup, 10-20x memory reduction

2-4x speedup — with no approximation!

10-20x memory reduction — memory linear in sequence length 26

Summary
FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning

27

Key ideas:
- Reduce non-matmul FLOPs
- Parallelize over seqlen dimension to improve
occupancy
- Better work partitioning between warps to
reduce communication

Upshot: 2x faster wallclock, can train models
with 2x context length for the same cost

Summary
Flash-Decoding: Faster Decoding for Long Context Inference

28

Flash-Decoding:
- Parallelize KV cache loading over seqlen dim
- Separate reduction step to combine results

Upshot: 2-8x faster end-to-end generation on
CodeLlama 34B with context 32k-100k.

FlashAttention:
- Parallelizes across blocks of queries,
batch size, and heads only
- Does not to occupy the entire GPU
during decoding.

Tri Dao, Daniel Haziza, Francisco Massa, Grigory Sizov

Animation credit: Daniel Haziza

GPT3: Faster Training, Longer Context, Better Model

FlashAttention speeds up GPT-3 training by 2x,
increase context length by 4x, improving model quality

Shoeybi et al. arXiv:1909.08053 2019. 31

Model Val perplexity
on the Pile (lower better)

GPT-1.3B, 2K context 5.45

GPT-1.3B, 8K context 5.24

GPT-2.7B, 2K context 5.02

GPT-2.7B, 8K context 4.87

2x↓

2.4x↑

31

Summary

Code: https://github.com/Dao-AILab/flash-attention

FlashAttention: fast and memory-efficient algorithm for exact attention

Key algorithmic ideas: tiling, recomputation

Upshot: faster training, better models with longer sequences

Summary – FlashAttention

33

https://github.com/HazyResearch/flash-attention

How These Hardware-efficiency Ideas Generalize –
Hungry Hungry Hippos: Language Modeling with State-space Models

Approaches:

(1) Design SSMs with multiplicative interaction
and discrete recurrence.

(2) Hardware-efficient (long) convolution

Challenges:

(1) Expressiveness: State-space models (e.g., S4)
underperforms on discrete domains (text)

(2) Efficiency: SSMs scale as 𝑂(𝑁 log𝑁) in theory,
but is slower than attention (𝑂(𝑁!)) in practice.

34

Model Val perplexity
on the Pile (lower better)

GPT Neo 1.3B 6.2

H3 + 2 attn (1.3B) 6.0

GPT Neo 2.7B 5.7

H3 + 2 attn (2.7B) 5.4

Fundamental algorithm and hardware-efficiency unlock promising approach to long context.

Daniel Y. Fu*, Tri Dao*, Khaled K. Saab, Armin W. Thomas, Atri Rudra, Christopher Ré. Spotlight, ICLR 2023

Outl ine

Attention is bottlenecked by memory reads/writes
Tiling and recomputation to reduce IOs
Applications: faster Transformers, better Transformers with long context

Software-hardware co-design, Long context for new workflow

Outlines

36

FlashAttention

Future Directions

Future Directions: Accelerate AI in the real world

Model Hardware1

Software-hardware Co-design: 1

37

Future Directions: Accelerate AI in the real world

Model Hardware1

Software-hardware Co-design: 1

38

Data

Hardware

1 1

Smart compiler + runtime

Sparse matrix multiplication
Data-flow architecture

ML, Architecture, PL, Compiler, HPC, Networks …

Future Directions: Accelerate AI in the real world

Long context for new interactive AI workflows2

39

Models Context

GPT-3 2k

GPT-3.5 (ChatGPT) 4k

GPT-4 8k

GPT-4 32k

