

TEST OF A 3 GHz HIGH-GRADIENT ACCELERATING CAVITY

U. Amaldi, R. Bonomi, A Degiovanni, M. Garlasché, A. Garonna, I. Mondino, P. Pearce, P.L. Riboni, V. Rizzoglio and S. Verdù Andrès

General Concept of a Cyclinac

The energy can be varied in 2-3 ms in the full range by changing the power pulses sent to the 16-22 accelerating modules (forming 8-11 RF Units)

General Concept of a Cyclinac

The last design of a cyclinac for carbon ions: CABOTO-C

Dimensional comparison among carbon ion accelerators

CTF3 Committee - UA - 24.3.11

TULIP = TUrning Linac for Proton therapy

35 MeV cyclotron

CTF3 Committee - UA - 24.3.11

For CABOTO and TULIP:

E ≤ 35-40 MV/m At 3 GHz or higher

🗙 max. E

For CABOTO and TULIP:

 $E \leq 35-40 \text{ MV/m}$ At 3 GHz or higher

Problem: 'the Nose'

As far as E_s is concerned:

TERA's 40 MV/m are equivalent to CLIC's 100 MV/m

 $E_{s} / E \le 4.5 - 5$

For CABOTO and TULIP:

 $E \leq 35-40 \text{ MV/m}$ At 3 GHz or higher

Problem: 'the Nose' mmittee - U/

treatment is (20x100 Hz x120s) pulses

BDR ≤ 3 10⁻⁷

Since 2009 TERA has started an high gradient test Program

Prototype test structures:

- ➤ 3 GHz single-cell cavity
- > 5.7 GHz single-cell cavity
- > multi-cell structure

3 GHz Test Cavity general layout

ngle accelerating cell

-coupled to WR284 waveguide

Preliminary high power test

Low Power Measurments (Jan 2010)

Indirect measurments of field through Faraday Cup S. Verdú Andrés et al. (2010) *LINAC10 Proceedings*

High Power Test (@CTF3 – Feb 2010)

Preliminary results compared with literature data [A. Grudiev et al, Phys. Rev. ST Accel. Beam 12 (2009)]

High power test: first results after few nights and no conditioning

CTF3 Committee - UA - 24.3.11

Microscopy surface Inspection

Microscope's inside view on nose region: several craters and sparse activity can be observed.

Difficulties in reconstructing the actual position of the craters.

Final conclusion will come after cutting and opening the cavity.

To complete the measurement

we request 4 weeks for mounting, conditioning and testing this cavity

The nieces of the 5.7 GHz test cavity are inhouse

Prototype	1&2	3 tendering
Material	C10100 Copper	
Dimensional tolerance band	10 µm	5 µm
Surface roughness (Ra)	0.4 μm	0.025 μm

Low power tuning in 10 days To be tested after the 3 Ghz cavity in Frascati (L. Picardi) (with ADAM's magnetron)

CTF3 Committee - UA - 24.3.11