

Startup 2011 chronology

• Mon 31/01: patrol of Linac and DL/CR

• Fri 04/02: permit for operation

• Mon 07/02: gun conditioned to nominal HV

• Fri 11/02: klystrons up to MKS07 fully conditioned

• ... RF setup for new operation mode

• Fri 18/02: gun pulser faulty, replaced 22/02

• Tue 22/02: first beam to spectrometer girder 4

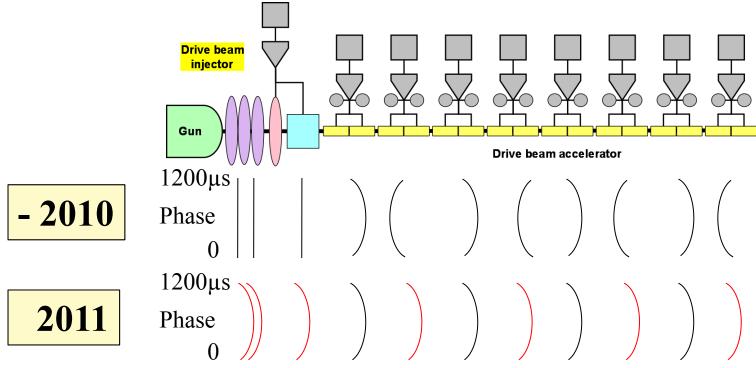
• Fri 04/03: first beam to spectrometer 10

TWT broke (=> no more 1.5 GHz beam)

• Tue 15/03: linac rematched, first beam down to girder 15

• Wed 23/03: first beam to end of TL1

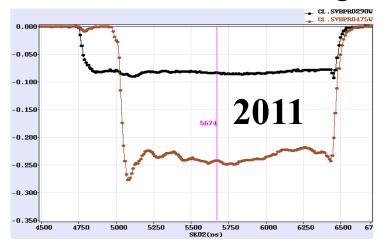
Startup



- Controls upgrades:
 - timing cards
 - wrong trigger required still adjustment of ~250 timing delays after correction
 - power converters
 - very slow response of control system (2 min) fixed now
- MKS13 (rebuilt after fire)
 - included in safety chain on March 4 (permission for RF)
 - reached nominal power with pulse compression on March 8
 - still many breakdowns and high vacuum rise afterwards getting better now
- another TWT broken, only one left => no 1.5 GHz beam
 - return from repair uncertain (repair starts April ...)

new RF phase setup

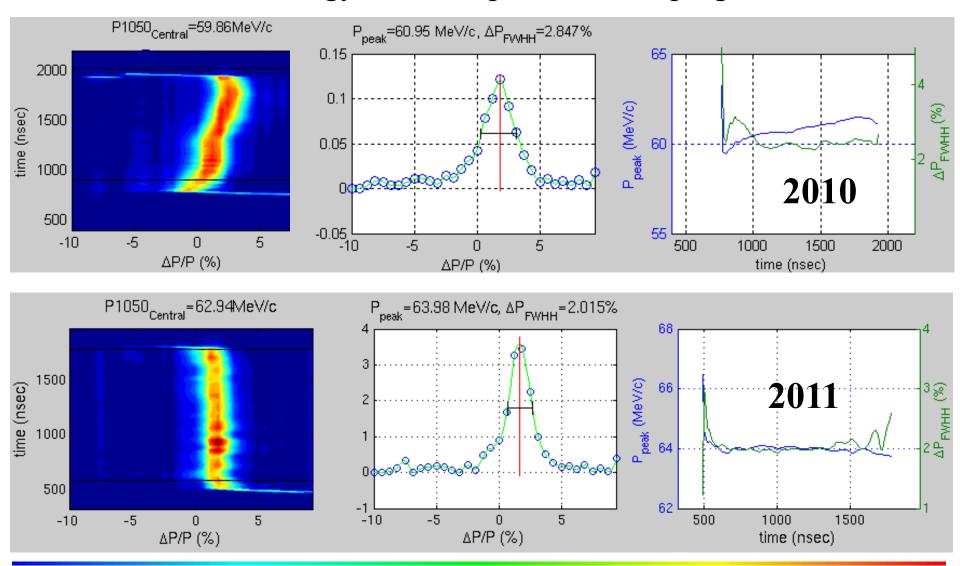
- same sag for SHBs and pre-/buncher + accelerating structures
- => $\Delta E/E = 0$ along the pulse, no bunch length / energy spread variation
- => tuning all along the pulse identical
- still: bunch phase variation could be compensated in Frascati or TL2 chicane (slight energy shaping along the pulse)
- much less sensitive to phase errors [cos(~few deg)]



Beam status

• ~constant BPR signal along the pulse => constant bunch length

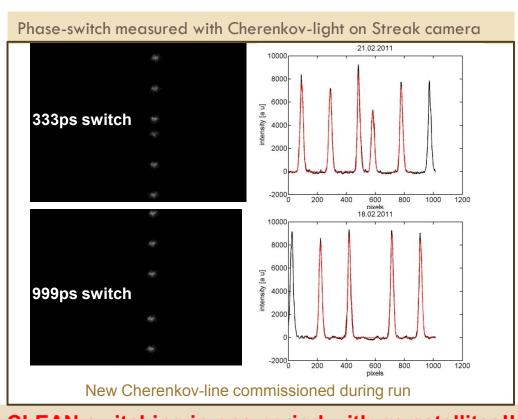
=> constant energy + energy spread


 $P0440_{Central} = 20.34 MeV/c$ P_{peak} =20.55 MeV/c, ΔP_{FWHH} =1.705% 20.8 1400 20.7 1200 (MeV/c) time (nsec) 0.5 1000 20.6 800 20.5 600 400 -0.520.4 -5 400 600 1000 1200 1400 ΔP/P (%) ΔP/P (%) time (nsec)

Beam status (cont.)

constant beam energy without special RF shaping

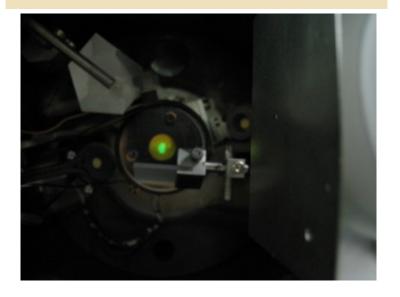
Phase-coding in PHIN


Marta Csatari

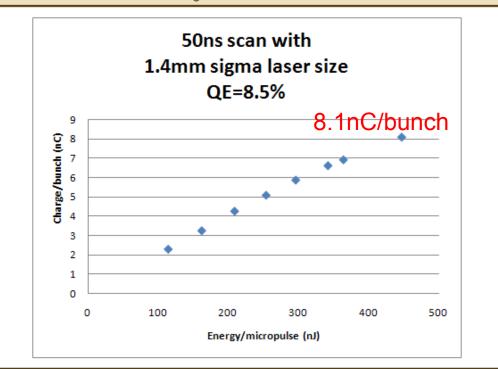
1100 ns long phase-coded train in PHIN with nominal 2.36nC charge

Preliminary beam dynamics measurements show no significant difference between odd and even trains for:

- Emittance
- Beamsize
- Energy
- Charge stability


CLEAN switching in one period with no satellites!!

High charge & cathode tests


Marta Csatari

=> see CLIC meeting tomorrow

- •New green responsive cathode tested in UV Cs3Sb
- Cathode lifetime measurements

Maximum charge extracted with 75 bunches

HIGHEST charge extracted from PHIN to date

CLEX status

- TD24 accelerating structure + 3 new TBL PETS installed
 see Steffen's presentation about TBL
- Laser for CALIFES aligned
- power converter tests started today
- => CALIFES beam next week

DB generation – mid 2011

- Bunch train recombination
 - Consolidate results, routine operation, stability of fully combined beam
- Transverse rms emittance
 - Complete TL2, TL2', TBTS commissioning full transport to CLEX
 - < 100 π mm mrad after ring, combined beam
 - < 150 π mm mrad in CLEX, combined beam
- Bunch length control to < 1 mm rms (combined beam)
 - Measurement campaign with different meas. systems (RF defl.& screen, fast streak-camera, RF monitors)
 - R₅₆ tuning experiments in Frascati chicane and TL2
- Beam current stability: improve slow variations, obtain ~0.2 % for combined beam
 - Full measurement campaign (find correlations, jitter sources)
 - Gun pulse flatness, "slow" feedback
 - Improve overall klystron stability (at least up to best performing klystrons)
 - Slow RF feedback (temp. in pulse compressors)

RF structures – mid 2011

- Consolidate RF measurements
- Variable power splitter between PETS and ACS taken out
- PETS TBTS
 - Goal: nominal power / pulse length inside PETS with recirculation (135 MW, 250 ns total pulse length, 170 ns flat-top)
 - Breakdown rate measurements
 (at high BD rate extrapolation to lower rates)
 - Operation w/out recirculation may have different breakdown rate...
 - Test of new PETS on-off scheme (from summer)
- Acc. structure in TBTS
 - TD24, initial reconditioning in the shadow of PETS operation
 - Goal: nominal power / pulse length delivered to structure (65 MW, 250 ns total pulse length, 170 ns flat-top)

Two beam issues – mid 2011

TBTS

- Two-Beam test -100 MV/m, with correctly tuned structure
- consistency between power & beam energy gain
- Drive beam, deceleration, power produced
- Probe beam, power delivered to accelerating structure, energy gain
- Beam Loading compensation experiment by varying fast phase switches check control of RF pulse shape with probe beam acceleration
- Measurement of breakdown kicks
- Measurement of effect of beam loading on breakdown rate (???)

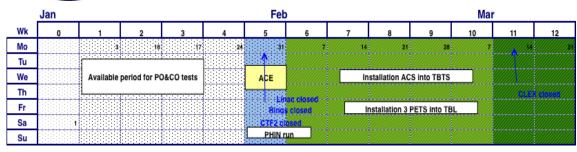
• TBL

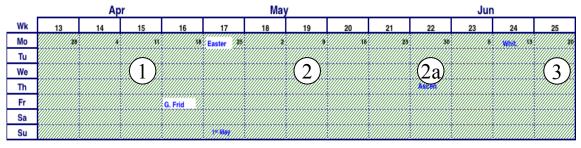
- Measurement of deceleration / produced power
- Measurement of energy spectrum
- Optics, steering algorithm studies

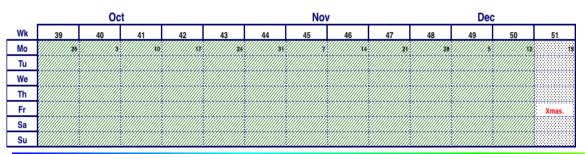
Other issues – mid 2011

CALIFES

- Fully reach nominal parameters (total charge ?)
- Bunch length measurements (RF defl. & screen)


Other


- First measurements of phase stability (PETS output, RF pickups...)
- Operation at 5 Hz
- Control of beam losses
- Coherent Diffraction Radiation (RHUL collaboration)
- **...**


Planning 2011

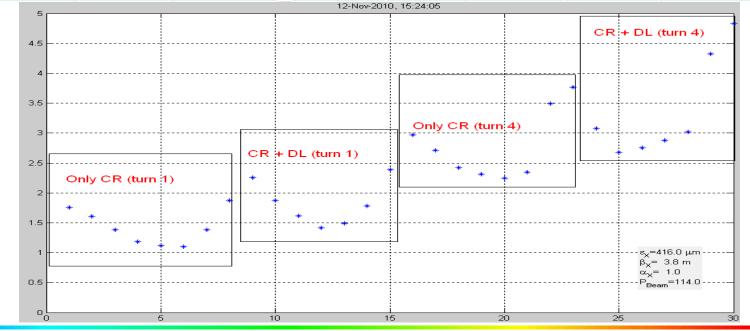
- 3 GHz beam setup to CR initial beam to CLEX CALIFES setup
- CR x4 combination
 emittance studies
 combined beam to CLEX
- 2a) 1.5 GHz beam setup x8 combination (if TWT is available)
- 100 MV/m acceleration breakdown kicks TBL deceleration (1-2 days for DB beam studies)
- ε < 150 mm mrad longitudinal studies stability x8 combination (night running for BDR)
- 5 breakdown rate measurements PETS / ACS
- Test of new PETS on-off scheme TBL deceleration up to 8 PETS

Beam phase CSR rep. rate / losses night supervision

Conclusion

- Startup relatively long due to
 - controls renovation
 - careful new RF setup
- excellent 3 GHz beam setup
 - beam to TL1
 - can hopefully profit from the good beam quality for easier setup
- 1.5 GHz setup will depend on return of TWT
- very successful PHIN run
- CALIFES can start operating next week

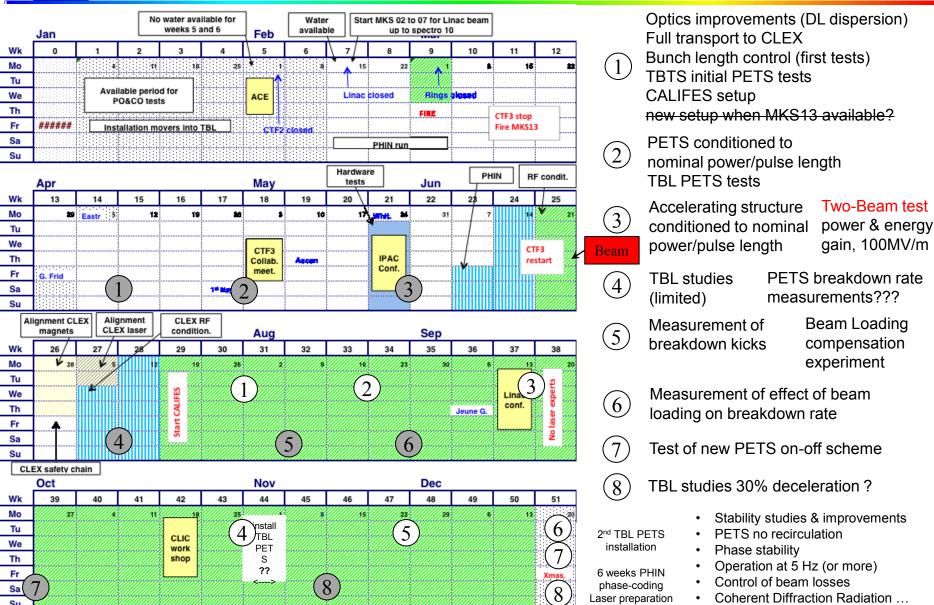
Spare slides



Emittance

- measured in H and V for various stages of combination
- emittance increase more from CR than from DL

horizontal	CR 1st	DL+CR 1st	CR 4 th combined	DL+CR 4 th combined	vertical	CR 1st	DL+CR 1st	CR 4 th combined	DL+CR 4 th combined
emittance [mm mrad]	148	262	532	682	emittance [mm mrad]	88	129	152	170
beta [m]	4.8	5.0	3.7	3.6	beta [m]	17.2	11.0	7.3	9.9
alpha	0.9	0.9	1.0	1.2	alpha	-8.1	-5.1	-3.1	-4.3



Simona Bettoni

Schedule – restart 31/1/2011

