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A Takeaway Point...

Axigluon

The LHC
New Physics explanations of the FB Asymmetry

are already being tested at the LHC.
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Outline

• Evidence for and Characteristics of the Top 
Quark Forward-Backward Asymmetry

• Prerequisites for New Physics Models

• Axigluon from a General EFT

• Constraints from Dijets, the Top Production 
Cross Section, and Flavor

• LHC & Tevatron - Signatures & Follow-Ups

• Some Coset Models and Conclusions
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The F-B Asymmetry
top quark pair production 

•! hard scatter cm-frame cross-section 

•! the final state is specified by  

•!             well measured in total ! and Mtt spectrum.  SM like. 

•! here:  production angle 

–! dependence on  

–! asymmetry in production angle with respect to beamline 

2 

• Tevatron collides protons and ANTI-protons, breaking 
Charge and Parity

• Is this reflected in the final state?

• To analyze, need to measure sign of jets - use Tops

• Measurement (probably) impossible at LHC!

Afb =
Nf −Nb

Nf +Nb
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Standard Model 
Prediction
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FIG. 1: Interfering qq̄ → tt̄ (above) and qq̄ → tt̄j (below) amplitudes.

broadened by the varying boost of the tt̄ system along

the beamline, and the asymmetry is diluted to App̄ =

0.038± 0.006. Our mcfm predictions are in accord with

other recent calculations [1–3]. These predictions are for

top quarks as they emerge from the qq̄ collision, before

any modifications by detector acceptance and resolution.

We will call this the parton-level. Based on our own stud-

ies of scale dependence in mcfm and also the studies in

the references above, we assign a 15% relative uncertainty

to all NLO mcfm predictions.

An NLO calculation for inclusive tt̄ production is an

LO calculation for the production of a tt̄ + jet final state,

and thus an LO calculation for the asymmetry in final

states containing an extra jet. A new NLO calculation

for tt̄j production (and thus for the asymmetry) suggests

that the negative asymmetry in this final state is greatly

reduced from leading-order [25]. This new result for the

tt̄j asymmetry can be incorporated into an analysis of

the asymmetry for inclusive tt̄ production only within the

context of a full NNLO calculation of tt̄ production. Such
calculations are underway but are not complete. Thresh-

old resummation calculations indicate that the inclusive

asymmetry at NNLO should not differ greatly from that

predicted at NLO [1, 21]. In this paper, we compare

to the NLO predictions for tt̄ production. We include a

15% scale dependence uncertainty, but note that there is

an overall unknown systematic uncertainty on the theo-

retical prediction pending the completion of the NNLO

calculation.

In the near-threshold form of the cross section [1] the

tt̄ frame asymmetry can be seen to increase with the top

quark production angle and velocity (β), and these are

thus key variables for understanding the source of the

asymmetry. In this analysis, the proxies for these vari-

ables are the top quark rapidities and the mass Mtt̄ of

the tt̄ system. Measurements of the rapidity and mass

dependence of Att̄ are described in Sections VI and VII.

B. NLO QCD Simulation with MC@NLO

We use the event generator mc@nlo to create a sim-

ulated sample that includes the QCD asymmetry as pre-

dicted by the standard model at NLO. In addition to

including the asymmetric processes this generator prop-

erly estimates the amount of gg, and thus the dilution of

the asymmetry from these symmetric processes.

Some naming conventions for the data-to-simulation

comparison are given in Table II. All Monte Carlo (MC)

generators will have the same conventions: the truth in-

formation is the parton level; the pure top signal after

simulation, selection, and reconstruction is the tt̄ level,

and the full prediction including backgrounds is tt̄ + bkg

level. The reconstructed lepton+jets sample is the data.

Subtracting the backgrounds from the data yields the

reconstructed tt̄ signal-level. Correcting the data for ac-

ceptance and resolution produces a measurement at the

parton-level.

TABLE II: Naming conventions for data and simulation sam-
ples.

sample level definition comparable to
data data reco l+jets
data signal data minus bkg tt̄ in data
data parton corrected signal tt̄ at creation
MC tt̄+bkg reco tt̄ + bkg data
MC tt̄ reco tt̄ no bkg data signal
MC parton truth level data parton

The mc@nlo predictions for the asymmetries at var-

ious levels of simulation are shown in Table III. The

uncertainties include the Monte Carlo statistics and the

NLO theoretical uncertainty. The parton-level mc@nlo
asymmetries are consistent with mcfm, as expected. Af-
ter CDF detector simulation, event selection, and recon-

struction, the asymmetries in the mc@nlo tt̄ signal are

• LO diagram is symmetric

• largest NLO effect uses valence quark PDFs; smaller effect 
from qg initial state

• NLO diagrams “see” valence quark charges

• Virtual is Positive, Real Negative, so final result depends 
on the IR scale, ie minimum Jet Pt, but virtual > real

Att̄
fb = 0.030± 0.007

Mtt̄ > 450GeV

MC@NLO Predicts:
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Old Evidence for an 
Asymmetry

• Old (0712.0851) D0 Measurement         
of                            with 

• Old (0806.2472) CDF Measurement      
of                            withAtt̄

fb = 0.24± 0.14 1.9 fb−1

Att̄
fb = 0.12± 0.09 0.9 fb−1
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new Evidence for an 
Asymmetry

• New (1101.0034) CDF Measurement      
of                                 with                           
for

• New CDF Conference note analyzing 
dilepton channel, finding asymmetry  
of                             with 334 events

• Parton level asymmetries of 40%!!

Mtt̄ > 450GeV

5.3fb−1Att̄
fb = 0.475± 0.114

Att̄
fb = 0.21± 0.09
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The New CDF Data

• Requires 1 lepton, 4 jets, 1 b-jet, and top reconstruction

• Total of 1260 events after selection

• directionality from hadronic top, sign from lepton
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FIG. 10: Left: The ∆y—Mtt̄ plane. Each dot represents one event, while the intensity of the shading shows approximately
the event probability in the standard pythia based prediction.Right: The tt̄ frame asymmetry in the data in bins of invariant
mass Mtt̄, compared to the prediction of mc@nlo tt̄ + backgrounds. The last bin includes all events with Mtt̄ ≥ 700GeV/c2.
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FIG. 11: The tt̄ frame asymmetries in bins of invariant mass
Mtt̄ when the data is partitioned by lepton charge.

100 GeV/c2 bins above that. The Mtt̄-dependent asym-
metry in ∆y is shown on the right in Fig. 10 and Ta-
ble IX, compared to the prediction of mc@nlo in combi-
nation with the standard background. The uncertainties
in the plot are the statistical errors only; in the table the
mc@nlo uncertainty contains both the statistical and
theoretical component. In the bulk of the data at low
mass the asymmetry is consistent with zero, while at high
mass the asymmetry is consistently above the prediction.
Fig. 11 shows that when the data are separated by lepton
charge, the asymmetries in the two independent samples
behave in approximately opposite fashion.

TABLE IX: The data-level asymmetry Att̄ in bins ofMtt̄ com-
pared to the prediction of mc@nlo + backgrounds.

bin-center Att̄

(GeV/c2) N events data mc@nlo
375 532 -0.019 ± 0.043 0.003± 0.006
425 322 -0.012 ± 0.056 0.026± 0.008
475 190 0.158 ± 0.072 0.013± 0.010
525 95 0.305 ± 0.097 0.019± 0.013
575 58 0.138 ± 0.130 0.063± 0.020
650 34 0.471 ± 0.151 0.051± 0.020
750 29 0.103 ± 0.185 0.091± 0.022

A. Asymmetries at High and Low Mass

The large statistical errors in the Att̄(Mtt̄,i) distribu-
tion of Fig. 10 do not allow any conclusion on the func-
tional dependence. In order to make a quantitative mea-
surement of Att̄(Mtt̄) in a simple, statistically meaningful
way, we use a compact representation of Att̄(Mtt̄,i) into
just two Mtt̄ bins, below and above a given mass bound-
ary.
The boundary between the low and high mass regions

is chosen based on a study of the color-octet samples de-
scribed in the Appendix. These samples have Att̄(Mtt̄,i)
distributions that are comparable to the data and reason-
able for modeling the sensitivity in that variable. We find
that the significance of the asymmetry at high mass is
maximized when the bin division is atMtt̄ = 450 GeV/c2,
and therefore adopt this cut.
Fig. 12 shows the ∆y distributions when the data

is divided into two regions, below and above Mtt̄ =
450 GeV/c2. At low mass the asymmetry is consis-
tent with zero. At high mass, the rapidity difference is
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Energy Dependence

• To get best statistics for energy 
dependence, looked at Axigluon-type 
models and found best division

• Found 450 GeV, so binned data as low 
and high energy with this cut
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New CDF Data
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TABLE XIV: Data level asymmetries Att̄ for different event selections. In the case of no-b-fit, the tt̄ reconstruction has been
run without the constraint that b-tagged jets be associated with b-partons.

selection N events all Mtt̄ Mtt̄ < 450 GeV/c2 Mtt̄ ≥ 450 GeV/c2

standard 1260 0.057±0.028 -0.016±0.034 0.212±0.049
electrons 735 0.026±0.037 -0.020±0.045 0.120±0.063
muons 525 0.105±0.043 -0.012±0.054 0.348±0.080

data χ2 < 3.0 338 0.030±0.054 −0.033± 0.065 0.180± 0.099
data no-b-fit 1260 0.062±0.028 0.006± 0.034 0.190± 0.050

data single b-tag 979 0.058±0.031 -0.015±0.038 0.224±0.056
data double b-tag 281 0.053±0.059 -0.023±0.076 0.178±0.095

data anti-tag 3019 0.033±0.018 0.029±0.021 0.044±0.035
pred anti-tag - 0.010±0.007 0.013±0.008 0.001±0.014

pre-tag 4279 0.040±0.015 0.017±0.018 0.100±0.029
pre-tag no-b-fit 4279 0.042±0.015 0.023±0.018 0.092±0.029

B. Reconstruction

It is conceivable that a reconstruction error could pro-

duce an asymmetry from symmetric inputs. The qual-

ity of the reconstruction is summarized by a χ2 that

measures the consistency of the solution with the tt̄ hy-
pothesis. The distribution of χ2 in our sample, shown in

Fig. 15, is in very good agreement with the prediction,

including a good match on the long tail. When the sam-

ple is restricted to high quality fits with χ2 ≤ 3.0, we find
338 events in which Att̄ = −0.033 ± 0.065 at low mass

and Att̄ = 0.180 ± 0.099 at high mass. Although the

statistical precision is diminished in this small sample,

it suggests that the high mass asymmetry is present in

the best reconstructed events. Since the χ2 requirement

rejects a significant fraction of the background, it also

suggests that the high mass asymmetry is not a back-

ground related effect.
To test for possible reconstruction biases related to b-

tagging, we re-run the reconstruction algorithm removing

the constraint that b-tag jets be matched to b partons.

We find Att̄ = 0.006 ± 0.034 at low mass and Att̄ =

0.190 ± 0.050 at high mass. When we further separate

the events by lepton charge, the ∆ylh asymmetries are

A−
lh = −0.190 ± 0.074 and A+

lh = 0.190 ± 0.069. The

large forward-backward charge asymmetry at high mass

is seen to be independent of the use of b-jet identification

in the reconstruction.

C. B-Jet Identification

All of our simulated models predict asymmetries that

are independent of whether one or two jets are b-tagged.
In single and double b-tagged samples pythia predicts

asymmetries that are consistent with zero, and the Octet

models predict asymmetries that are consistent with each

other. In the data, the two cases are consistent with each

other, although the statistical precision on the double

tagged sample is marginal.

In the background dominated anti-tags, the inclusive

and low mass samples have small asymmetries that agree

with the prediction. In the high mass anti-tag sample we

find Att̄ = 0.044±0.035, consistent with either the model

prediction of zero or a slight excess due to the tt̄ compo-

nent there. Mixing backgrounds and tt̄ in the expected

ratio and assuming the tt̄ component has an asymme-

try of 0.266 (as in Table XIII), we find a total expected

asymmetry in the anti-tag sample of Att̄ = 0.079± 0.034
in agreement with the data.

The lepton+jets sample with no b-tagging is the “pre-

tag” sample. Our standard pythia + background model

predicts pre-tag asymmetries consistent with zero for all

mass categories. The asymmetries in the data are shown

in Table XIV. At low mass the asymmetry in the pre-tags

is consistent with zero. At high mass, the pre-tag sample

has a significant asymmetry 0.100± 0.029. If we assume

that tt̄ signal at high mass has Att̄ = 0.266 as in Ta-

ble XIII and combine tt̄ with our standard backgrounds

in the expected pre-tag ratio, we predict a pre-tag asym-

metry of Att̄ = 0.111 ± 0.028, in good agreement with

the data.

As a final check in the pre-tag sample, we repeat the

exercise of running the reconstruction without the con-

straint that b-tagged jets are used as b-partons. The

results are shown in the bottom row of Table XIV. The

asymmetry at high mass is 0.092 ± 0.029, a significant

effect in a sample that makes absolutely no reference to

b-tagging.

D. Jet Multiplicity

In Sec. IVA we discussed the two components of

the NLO QCD asymmetry: (1) radiative corrections to

quark-antiquark production and (2) interference between

different amplitudes contributing to the tt̄j final state.

The two contributions have opposite signs. At NLO,

the first is positive and dominant for the inclusive mea-

surement, while the second is negative and subdominant.

•                  requires better top reconstruction

• no-b-fit ignores knowledge of b-jets when reconstructing

χ2 < 3.0
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Unfolded CDF Data

12

uncertainty is large.

B. Cross-Checks of the Inclusive Asymmetry

Table VII shows the asymmetries in the data when the

sample is separated according to the lepton flavor and the

number of b-tagged jets in the event. All of our simulated

models predict asymmetries that are independent of the

lepton type. Within the large errors, the data are con-

sistent with this expectation.

The b-tagged sample contains 281 events with two b-
tags. This double-tag sample is small, but has mini-

mal backgrounds and robust jet-parton assignment. The

double-tag sample is a special category of tt̄ decays where
both the b and b̄ jet have | η |≤ 1.0, but all of our simu-

lation models predict similar asymmetries in single tags

and double-tags. In the data the results are consistent

across single and double-tags, albeit with reduced agree-

ment in App̄. We will discuss the double-tag consistency

in the laboratory frame in more detail in Sec. VIII E.

TABLE VII: Measured asymmetries at the data-level for dif-
ferent lepton and b-tag selections.

selection Att̄ App̄

inclusive 0.057± 0.028 0.073± 0.028
electrons 0.026± 0.037 0.053± 0.037
muons 0.105± 0.043 0.099± 0.043
single b-tags 0.058± 0.031 0.095± 0.032
double b-tags 0.053± 0.059 −0.004± 0.060

VI. RAPIDITY DEPENDENCE OF THE
ASYMMETRY IN THE tt̄ REST FRAME

In Sec. IV we discussed the importance of measur-

ing the rapidity and Mtt̄ dependence of the asymme-

try. The correlated dependence on both variables would

be most powerful, but, given the modest statistical pre-

cision of our current dataset, we begin with separate

measurements of each. In this section we show how a

∆y-dependence may be calculated from the results of

Sec. VA. The Mtt̄-dependence (as well as the correla-

tion of Mtt̄ and ∆y) will be discussed in the sections

following.

In the standard model at NLO the tt̄ frame asymme-

try increases linearly with ∆y, as seen in Fig. 6. The

slope is significant, with the asymmetry reaching values

of roughly 20% at large ∆y.
The ∆y dependence of the asymmetry in our binned

data can be calculated in each bin i of positive ∆y as

Att̄
(∆yi) =

N(∆yi)−N(−∆yi)

N(∆yi) +N(−∆yi)
(6)

∆

FIG. 6: ∆y-dependence of Att̄ according to mcfm.
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FIG. 7: Parton level asymmetries at small and large ∆y com-
pared to SM prediction of mcfm. The shaded bands represent
the total uncertainty in each bin. The negative going uncer-
tainty for ∆y < 1.0 is suppressed.

A parton-level measurement of Att̄(∆yi) in two bins

of high and low ∆y is available from the corrected ∆y
distribution in Fig. 5. We calculate the asymmetry sep-

arately for the low rapidity difference inner bin pair

|∆y| < 1.0 and the large rapidity difference outer bin pair

|∆y| ≥ 1.0. The systematic uncertainties in the bin-by-

bin comparison are evaluated using the same techniques

as in the inclusive measurement. Uncertainty in the back-

ground shape and normalization assumptions cause a sig-

nificant systematic uncertainty in the high ∆y bin.

The ∆y-dependent asymmetries are shown in Table

17

we assign a systematic uncertainty of 0.035 for this effect.

Additional systematic uncertainties are evaluated in

a manner similar to the inclusive case. These uncertain-

ties are estimated by repeating the analysis while varying

the model assumptions within their known uncertainties

for background normalization and shape, the amount of

initial- and final-state radiation (ISR/FSR) in pythia,
the calorimeter jet energy scale (JES), the model of fi-

nal state color connection, and parton distribution func-

tions (PDF). Table XII shows the expected size of all

systematic uncertainties. The physics model dependence

dominates.

TABLE XIII: Asymmetry Att̄ at high and low mass compared
to prediction.

selection Mtt̄ < 450 GeV/c2 Mtt̄ ≥ 450 GeV/c2

data −0.016± 0.034 0.210± 0.049
tt̄+bkg +0.012± 0.006 0.030± 0.007
(mc@nlo)
data signal −0.022± 0.039± 0.017 0.266± 0.053± 0.032
tt̄ +0.015± 0.006 0.043± 0.009
(mc@nlo)
data parton −0.116± 0.146± 0.047 0.475± 0.101± 0.049
mcfm +0.040± 0.006 0.088± 0.013

Table XIII compares the low and high mass asymme-

try to predictions for the data level, the background sub-

tracted signal-level, and the fully corrected parton-level.

The MC predictions include the 15% theoretical uncer-

tainty. At low mass, within uncertainties, the asymmetry

at all correction levels agrees with predictions consistent

with zero. At high mass, combining statistical and sys-

tematic uncertainties in quadrature, the asymmetries at

all levels exceed the predictions by more than three stan-

dard deviations. The parton-level comparison is summa-

rized in Fig. 14. For Mtt̄ ≥ 450 GeV/c2, the parton-level
asymmetry at in the tt̄ rest frame is Att̄ = 0.475± 0.114
(stat+sys), compared with the MCFM prediction of

Att̄ = 0.088± 0.013.

VIII. CROSS-CHECKS OF THE MASS
DEPENDENT ASYMMETRY

The large and unexpected asymmetry at high mass de-

mands a broader study of related effects in the tt̄ data.
We look for anomalies that could be evidence of a false

positive, along with correlations that could reveal more

about a true positive. In order to avoid any assumptions

related to the background subtraction, we make compar-

isons at the data level, appealing when necessary to the

full tt̄ + bkg simulation models.

QCD NLO tt

ttA

2GeV/c 450 ttM

0.0 

2.0 

4.0 

2.0

-1fb 5.3 data CDF
level-parton tt

FIG. 14: Parton-level asymmetry in ∆y at high and low mass
compared to mcfm prediction. The shaded region represents
the total uncertainty in each bin.
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FIG. 15: Distribution of tt̄ reconstruction χ2. Black crosses
are data, histogram is sig+bkg prediction.The last bin on the
right contains all events with χ2 > 100.

A. Lepton Type

All of our simulated models predict asymmetries that

are independent of the lepton type: pythia predicts

asymmetries that are consistent with zero, and the Octet

models predict asymmetries that are consistent with each

other. The data are shown in Table XIV. At high mass,

both lepton types show positive asymmetries consistent

within errors.

• CDF Unfolded detector effects to give 4 bins

• the dominant systematics are from background 
magnitude and the physics model (showering, PDFs, etc)
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Model Prerequisites

• Asymmetry is LARGE 
• Thus expect new physics gives 

asymmetry from interference with QCD
• Interference requires Tops to be in a 

Color Octet, Vector state since these are 
the quantum numbers of a gluon
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Model Prerequisites

• t-channel contribution produces like sign 
tops, requires baroque flavor models...

• s-channel requires a new heavy color octet 
vector boson, “Axigluon”

• couples to dijets of all generations
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Axigluon from a 
General EFT

• EFT with a general Color Octet Vector
• Axial and Vector Couplings to Light 

Quarks and to Top/Bottom, separately 
• Mass and Width as Parameters, expect:

Selection Mtt̄ < 450 GeV Mtt̄ > 450 GeV

Parton Level Exp. Data −0.116± 0.146± 0.047 0.475± 0.101± 0.049

Model Prediction 0.10 0.31

Selection |∆y| < 1.0 |∆y| > 1.0

Parton Level Exp. Data 0.026± 0.104± 0.056 0.611± 0.210± 0.147

Model Prediction 0.12 0.40

Table 2: The comparison of theoretic predictions and measured values for the phenomenological model

with MG� = 2 TeV, gqA = 2.2, gtA = −3.2 and gV = 0. The total χ2
is 5.5.

the mass matrix of the two gauge bosons Gµ
1 and Gµ

2 , we obtain the massless QCD gluon,

Gµ
= cos θGµ

1 + sin θGµ
2 , (3)

and the massive axigluon state,

G�µ
= − sin θGµ

1 + cos θGµ
2 . (4)

The mixing angle θ is related to the gauge couplings of SU(3)1 × SU(3)2, h1 and h2: tan θ = h1/h2.

The QCD coupling is then given by gs = h1 cos θ = h2 sin θ, and the mass of the axigluon is

MG� =

√
2 gs√

3 sin 2θ
fΣ . (5)

The other degrees of freedom in Σ are assumed to be heavy for now, so we only have one new particle

G�
µ below the scale ∼ 4πfΣ.

In order to obtain an Att̄
FB with the correct sign, we need opposite signs for the axial-vector

couplings of the axigluon to the light quarks and the top quark. To achieve this goal, we make the

following assignments for the SM quarks under SU(3)1 × SU(3)2: qL, tR, bR as triplets of SU(3)1

and (t, b)L, qR as triplets of SU(3)2 (see Ref. [32] for a similar setup). To cancel the gauge anomalies,

additional colored particles are required and are assumed to be heavy in here. Here, “q” represents

the first two generations of quarks. With these charge assignments, we find the vector and axial-vector

couplings of G�
µ to the SM quarks, re-scaled by the QCD coupling gs, to be

gtV = gqV =
1

tan 2θ
, gtA = −gqA =

1

sin 2θ
. (6)

Neglecting the quark masses (since MG� will be at or above the TeV scale), the total decay width is

found to be

Γ(G�
) =

αsMG�

6

�
4(|gqV |

2
+ |gqA|

2
) + 2(|gtV |2 + |gtA|2)

�
= αsMG�

�
1

tan2 2θ
+

1

sin
2
2θ

�
. (7)

10
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Axigluon from a 
General EFT

2 An Axigluon?

Our goal is to examine if a new color octet vector boson G� can explain the tt̄ forward-backward

asymmetry. To this end, let us begin with a general low-energy effective Lagrangian coupling G� to

the standard model quarks. To suppress dangerous FCNC effects it will prove advantageous to assume

universal vector and axial couplings to the first two generations, gqV and gqA, while the couplings to

the top quark will be gtV and gtA. For convenience we have rescaled these couplings in terms of the

strong coupling gs. The tree-level differential cross section for qq̄ → tt̄ will be [5]

dσqq̄→tt̄

d cos θ∗
= α2

s
π
√
1− 4m2

9ŝ

�
�
1 + 4m2 + C(θ∗)2

�
�
1−

2gqV g
t
V ŝ(M

2
G� − ŝ)

(ŝ−M2
G�)2 +M2

G�Γ2
G

+
gt 2V (gq 2V + gq 2A )ŝ2

(ŝ−M2
G�)2 +M2

G�Γ2
G

�

+
�
1− 4m2 + C(θ∗)2

�
gt 2A (gq 2V + gq 2A )

ŝ2

(ŝ−M2
G�)2 +M2

G�Γ2
G

− 4gqAg
t
AC(θ∗)

�
ŝ(M2

G� − ŝ)

(ŝ−M2
G�)2 +M2

G�Γ2
G

− 2gqV g
t
V

ŝ2

(ŝ−M2
G�)2 +M2

G�Γ2
G

��
(1)

where m2 = m2
t /ŝ, C(θ∗) =

√
1− 4m2 cos θ∗, and θ∗ is the angle of the top quark momentum with

respect to the momentum of the incoming quark in the center of mass frame. The forward backward

asymmetry arises solely from the last line, so to obtain a positive asymmetry we must have gqAg
t
A < 0.

We will be considering MG� � 1 TeV, so at the Tevatron we have ŝ < M2
G� over most of the

support of the parton distribution functions. In this limit the interference term between QCD and the

resonance dominates over the pure resonance term, and we expect the following qualitative features:

• the asymmetry is directly proportional to (−gqAg
t
A)

• relative to the QCD cross section, the asymmetric term grows ∝ s, so the asymmetry will grow

with the invariant mass squared M2
tt̄

• the total tt̄ cross section at low energies will decrease with increasing gqV g
t
V

Additionally, we see that the sign and magnitude of gqV g
t
V determine the behavior of the asymmetry

at higher energies, and that for larger gqV g
t
V , our qualitative parametric expansion in ŝ/M2

G� breaks

down more quickly.

Axigluons face constraints from the flavor-changing neutral currents (FCNC’s), from tt̄ resonance

searches, and from measurements of the total tt̄ cross section. Furthermore, any axigluon that couples

to qq̄ is subject to constraints from dijet resonance searches and dijet contact interaction searches –

not just at the Tevatron but at the LHC! The strongest constraints on our models will come from the

3

Why put such a complicated equation in a talk!?

• Asymmetry proportional to

• Asymmetric term grows with            relative to QCD

• total       cross section decreases with 

−gqAg
t
A

gtV g
q
V

M2
tt̄

tt̄
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Constraints

• Flavor Effects Mediated by Axigluon
• Top Quark Total Cross Section and 

Mass Dependent Cross Section
• Dijet Resonance and Contact Operator 

Searches - LHC Dominated, Already!
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A Preview of Results

Fits to Unfolded Parton-Level Data
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Figure 7: The fit for the model with one axigluon plus one additional vector-like fermion (Section
3.3) to the observed Att̄

FB at CDF. The best fit point has χ2/d.o.f. = 5.3/2 at MG� = 1.05 TeV
and θ = 45◦. The region above the red dot-dashed line is excluded at 95% C.L. by the dijet narrow
resonance search, while the region above the dark yellow solid line is also excluded at 95% C.L. by
the search of dijet contact operator interactions. The projected exclusion limit from the dijet narrow
resonance search at the 7 TeV LHC with 1 fb−1 is shown by the red dotted line. The black dashed
lines designate the regions (above and to the left) where the given percentage of the tt̄ production
cross section for mtt̄ > 450 GeV arises from new physics.

dotted black lines with different width/mass ratios to show that in the best-fit region G� is a narrow

resonance. One can see that a large fraction of the parameter space will be covered with increasing

luminosity at the LHC.

For more general values of α, we show the contour regions in Fig. 8 for α = 45◦ and α = 30◦,

respectively. In those two figures, the QCD and G� interference term also contributes to the tt̄ produc-

tion cross section, so the parameter space is highly constrained by tt̄ resonance searches. Comparing

the two plots in Fig. 8, we can see that for a smaller α a lighter G� is preferred by the fit to Att̄
FB

because the product guAg
t
A is reduced. As a result, the parameter space for a smaller α leads to a

larger tt̄ production cross section and is thus less favored. For α = 30◦, the best fit is χ/d.o.f. = 2.6/2
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Dijet Resonance 
Searches at the LHC!7

Resonance Mass (GeV)
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Figure 4: 95% CL upper limits on σ × BR × A for dijet resonances of type gluon-gluon (open
circles), quark-gluon (solid circles), and quark-quark (open boxes), compared to theoretical pre-
dictions for string resonances [2], excited quarks [4], axigluons [5], colorons [6], E6 diquarks [7],
new gauge bosons W � and Z� [9], and Randall-Sundrum gravitons [8].

1010.0203, CMS

• based on 2.9 pb^-1
• for Axigluon, only 

involves couplings to 
light quarks

• rescale results for 
different couplings
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Rescale from CMS

• Colorons have couplings = 1 for us
• Limits will rapidly improve this year, at 

least as Luminosity^(1/2)
• Eventually will have TTbar resonance, 

but probably not competitive this year
• but is it a “resonance”?

2.2 Dijet Resonance Searches

CMS recently performed a search for narrow dijet resonances [28], employing an integrated luminosity

of 2.9 pb−1. This search has ruled out colorons and axigluons (with couplings gq,tV = 1 or gq,tA = 1

respectively, in our notation) in the mass intervals 0.50 < MG� < 1.17 TeV and 1.47 < MG� < 1.52 TeV.

In the narrow width approximation the production cross section for qq̄ → G� → qq̄ is

σ ×BR(qq̄ → G� → jj)

σ ×BR(coloron)
=

6

5

�
|gqV |

2 + |gqA|
2
� 4(|gqV |2 + |gqA|2) + (|gtV |2 + |gtA|2)
4(|gqV |2 + |gqA|2) + 2(|gtV |2 + |gtA|2)

, (2)

where we have related it to the cross section for a coloron with coupling gs, and we have assumed an

identical coupling to bottom and top quarks. Using the CMS 95% C.L. exclusion upper limit on dijet

resonance production, σ × A (where A is the acceptance), for the qq̄ initial state and then rescaling

the cross sections of colorons and axigluons in Figure 4 of Ref. [28], we can estimate the corresponding

dijet resonance constraints [29].

The dijet resonance searches are based on the narrow width approximation, so they do not constrain

axigluons with large widths. To give an idea of when the resonance has become too broad for this

search, in the lower panel of Fig. 1 we show a sample of LHC dijet invariant mass distributions for the

signal and QCD background. As one can see from this figure, for Γ/M � 0.1 (the red line) the signal

shows a bump-like feature on top of the QCD background (the black line). However, for Γ/M � 0.2

(the blue line) the bump is much less visible. We will thus assume in what follows that the narrow

resonance search becomes inapplicable when Γ/M � 0.2.

2.3 Dijet Contact Interaction Searches

Searches for quark contact interactions can be sensitive to broad axigluons via dijet angular distri-

butions. This follows because LO QCD dijet production is dominated by t-channel Rutherford-like

scattering. For a small production angle θ∗ in the center of mass frame, the QCD differential cross

section behaves as dσ̂/d cos θ∗ ∼ 1/ sin4(θ∗/2). Defining the variable χ = (1+ cos θ∗)/(1− cos θ∗) and

considering the limit χ → ∞, one finds that dσ̂/dχ ∼ constant. On the other hand, the differential

distribution for dijets arising from resonance production is not flat in χ but instead has a peak at

small values of χ. By comparing the corresponding shapes of the signal and background distributions

in χ, ATLAS has excluded LL quark contact interactions2 with a compositeness scale below 3.4 TeV

at 95% C.L. [30]. To set corresponding limits on our model parameter space, we require that the

new physics contribution plus the SM background not exceed the ATLAS data at 95% C.L. for their

2The use of a left-left contact interaction is a common convention or benchmark; the limits on a L-R or R-R interaction
would be similar in magnitude.

5
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Resonance or Shoulder?

1.5 TeV Axigluon with QCD couplings
Can constrain via Contact Interaction Searches...

Width/Mass 
= 0.1, 0.2, 0.4, 0.8
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Physics of Contact 
Operator Searches

• Most QCD dijet production comes from         
t-channel gluons

• Dijets have flat distribution in rapidity
• New contributions to jet cross section 

dominated at small rapidity
• We can constrain 4 fermion operators 

using rapidity plots...
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Contact Operator 
Searches
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FIG. 1. The normalized χ distributions for 340 < mjj <
520 GeV, 520 < mjj < 800 GeV, 800 < mjj < 1200 GeV, and
mjj > 1200 GeV, with plotting offsets shown in parentheses.
Shown are the QCD predictions with systematic uncertainties
(bands), and data points with statistical uncertainties. The
prediction for QCD with an added quark contact term with Λ
= 3.0 TeV is shown for the highest mass bin mjj > 1200 GeV.

To evaluate the agreement between data and QCD in
Figs. 1 and 2, chi-square goodness-of-fit tests were per-
formed on each angular distribution under the assump-
tion that the bin-to-bin correlations are negligible. For
the χ distributions shown in Fig. 1, the chi-square per
degree of freedom for each dijet mass bin is (from low-
est to highest) 0.68, 0.83, 0.72, and 0.81, indicating good
agreement with the QCD prediction.
Similarly, in Fig. 2 the dijet RC comparison has a chi-

square per degree of freedom equal to 0.61, also indicating
good agreement with the QCD prediction.
The best fit of the RC distribution in Fig. 2 is obtained

for a compositeness scale of 2.9 TeV. This is not statis-
tically significant, as the QCD prediction lies within the
shortest 68% confidence interval in 1/Λ4.

10. Determination of Exclusion Limits

Since no signal from new physics processes is appar-
ent in these distributions, limits have been obtained on
the compositeness scale Λ of quark contact interactions,
based on analyses of the χ distributions. The contact
term hypothesis is tested in the highest dijet mass bin in
Fig. 1, which begins at mjj = 1200 GeV. For the χ dis-
tribution in this mass bin, the parameter Fχ is defined as
the ratio of the number of events in the first four χ bins
to the number in all χ bins. The upper boundary of the
fourth bin is at χ = 3.32. This choice of the bin bound-
ary has been determined through a MC study that varies
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FIG. 2. Dijet centrality ratio, RC , as a function of mjj , with
all events above a mass of 1400 GeV plotted in the last bin.
Shown are the QCD prediction with systematic uncertainties
(bands), and data points with statistical uncertainties. The
prediction for QCD with an added quark contact term with
Λ = 2.0 TeV is also shown.

the number of bins in the numerator, as well as the di-
jet mass bin, and determines the setting that maximizes
the sensitivity to quark contact interactions, given the
current integrated luminosity.
A frequentist analysis is employed as follows. Predic-

tions of Fχ are obtained for a range of Λ by interpolation
between distinct samples generated with different 1/Λ2

values. The QCD sample provides a bound with Λ = ∞,
and additional samples are generated with Λ values of
500, 750, 1000, 1500, and 3000 GeV. A full set of PE’s
is made for each hypothesis to construct one-sided 95%
confidence level (CL) intervals for Fχ, and the Neyman
construction [22] is then applied to obtain a limit on Λ.
The result is shown in Fig. 3. The measured value

of Fχ is shown by the dashed horizontal line. The value
of Fχ expected from QCD is the solid horizontal line,
and the band around it allows one to obtain the 1 σ
variation of the expected limit. The dotted line is the
95% CL contour of the Fχ prediction for quark contact
interactions plus QCD, as a function of Λ and including
all systematic uncertainties. This contour decreases as a
function of Λ since, for a small Λ scale, there would be
more events at low χ.
The observed limit on Λ is 3.4 TeV. This limit is found

from the point where the Fχ 95% CL contour crosses the
measured Fχ value. All values of Λ less than this value
are excluded with 95% confidence. This corresponds to
a distance scale of ∼ 6 · 10−5 fm, from conversion of the
limit using !c. The expected limit, found from the cross-
ing at the QCD prediction, is 3.5 TeV.
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FIG. 1. The normalized χ distributions for 340 < mjj <
520 GeV, 520 < mjj < 800 GeV, 800 < mjj < 1200 GeV, and
mjj > 1200 GeV, with plotting offsets shown in parentheses.
Shown are the QCD predictions with systematic uncertainties
(bands), and data points with statistical uncertainties. The
prediction for QCD with an added quark contact term with Λ
= 3.0 TeV is shown for the highest mass bin mjj > 1200 GeV.

To evaluate the agreement between data and QCD in
Figs. 1 and 2, chi-square goodness-of-fit tests were per-
formed on each angular distribution under the assump-
tion that the bin-to-bin correlations are negligible. For
the χ distributions shown in Fig. 1, the chi-square per
degree of freedom for each dijet mass bin is (from low-
est to highest) 0.68, 0.83, 0.72, and 0.81, indicating good
agreement with the QCD prediction.
Similarly, in Fig. 2 the dijet RC comparison has a chi-

square per degree of freedom equal to 0.61, also indicating
good agreement with the QCD prediction.
The best fit of the RC distribution in Fig. 2 is obtained

for a compositeness scale of 2.9 TeV. This is not statis-
tically significant, as the QCD prediction lies within the
shortest 68% confidence interval in 1/Λ4.

10. Determination of Exclusion Limits

Since no signal from new physics processes is appar-
ent in these distributions, limits have been obtained on
the compositeness scale Λ of quark contact interactions,
based on analyses of the χ distributions. The contact
term hypothesis is tested in the highest dijet mass bin in
Fig. 1, which begins at mjj = 1200 GeV. For the χ dis-
tribution in this mass bin, the parameter Fχ is defined as
the ratio of the number of events in the first four χ bins
to the number in all χ bins. The upper boundary of the
fourth bin is at χ = 3.32. This choice of the bin bound-
ary has been determined through a MC study that varies
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FIG. 2. Dijet centrality ratio, RC , as a function of mjj , with
all events above a mass of 1400 GeV plotted in the last bin.
Shown are the QCD prediction with systematic uncertainties
(bands), and data points with statistical uncertainties. The
prediction for QCD with an added quark contact term with
Λ = 2.0 TeV is also shown.

the number of bins in the numerator, as well as the di-
jet mass bin, and determines the setting that maximizes
the sensitivity to quark contact interactions, given the
current integrated luminosity.
A frequentist analysis is employed as follows. Predic-

tions of Fχ are obtained for a range of Λ by interpolation
between distinct samples generated with different 1/Λ2

values. The QCD sample provides a bound with Λ = ∞,
and additional samples are generated with Λ values of
500, 750, 1000, 1500, and 3000 GeV. A full set of PE’s
is made for each hypothesis to construct one-sided 95%
confidence level (CL) intervals for Fχ, and the Neyman
construction [22] is then applied to obtain a limit on Λ.
The result is shown in Fig. 3. The measured value

of Fχ is shown by the dashed horizontal line. The value
of Fχ expected from QCD is the solid horizontal line,
and the band around it allows one to obtain the 1 σ
variation of the expected limit. The dotted line is the
95% CL contour of the Fχ prediction for quark contact
interactions plus QCD, as a function of Λ and including
all systematic uncertainties. This contour decreases as a
function of Λ since, for a small Λ scale, there would be
more events at low χ.
The observed limit on Λ is 3.4 TeV. This limit is found

from the point where the Fχ 95% CL contour crosses the
measured Fχ value. All values of Λ less than this value
are excluded with 95% confidence. This corresponds to
a distance scale of ∼ 6 · 10−5 fm, from conversion of the
limit using !c. The expected limit, found from the cross-
ing at the QCD prediction, is 3.5 TeV.
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Constraints from Contact 
Operator Searches

• Use first 4 bins
• 800 to 1200 GeV and 

> 1200 GeV data 
(gives structure to 
curves on plots)
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FIG. 1. The normalized χ distributions for 340 < mjj <
520 GeV, 520 < mjj < 800 GeV, 800 < mjj < 1200 GeV, and
mjj > 1200 GeV, with plotting offsets shown in parentheses.
Shown are the QCD predictions with systematic uncertainties
(bands), and data points with statistical uncertainties. The
prediction for QCD with an added quark contact term with Λ
= 3.0 TeV is shown for the highest mass bin mjj > 1200 GeV.

To evaluate the agreement between data and QCD in
Figs. 1 and 2, chi-square goodness-of-fit tests were per-
formed on each angular distribution under the assump-
tion that the bin-to-bin correlations are negligible. For
the χ distributions shown in Fig. 1, the chi-square per
degree of freedom for each dijet mass bin is (from low-
est to highest) 0.68, 0.83, 0.72, and 0.81, indicating good
agreement with the QCD prediction.
Similarly, in Fig. 2 the dijet RC comparison has a chi-

square per degree of freedom equal to 0.61, also indicating
good agreement with the QCD prediction.
The best fit of the RC distribution in Fig. 2 is obtained

for a compositeness scale of 2.9 TeV. This is not statis-
tically significant, as the QCD prediction lies within the
shortest 68% confidence interval in 1/Λ4.

10. Determination of Exclusion Limits

Since no signal from new physics processes is appar-
ent in these distributions, limits have been obtained on
the compositeness scale Λ of quark contact interactions,
based on analyses of the χ distributions. The contact
term hypothesis is tested in the highest dijet mass bin in
Fig. 1, which begins at mjj = 1200 GeV. For the χ dis-
tribution in this mass bin, the parameter Fχ is defined as
the ratio of the number of events in the first four χ bins
to the number in all χ bins. The upper boundary of the
fourth bin is at χ = 3.32. This choice of the bin bound-
ary has been determined through a MC study that varies

 [GeV]jjm
400 600 800 1000 1200 1400

C
R

0.0

0.5

1.0

1.5

2.0

2.5

QCD Prediction
Theoretical Uncertainties
Total Systematics

 = 2.0 TeV#

Data

ATLAS

=7 TeVs, -1dt=3.1 pbL"
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all events above a mass of 1400 GeV plotted in the last bin.
Shown are the QCD prediction with systematic uncertainties
(bands), and data points with statistical uncertainties. The
prediction for QCD with an added quark contact term with
Λ = 2.0 TeV is also shown.

the number of bins in the numerator, as well as the di-
jet mass bin, and determines the setting that maximizes
the sensitivity to quark contact interactions, given the
current integrated luminosity.
A frequentist analysis is employed as follows. Predic-

tions of Fχ are obtained for a range of Λ by interpolation
between distinct samples generated with different 1/Λ2

values. The QCD sample provides a bound with Λ = ∞,
and additional samples are generated with Λ values of
500, 750, 1000, 1500, and 3000 GeV. A full set of PE’s
is made for each hypothesis to construct one-sided 95%
confidence level (CL) intervals for Fχ, and the Neyman
construction [22] is then applied to obtain a limit on Λ.
The result is shown in Fig. 3. The measured value

of Fχ is shown by the dashed horizontal line. The value
of Fχ expected from QCD is the solid horizontal line,
and the band around it allows one to obtain the 1 σ
variation of the expected limit. The dotted line is the
95% CL contour of the Fχ prediction for quark contact
interactions plus QCD, as a function of Λ and including
all systematic uncertainties. This contour decreases as a
function of Λ since, for a small Λ scale, there would be
more events at low χ.
The observed limit on Λ is 3.4 TeV. This limit is found

from the point where the Fχ 95% CL contour crosses the
measured Fχ value. All values of Λ less than this value
are excluded with 95% confidence. This corresponds to
a distance scale of ∼ 6 · 10−5 fm, from conversion of the
limit using !c. The expected limit, found from the cross-
ing at the QCD prediction, is 3.5 TeV.
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Contact Ops Most 
Stringent Constraint

Currently, contact operator searches provide 
more stringent constraints than dijet resonance 
searches because they allow background 
subtraction, but they have larger systematics, 
so with more data, resonance searches will 
eventually dominate.

Improving non-resonance search is important 
at higher energies!
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Top Cross Section

• TTbar Cross Section Predicted at NLO, 
measured at Tevatron to within ~10%

• Axigluon modifies total and shape, so 
there should be constraints...

• But no TTbar resonance search above 
800 GeV, so limits are unclear

• Compromise - we display 20% and 40% 
axigluon contribution to Mtt > 450 GeV
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CDF Data For Top 
Production

13

TABLE VIII: The tt̄ frame asymmetry Att̄ at small and large
rapidity difference, compared to the SM prediction of mcfm.

sample level |∆y| < 1.0 |∆y| ≥ 1.0
data data 0.021± 0.031 0.208± 0.062
data parton 0.026± 0.104± 0.056 0.611± 0.210± 0.147
mcfm parton 0.039± 0.006 0.123± 0.018

VIII. For the parton-level data, the first uncertainty is

statistical and the second is systematic. The uncertainty

on the mcfm prediction is dominated by the NLO theory

uncertainty. For |∆y| ≤ 1.0, the small data-level asym-

metry maps into a small parton-level value with large

error. In the large ∆y region the parton-level asymme-

try is Att̄(|∆y| > 1.0) = 0.611 ± 0.270 (statistical and

systematic errors added in quadrature) compared to the

mcfm prediction of 0.123 ± 0.018. Fig. 7 displays the

parton level comparison of asymmetries in data in the

two ∆y regions.

VII. MASS DEPENDENCE OF THE
ASYMMETRY IN THE tt̄ REST FRAME
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FIG. 8: Mtt̄-dependence of Att̄ according to mcfm.

We now turn to the dependence of the asymmetry

on the tt̄ invariant mass Mtt̄. The NLO QCD asym-

metry also has a strong Mtt̄ dependence, as shown in

Fig. 8. We generally expect the Mtt̄ dependence to con-

tain characteristic information on the fundamental asym-

metry mechanism.

In this analysis, the value of Mtt̄ is derived from the

same reconstruction used to compute the top quark ra-

pidities. The Mtt̄ distribution in our sample, shown in

Fig. 9, is agreement with the standard prediction. Other

recent studies of the top pair mass spectrum, including
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FIG. 9: Event distribution as a function of the total invariant
mass Mtt̄.

the parton-level differential cross section dσ/dMtt̄, show

good agreement with the standard model [10, 30, 31].

Since the mass dependent behavior is usually described

in the tt̄ rest frame we focus on the asymmetry in rapidity

difference ∆y as a function of Mtt̄. The laboratory frame

asymmetry derived with yh is discussed in Sec. VIII.

The underlying 2-dimensional distribution of ∆y
vs.Mtt̄ is shown on the left in Fig. 10. We expect

these variables to obey the simple kinematic relation-

ship Mtt̄ = 2mT cosh(∆y), where mT is the transverse

mass of the tt̄ system, and we see this in both the data

and the prediction. It is clear that the prior measure-

ment at large ∆y captures only part of the region at

large Mtt̄. Consequently, the separate measurements of

the ∆y- and Mtt̄-dependence of the asymmetry provide

complementary information.

Because cosh(∆y) is symmetric, this kinematic correla-

tion is independent of the Mtt̄-dependence of any asym-

metry in ∆y. Because of the independence of mT ,the

measurement at large |∆y| > 1.0 captures only part of

the region at large Mtt̄. The separate measurements

therefore provide complementary information.

A mass dependent asymmetry Att̄(Mtt̄,i) is found by

dividing the ∆y—Mtt̄ plane into bins of mass Mtt̄,i and

calculating the asymmetry in each:

Att̄
(Mtt̄,i) =

N(∆y > 0,Mtt̄,i −N(∆y < 0,Mtt̄,i)

N(∆y > 0,Mtt̄,i) +N(∆y < 0,Mtt̄,i)
(7)

We use 50 GeV/c2 bins of Mtt̄ below 600 GeV/c2, and

Width/Mass = 0.1, 0.2, 0.4, 0.8
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Effective Field Theory 
Parameter Space
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Effective Field Theory 
Parameter Space
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Flavor Constraints 

• Axigluon couples differently to third vs 
first two generations

• thus mediates flavor violating processes
• very (flavor) model dependent, so we 

will examine a few possibilities
• B-mixing, D-mixing, Kaon system...
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Flavor Constraints

Since by unitarity (UD
L )ki(U

D †
L )ij = δkj , and similarly for the right-handed and up-type sectors, we

find the off-diagonal couplings to be given by

CD
L,kj = (a3 − a1)L(U

D
L )k3(U

D †
L )3j = (a3 − a1)L(U

D
L )k3(U

D ∗
L )j3 k �= j , (23)

and similarly for L → R. Of course, all of this naturally repeats itself in the Q = 2/3 sector, with

UD
L → UU

L .

Now consider the FCNC contributions from G� to Bq-B̄q mixing; the effective Lagrangian is

LFCNC = −gsb̄ t
aγµ(CD

L,3q PL + CD
R,3q PR)q G

�µ
a + h.c. . (24)

To obtain our results we follow the discussion as given in Section 4.2 of Ref. [35] which contains

a very similar set-up. The procedure is, essentially, as follows: (i) draw the contributing diagrams

arising from LFCNC and integrate G� out. (ii) Contract the color structure and Fierz transform the

product of the two currents to express the resulting expression in terms of a known basis of 4-fermion

operators [36]. (iii) Compute the renormalization group running of these operators down to the scale

of the meson masses, and compute the appropriate matrix elements. Following Ref. [35], the effective

Hamiltonian is given by

H∆B=2 =
2παs

3M2
G�

�
(CD

L,3q)
2Q1L + (CD

R,3q)
2Q1R − CD

L,3qC
D
RQ2 − 6CD

L,3qC
D
R,3qQ3

�
, (25)

with the operators

Q1L,R = (q̄L,RγµbL,R)(q̄L,Rγ
µbL,R) , (26)

Q2 = (q̄LγµbL)(q̄RγµbR) , (27)

Q3 = (q̄LbR)(q̄RbL) . (28)

This Hamiltonian describes B, D, and K meson mixing with appropriate replacements.

To proceed in the case of B-B̄ mixing, we compute the matrix elements of H∆B=2 and compare to

bounds from the UTfit Collaboration [34]. We present the results in terms of the matrix element of the

LL operator Q1L, which we write as r1�Q1L�, where r1 � 0.77 and accounts for the renormalization

group running of Q1L from the TeV scale to the b quark mass, as is appropriate for B-B̄ mixing

(r1 � 0.70 for D-D̄ mixing and accounts for the additional RG evolution to the charm quark mass).

The matrix elements of the other operators differ by factors that we write as R2,3, which account for

their RG running, so in total we find

�B|H∆B=2|B̄� = 2παs

3M2
G�

�
(CD

L,3q)
2 + (CD

R,3q)
2 − CD

L,3qC
D
R,3qR2 − 6CD

L,3qC
D
R,3qR3

�
, (29)
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Example - coupling of b’s to other generations:

Governed by mixing matrix

where     are couplings to ith generation
and       are left, down-type mixing matrices

ai
UD
L
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Flavor Operators
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group running of Q1L from the TeV scale to the b quark mass, as is appropriate for B-B̄ mixing

(r1 � 0.70 for D-D̄ mixing and accounts for the additional RG evolution to the charm quark mass).

The matrix elements of the other operators differ by factors that we write as R2,3, which account for

their RG running, so in total we find

�B|H∆B=2|B̄� = 2παs
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Match onto a Hamiltonian and RG evolve:

Use constraints on these operators choose 
flavor model for mixing matrices:

with R2,3 given by the expressions in [36] such that (taking Nc = 3)

R2 =
1√
r1

�
− 3

4
− 1

2

M2
B

(mb +mq)
2

�
, R3 =

1

r51

�
1

8
+

3

4

M2
B

(mb +mq)
2

�
. (30)

Numerically we obtain R2 � −1.7 and R3 � 4.8. The bound on MG� is then obtained by comparing

to the cutoff limit from UTfit [34]:

2παs

3M2
G�

��(CD
L,3q)

2
+ (CD

R,3q)
2 − 27CD

L,3qC
D
R,3q

�� < 1

Λ2
B

, (31)

with ΛB = 210 (30) TeV for Bd (Bs) mixing. This also allows a direct comparison to the analysis of

Ref. [8], with which we disagree. Numerically this reduces, in the case of Bd mixing, to

MG� � (100 TeV)
��(CD

L,31)
2
+ (CD

R,31)
2 − 27CD

L,31C
D
R,31

��1/2 . (32)

An identical analysis applied to the up-type sector for D-D̄ mixing gives

2παs

3M2
G�

��(CU
L,21)

2
+ (CU

R,21)
2 − 60CU

L,21C
U
R,21

��2 < 1

Λ2
D

, (33)

and numerically with ΛD = 1.2× 10
3
TeV [34] we find

MG� � (600 TeV)
��(CU

L,21)
2
+ (CU

R,21)
2 − 60CU

L,21C
U
R,21

��1/2 . (34)

In the case of K-K̄ mixing we will directly compare the coefficients of these operators to the UTfit

bounds [34]. From Q1L,R we find that

MG� � (500 TeV)
��(CD

L,21)
2
+ (CD

R,21)
2
��1/2 , (35)

and from Q3

MG� � (5000 TeV) |CD
L,21C

D
R,21|1/2 . (36)

These limits derive from the real part of the K-K̄ mixing; the imaginary part gives limits that are

stronger by a factor of 15.

We cannot proceed without making model-dependent assumptions, so in particular, we cannot set

a firm exclusion limit. To give a reasonable picture of the situation, we will consider two very simple

model assumptions, where (α) the quark mass matrices are Hermitian so that UD
L = UD

R = UD
and

UU
L = UU

R = UU
and (β) where the right handed UU

R = UD
R = I3. Furthermore, for convenience we

assume that all three generations have identical vector couplings to G�
, while the first two generations

and the third have distinct axial couplings.

22

with R2,3 given by the expressions in [36] such that (taking Nc = 3)

R2 =
1√
r1

�
− 3

4
− 1

2

M2
B

(mb +mq)
2

�
, R3 =

1

r51

�
1

8
+

3

4

M2
B

(mb +mq)
2

�
. (30)

Numerically we obtain R2 � −1.7 and R3 � 4.8. The bound on MG� is then obtained by comparing

to the cutoff limit from UTfit [34]:

2παs

3M2
G�

��(CD
L,3q)

2
+ (CD

R,3q)
2 − 27CD

L,3qC
D
R,3q

�� < 1

Λ2
B

, (31)

with ΛB = 210 (30) TeV for Bd (Bs) mixing. This also allows a direct comparison to the analysis of

Ref. [8], with which we disagree. Numerically this reduces, in the case of Bd mixing, to

MG� � (100 TeV)
��(CD

L,31)
2
+ (CD

R,31)
2 − 27CD

L,31C
D
R,31

��1/2 . (32)

An identical analysis applied to the up-type sector for D-D̄ mixing gives

2παs

3M2
G�

��(CU
L,21)

2
+ (CU

R,21)
2 − 60CU

L,21C
U
R,21

��2 < 1

Λ2
D

, (33)

and numerically with ΛD = 1.2× 10
3
TeV [34] we find

MG� � (600 TeV)
��(CU

L,21)
2
+ (CU

R,21)
2 − 60CU

L,21C
U
R,21

��1/2 . (34)

In the case of K-K̄ mixing we will directly compare the coefficients of these operators to the UTfit

bounds [34]. From Q1L,R we find that

MG� � (500 TeV)
��(CD

L,21)
2
+ (CD

R,21)
2
��1/2 , (35)

and from Q3

MG� � (5000 TeV) |CD
L,21C

D
R,21|1/2 . (36)

These limits derive from the real part of the K-K̄ mixing; the imaginary part gives limits that are

stronger by a factor of 15.

We cannot proceed without making model-dependent assumptions, so in particular, we cannot set

a firm exclusion limit. To give a reasonable picture of the situation, we will consider two very simple

model assumptions, where (α) the quark mass matrices are Hermitian so that UD
L = UD

R = UD
and

UU
L = UU

R = UU
and (β) where the right handed UU

R = UD
R = I3. Furthermore, for convenience we

assume that all three generations have identical vector couplings to G�
, while the first two generations

and the third have distinct axial couplings.

22

with R2,3 given by the expressions in [36] such that (taking Nc = 3)

R2 =
1√
r1

�
− 3

4
− 1

2

M2
B

(mb +mq)
2

�
, R3 =

1

r51

�
1

8
+

3

4

M2
B

(mb +mq)
2

�
. (30)

Numerically we obtain R2 � −1.7 and R3 � 4.8. The bound on MG� is then obtained by comparing

to the cutoff limit from UTfit [34]:

2παs

3M2
G�

��(CD
L,3q)

2
+ (CD

R,3q)
2 − 27CD

L,3qC
D
R,3q

�� < 1

Λ2
B

, (31)

with ΛB = 210 (30) TeV for Bd (Bs) mixing. This also allows a direct comparison to the analysis of

Ref. [8], with which we disagree. Numerically this reduces, in the case of Bd mixing, to

MG� � (100 TeV)
��(CD

L,31)
2
+ (CD

R,31)
2 − 27CD

L,31C
D
R,31

��1/2 . (32)

An identical analysis applied to the up-type sector for D-D̄ mixing gives

2παs

3M2
G�

��(CU
L,21)

2
+ (CU

R,21)
2 − 60CU

L,21C
U
R,21

��2 < 1

Λ2
D

, (33)

and numerically with ΛD = 1.2× 10
3
TeV [34] we find

MG� � (600 TeV)
��(CU

L,21)
2
+ (CU

R,21)
2 − 60CU

L,21C
U
R,21

��1/2 . (34)

In the case of K-K̄ mixing we will directly compare the coefficients of these operators to the UTfit

bounds [34]. From Q1L,R we find that

MG� � (500 TeV)
��(CD

L,21)
2
+ (CD

R,21)
2
��1/2 , (35)

and from Q3

MG� � (5000 TeV) |CD
L,21C

D
R,21|1/2 . (36)

These limits derive from the real part of the K-K̄ mixing; the imaginary part gives limits that are

stronger by a factor of 15.

We cannot proceed without making model-dependent assumptions, so in particular, we cannot set

a firm exclusion limit. To give a reasonable picture of the situation, we will consider two very simple

model assumptions, where (α) the quark mass matrices are Hermitian so that UD
L = UD

R = UD
and

UU
L = UU

R = UU
and (β) where the right handed UU

R = UD
R = I3. Furthermore, for convenience we

assume that all three generations have identical vector couplings to G�
, while the first two generations

and the third have distinct axial couplings.

22

Lower bound on MG� in TeV

(α) (β)

Kaon System 5000× |UD
23 U

D ∗
13 | 500× |UD

23 U
D ∗
13 |

B Mixing 500× |UD
33 U

D ∗
13 | 100× |UD

33 U
D ∗
13 |

D Mixing 4500× |UU
23 U

U ∗
13 | 600× |UU

23 U
U ∗
13 |

Table 4: The constraints on the axigluon mass and mixing matrices from meson mixing for the two

model choices discussed in the text. The common multiplicative factor |gtA − g
q
A| is not included in

the table. The Kaon limit would be a factor of 15 stronger in the presence of O(1) phases.

For the choice (α) we obtain (with the couplings defined in units of gs)

C
D
L,31 = −C

D
R,31 = (g

t
A − g

q
A)U

D
33 U

D ∗
13 and C

U
L,21 = −C

U
R,21 = (g

t
A − g

q
A)U

U
23 U

U ∗
13 , (37)

note that because G�
couples universally to the first two generations, to induce an FCNC we must

couple through the third generation. The numerical bounds are listed in the second column of Table 4.

Alternatively, for the choice (β) we have

C
U,D
L,kj = (g

t
A − g

q
A)U

U,D
k3 U

U,D ∗
j3 and C

D
R,kj = −C

U
R,kj = 0 , (38)

and so we avoid the large RG enhancement, giving the weaker constraints listed in the third column

of Table 4.

Although our models determine the coupling g
t,q
A , without an accompanying model of flavor we

cannot determine what values the matrix elements of U take. All that we know are the elements of

the CKM matrix, VCKM = UU
L U

D †
L . In the general case all elements of the matrices U

U,D
L,R could enter

the observables, so we can no longer operate in a basis where, e.g., one of the original mass matrices

is diagonal. If we assume (without any particular justification) that |UD
33U

D ∗
13 | = |V ∗

tdVtb| � 8.4 · 10−3

and |UD
23U

D ∗
13 | = |V ∗

tsVtd| � 3.5 · 10−4
[37] then we find that MG� � 5|gtA − g

q
A| TeV for the choice (α),

and MG� � 0.8|gtA − g
q
A| TeV for choice (β). Here we have assumed that all complex phases are small;

if we assume O(1) phases then these constraints become about a factor of three stronger. Note that

in the extreme limit that UD
L = UD

R = I3 and UD
L = I3 while VCKM = UU

L , MG� and gA are completely

unconstrained by considerations of flavor in the down sector. Then the only constraint comes from

D-D̄ mixing, and we have |UU
23 U

U ∗
13 | = |V ∗

tsVtd| � 3.5 · 10−4
, giving MG� � 1.6|gtA − g

q
A| TeV for (α),

and MG� � 200|gtA − g
q
A| GeV for choice (β). The latter constraint is trivially satisfied by all of our

models.
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and so we avoid the large RG enhancement, giving the weaker constraints listed in the third column

of Table 4.

Although our models determine the coupling g
t,q
A , without an accompanying model of flavor we

cannot determine what values the matrix elements of U take. All that we know are the elements of

the CKM matrix, VCKM = UU
L U

D †
L . In the general case all elements of the matrices U
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L,R could enter
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D ∗
13 | = |V ∗
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[37] then we find that MG� � 5|gtA − g

q
A| TeV for the choice (α),

and MG� � 0.8|gtA − g
q
A| TeV for choice (β). Here we have assumed that all complex phases are small;

if we assume O(1) phases then these constraints become about a factor of three stronger. Note that

in the extreme limit that UD
L = UD

R = I3 and UD
L = I3 while VCKM = UU

L , MG� and gA are completely

unconstrained by considerations of flavor in the down sector. Then the only constraint comes from

D-D̄ mixing, and we have |UU
23 U
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q
A| is not included in
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For the choice (α) we obtain (with the couplings defined in units of gs)
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L,R could enter
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D ∗
13 | = |V ∗
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Constraints on mixings from K, B, and D, assuming no 
new complex phases affecting the Kaon system.
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So generically, there are significant flavor constraints, 
but they can be evaded in natural models.
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Specific Coset Models

A natural EFT for an Axigluon is a coset such as

SUL(3)× SUR(3)/SU(3)

Must assign 3rd generation L & R opposite to that of the 
first two generations to generate the correct sign for the 

Axigluon couplings.
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Simplest 2-Site Model

Selection Mtt̄ < 450 GeV Mtt̄ > 450 GeV

Parton Level Exp. Data −0.116± 0.146± 0.047 0.475± 0.101± 0.049

Model Prediction 0.10 0.31

Selection |∆y| < 1.0 |∆y| > 1.0

Parton Level Exp. Data 0.026± 0.104± 0.056 0.611± 0.210± 0.147

Model Prediction 0.12 0.40

Table 2: The comparison of theoretic predictions and measured values for the phenomenological model

with MG� = 2 TeV, gqA = 2.2, gtA = −3.2 and gV = 0. The total χ2
is 5.5.

the mass matrix of the two gauge bosons Gµ
1 and Gµ

2 , we obtain the massless QCD gluon,

Gµ
= cos θGµ

1 + sin θGµ
2 , (3)

and the massive axigluon state,

G�µ
= − sin θGµ

1 + cos θGµ
2 . (4)

The mixing angle θ is related to the gauge couplings of SU(3)1 × SU(3)2, h1 and h2: tan θ = h1/h2.

The QCD coupling is then given by gs = h1 cos θ = h2 sin θ, and the mass of the axigluon is

MG� =

√
2 gs√

3 sin 2θ
fΣ . (5)

The other degrees of freedom in Σ are assumed to be heavy for now, so we only have one new particle

G�
µ below the scale ∼ 4πfΣ.

In order to obtain an Att̄
FB with the correct sign, we need opposite signs for the axial-vector

couplings of the axigluon to the light quarks and the top quark. To achieve this goal, we make the

following assignments for the SM quarks under SU(3)1 × SU(3)2: qL, tR, bR as triplets of SU(3)1

and (t, b)L, qR as triplets of SU(3)2 (see Ref. [32] for a similar setup). To cancel the gauge anomalies,

additional colored particles are required and are assumed to be heavy in here. Here, “q” represents

the first two generations of quarks. With these charge assignments, we find the vector and axial-vector

couplings of G�
µ to the SM quarks, re-scaled by the QCD coupling gs, to be

gtV = gqV =
1

tan 2θ
, gtA = −gqA =

1

sin 2θ
. (6)

Neglecting the quark masses (since MG� will be at or above the TeV scale), the total decay width is

found to be

Γ(G�
) =

αsMG�

6

�
4(|gqV |

2
+ |gqA|

2
) + 2(|gtV |2 + |gtA|2)

�
= αsMG�

�
1

tan2 2θ
+

1

sin
2
2θ

�
. (7)
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Choose couplings and mixing angle so that

The gluon and Axigluon fields are simply

Essential point: 3rd Gen. vs Light Quarks
given opposite site assignments.
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The Simplest 2-Site 
Coset Model
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Figure 4: The fit of the minimal two-site axigluon model to the observed Att̄
FB at CDF. The four-bin

values of Att̄
FB corresponding to high and low rapidity and high and low invariant mass are included

in the χ2 analysis. The best fit point has a χ2/d.o.f. = 5.3/2 occurring at MG� = 1041 GeV and
θ = 45◦. The region enclosed by the red dashed lines is excluded by the dijet narrow resonance search
at CMS [28] with 2.9 pb−1 luminosity. The region between the dark solid yellow lines is excluded by
the search for diquark contact interactions from ATLAS [30] with 3.1 pb−1, so all of the preferred
parameter space of this model has been eliminated.

interaction constraints. There are many ways to make the axigluon broader by forcing the G� to decay

into other modes. For instance, in Ref. [33] the axigluon G� can decay into two scalar color-octets

(if they are lighter than G�), which belong to the other components of the Σ field. The scalar octet

may further decay into two jets, so there are then four jets in the final state and the direct dijet

searches become much less of a constraint. Without specifying a specific model, we study the effects

of changing the G� width on the resonant dijet searches in Fig. 5. In Fig. 5, we show the corresponding

fitted results assuming the width/mass ratio of G� to be greater than 20% [if the width from Eq. (7) is

greater than 20% of the mass, we use the width in Eq. (7)]. Although the narrow resonance searches

do not apply in this case, the dijet contact interaction searches still exclude all of the Att̄
FB preferred

12

(is ruled out)
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What Went Wrong?

• Couplings too small overall, forcing us 
to have a light-ish Axigluon

• Not enough freedom to couple the 
Axigluon differently to the 3rd 
generation vs the light quarks
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More Involved Models...

• Can add 3rd site, but no improvement
• However, adding a vector-like fermion 

mixing with light quarks helps...

without reducing the top quark forward-backward asymmetry. We first notice that Att̄
FB only depends

on the product of gqA and gtA for the two-site model while the dijet production cross section is only

sensitive to the coupling gqA. If the relation between gqA and gtA as in Eq. (6) of the minimal two-site

model can be broken such that gqA can be treated independently from gtA, one then has the freedom

to relax the dijet constraints.

Returning to the gauge sector of the two-site model considered in Section 3.1, we now add a new

vector-like (under SM gauge group) fermion, ψL,R, which are SU(2)W singlets and have charge 2/3

under U(1)Y . Under the extended gauge group, we assign qL, qR, tR, bR, ψL to be triplets of SU(3)1

and (t, b)L, ψR to be triplets of SU(3)2. In the up-type quark sector, the general 4×4 mass matrix can

be diagonalized by a bi-unitary transformation acting on the left-handed and right-handed quarks.

Since the left-handed mixing matrix is more highly constrained by the flavor observables, the right-

handed mixing matrix has less serious constraints except for the mixing in the first two generations.

Furthermore, because the first two-generation quarks have the same couplings under the new (flavor-

changing) gauge boson G�, the mixing between the right-handed quarks in the first two-generation is

suppressed. To simplify our discussion, we assume the mixing matrix for the left-handed quarks to

be approximately diagonal (we will discuss this assumption further in Section 4) and introduce only

one new mixing angle in the right-handed quark mixing matrix such that the new vector-like fermion

only mixes with u(f)R in the flavor basis.

The transition from the flavor basis to the mass eigenstate is then parametrized as

u(m)
R = cosαu(f)R + sinαψ(f)

R , (15)

ψ(m)
R = − sinαu(f)R + cosαψ(f)

R . (16)

The couplings of the axigluon G�
µ to the various quarks in the mass eigenstate basis are found to be

g(d,s,b,c)V = − tan θ , g(d,s,b,c)A = 0 , gtV =
1

tan 2θ
, gtA =

1

sin 2θ
,

guV = − tan θ +
sin2 α

sin 2θ
, guA = −sin2 α

sin 2θ
. (17)

When α = π/2, the couplings of the up and top quarks become identical to those in the minimal two-

site model. From the above equation, one can see that the axial-vector couplings of the up and top

quarks are different and one now has the freedom to increase gtA by reducing θ and to simultaneously

decease guV,A at the same time by choosing sin2 α smaller than sin 2θ. The total width of the G�
µ in

this model is then

Γ(G�) =
αsMG�

6

�
(cos4 α+ 10) tan2 θ + (sin4 α+ 1) cot2 θ − 2 sin2 α cos2 α

�

2
. (18)
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For simplicity, we only introduce one vector-like fermion which mixes solely with the up quark. In

principle, other vector-like fermions may also be present which mix with the charm and top quarks.

Such a new quark that mixes with top can be assigned the same quantum numbers as the top, so that

the G�
coupling to the top quark remains unchanged. A new quark that mixes with charm can have

the same quantum numbers as the new quark that mixes with the up quark. To evade potential flavor

constraints, one can impose an SU(2) global symmetry, under which (uR, cR) behave as an doublet

and the two vector-like fermions as another doublet. For this choice, a mixing angle which is identical

to α appears in the charm sector. The couplings gcA,V will then be different from those in Eq. (17) and

the width of G�
will be modifed; however, the general arguments in this section will be untouched.

Before we perform a general fit for this model to the Att̄
FB data, we note that there exists parameter

space regions where there is no new physics contribution to the dominant tt̄ production process at

the Tevatron: uū → tt̄, to the leading order in ŝ/M2
G� . This can happen when sinα =

√
2 sin θ for

0 ≤ θ ≤ π/4, which leads to guV = 0. Thus the contribution to the production cross section from

the interference between the QCD gluon and the axigluon vanishes because it is proportional to the

product guV g
t
V . Let’s first focus on this part of parameter space. The gauge couplings are then

g(d,s,b,c)V = guA = − tan θ , g(d,s,b,c)A = guV = 0 , gtV =
1

tan 2θ
, gtA =

1

sin 2θ
. (19)

The G�
µ width is then simply

Γ(G�
) =

αsMG�

6

�
11 tan

2 θ + cot
2 θ

�

2
. (20)

The results of the fit are shown in Fig. 7, where the red dotdashed line is the constraint from the

current dijet narrow resonance searches at CMS with 2.9 fb−1
, while the red dotted line is the projected

exclusion limit for 1 fb
−1

at the LHC. The region above the dark yellow solid line is excluded by the

search of dijet contact interactions from ATLAS with 3.1 pb
−1

. Although there is no modification

of the tt̄ production cross section from the QCD and G�
interference term, the tt̄ production cross

section is modified by the new-physics-only contribution and has the relative contribution with respect

to the SM leading-order production cross section shown by the black dashed lines. From this figure, we

conclude that in the two-site plus one vector-like fermion model there exist a small region of parameter

space which is allowed by all of the constraints. As an example, we show the fit results of Att̄
FB in

Table 3 for MG� = 1.1 TeV and θ = 30
◦
.

From the contours of Fig. 7, one can see that for a small mixing angle the best-fit region is

insensitive to its exact value. This is easily understood since the product of the axial-vector couplings

guAg
t
A = −1/(2 cos2 θ) is insensitive to θ for small θ. In this figure, we also show two horizontal,

17

We suppress all vector-like couplings with
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Add a Vector-like 
Fermion to The Mix...
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Figure 7: The fit for the model with one axigluon plus one additional vector-like fermion (Section
3.3) to the observed Att̄

FB at CDF. The best fit point has χ2/d.o.f. = 5.3/2 at MG� = 1.05 TeV
and θ = 45◦. The region above the red dot-dashed line is excluded at 95% C.L. by the dijet narrow
resonance search, while the region above the dark yellow solid line is also excluded at 95% C.L. by
the search of dijet contact operator interactions. The projected exclusion limit from the dijet narrow
resonance search at the 7 TeV LHC with 1 fb−1 is shown by the red dotted line. The black dashed
lines designate the regions (above and to the left) where the given percentage of the tt̄ production
cross section for mtt̄ > 450 GeV arises from new physics.

dotted black lines with different width/mass ratios to show that in the best-fit region G� is a narrow

resonance. One can see that a large fraction of the parameter space will be covered with increasing

luminosity at the LHC.

For more general values of α, we show the contour regions in Fig. 8 for α = 45◦ and α = 30◦,

respectively. In those two figures, the QCD and G� interference term also contributes to the tt̄ produc-

tion cross section, so the parameter space is highly constrained by tt̄ resonance searches. Comparing

the two plots in Fig. 8, we can see that for a smaller α a lighter G� is preferred by the fit to Att̄
FB

because the product guAg
t
A is reduced. As a result, the parameter space for a smaller α leads to a

larger tt̄ production cross section and is thus less favored. For α = 30◦, the best fit is χ/d.o.f. = 2.6/2

18
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An Example of a Model 
Prediction

Selection Mtt̄ < 450 GeV Mtt̄ > 450 GeV

Parton Level Exp. Data −0.116± 0.146± 0.047 0.475± 0.101± 0.049

Model Prediction 0.06 0.21

Selection |∆y| < 1.0 |∆y| > 1.0

Parton Level Exp. Data 0.026± 0.104± 0.056 0.611± 0.210± 0.147

Model Prediction 0.08 0.27

Table 3: The comparison of theoretic predictions and measured values for the two-site model with a

new vector-like fermion. The G�
mass is 1.1 TeV and the mixing angle is 30

◦
. The total χ2/d.o.f is

8.3/2.

at MG� = 824 GeV and θ = 29
◦
. For this point, we obtain Att̄

FB = (0.14, 0.53) for the two different

rapidity bins and (0.06, 0.42) for the two bins in invariant masses.

4 Flavor Constraints

To reproduce the measured tt̄ forward-backward asymmetry, the coupling of G�
to the top quark is

forced to have the opposite sign as the coupling of G�
to the u and d quarks. This necessitates flavor

violation at some level, because it means that the G�
coupling cannot be proportional to the identity

matrix in flavor space. Here, we compute the size of these flavor effects.

In order to determine the tree-level contributions of a heavy spin-1 octet, G�
, to FCNC processes,

we must first recall how they arise in a general theory [20]. Let D0T
= (d, s, b)0 and U0T

= (u, c, t)0

represent the three SM generations of Q = −1/3 and Q = 2/3 quarks in the weak eigenstate basis,

respectively. Spontaneous symmetry breaking via the Higgs Yukawa couplings then generates a mass

matrix for these fields in the form D̄0
LM

dD0
R+h.c. (and similarly for the up-type quarks). In order to

diagonalize this matrix, Md
, one needs to introduce the bi-unitary transformations DL,R = UD

L,RD
0
L,R

so that UD
L MdUD †

R = Md
D where Md

D is the Q = −1/3 diagonal mass matrix in the mass eigenstate

basis. Note that if Md
is Hermitian, we are then free to choose UD

L = UD
R = UD

. Note further that

in this notation the conventional CKM matrix is given by a product of LH-rotations for the up-type

and down-type quarks: VCKM = UU
L UD †

L and that, in the SM, the RH-rotations play no role.

In what follows we will first compute the contribution of G�
to Bq-B̄q mixing (with q = d, s),

noting that the analysis for D-D̄ mixing is identical with the substitutions b → c and q → u. It is

conceptually important to consider both types of mesons, because constraints from either alone might

be evaded by pushing all the quark mixings into either the up or down-type sectors. We will also

19

From 2-site model with vector-like fermion
and Axigluon at 1.1 TeV
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Model Difficulties

• Getting large axial couplings with small 
new vector couplings is challenging

• Results in weakly coupled models with 
light Axigluons - very constrained

• So: the most plausible “model” is 
probably a heavy (2 TeV) strongly 
coupled Axigluon
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Experimental 
Signatures and 

Follow-Ups
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LHC Signatures: Dijets

• Depending on couplings, could see a 
Dijet resonance

• Otherwise use shapes of distributions; 
for an Axigluon with:

To summarize: there are no model independent flavor constraints; generic axigluon models have

significant tension with flavor, but there are plausible flavor scenarios where this tension disappears.

5 Signatures at the LHC and Tevatron

The axigluon explanation of the observed tt̄ forward-backward asymmetry can be tested at the LHC

in either the dijet or the tt̄ final state. Almost all of the Att̄
FB preferred parameter space in the above

models will be explored with 1 fb−1 of data at the 7 or 8 TeV LHC.

5.1 Dijet Resonances

By rescaling the results of the CMS dijet narrow resonance search [28] performed with 2.9 pb−1, we

can determine how much luminosity will be needed to discover a given model. For instance, for the

model with one axigluon and one vectorlike fermion presented above with MG� = 1.1 TeV and a

mixing angle of θ = 30◦, the dijet production cross section is suppressed by 1/5 relative to a standard

“coloron” model [11], so naively we expect that about 35 pb−1 will be sufficient to exclude this model

point at 95% C.L. On the other hand, with a luminosity ∼ 250 pb−1 the axigluon with this set

of parameters will be discovered at the 7 TeV LHC. The projected exclusion limits with 1 fb−1 of

luminosity is presented in Fig. 7. We see that if it exists, a new axigluon resonance that can explain

the tt̄ forward-backward asymmetry should be discovered sometime this year!

For an axigluon described by the phenomenological model presented in Fig. 3, its width should

be greater than 20% of its mass and it will appear as a wide resonance. The dijet narrow resonance

searches will likely no longer be applicable. One could then employ an analysis similar to the quark

contact interaction searches [30] using the dijet rapidity difference to distinguish the signal events from

the background. For MG� = 2 TeV, guA = 1.5, gtA = −2 and gV = 0, one can exclude this axigluon at

95% C.L. with ∼ 44 pb−1 of data assuming a 5% systematic error on the SM backgrounds following

the analysis presented in [30]. However, in order to obtain a 5σ discovery, one needs to modify the

strategy appearing in [30] by choosing appropriate invariant mass bins and comparing the signal and

background shapes in order to reduce this systematic error. We encourage the ATLAS and CMS

collaborations to adapt their dijet searches in order to cover all the parameter space of the above

phenomenological model.

5.2 Top-Anti-Top Resonances

As discussed above, the tt̄ mass distribution is quite sensitive to the presence of a new color-octet

vector boson. The large tt̄ cross section [38] coupled with the increased mass reach make the LHC

24

One could exclude at 95% with ~45 pb^-1
assuming 5% systematics, but discovery

is challenging...
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Top Resonance Searches

• Top resonances less competitive this year above 
~1.7 TeV, but perhaps possible using jet 
substructure techniques

Figure 9: The Mtt̄ distribution from the axigluon contribution plus the SM background at leading

order. The red line is for the model with one axigluon and one vectorlike fermion described above

with MG� = 1100 GeV and θ = 30
◦
. The green(blue) line is for the phenomenological axigluon model

with MG� = 1(2) TeV, guA = 1.5, gtA = −2 and gV = 0. The black line represents the SM.

an ideal environment for such resonance searches. Here, we explore the reach of the LHC in this

observable for some Att̄
FB-preferred and viable parameter points of the above axigluon models.

The new axigluon, which does not couple to two gluons, is exchanged only in s-channel qq̄ an-

nihilation and so does not interfere with the gluon fusion contribution. The signature is striking as

shown in Fig. 9. Here, the red line displays the tt̄ invariant mass distribution at the 8 TeV LHC for

the model with one axigluon and one vectorlike fermion discussed above, taking MG� = 1100 GeV

and θ = 30
◦
, while the black curve represents the SM. With 1 fb

−1
luminosity, it is clear that one

can easily find this new resonance on top of the SM background. The green (blue) line shows the

contributions arising from the SM plus the phenomenological axigluon model with MG� = 1(2) TeV,

guA = 1.5, gtA = −2 and gV = 0. Since Γ/M ≈ 28%, no obvious bump appears in the distribution and

one needs to employ a contact interaction search in tt̄ final states.

We next estimate the sensitivity of the 8 TeV LHC to the presence of these new states. We

model our analysis after the strategy detailed by the ATLAS Collaboration for generic tt̄ resonance

searches [39][40], including a new color octet boson from technicolor models. We only consider the
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Next Step at the 
Tevatron: BB Asymmetry

• D0 data for Tops interesting, but...

• Is a measurement of the B Quark or C 
Quark FB Asymmetry possible?

• Another check, provides very useful 
information on energy dependence to 
discriminate NP from SM
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A BB Asymmetry?

Let’s consider events above 450 GeV,
have 3000-10,000 events to work with
after applying kinematic acceptances.

Difficult Questions - how can we optimally 
tag and measure the sign of the Bs (or Cs)?

Also considered by Strassler, 1102.0746
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BB Guesswork 

• Need 1 or 2 leptons for signing           
(0.2 probability of semi-leptonic decay),           

• Need 1 or 2 b-tags (~0.3 b-tag rate)
• Must contend with B mixing (~13%) 
• and leptons from charm decays (looks 

possible if we lose 50% of events)
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BB Guesswork

With 1 b-tag, 1 lepton, and Mbb̄ > 450GeV

and assuming equal asymmetry to Tops, find
200 forward and 100 backward events.

Demanding 2 leptons would be a useful check.

Have far more events at lower energies,
so an asymmetry there should be visible.
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LHC Prospects 

• If an Axigluon can (fully) explain the 
asymmetry, it should be visible in LHC 
dijet searches this year

• Important to improve contact operator 
searches, since the Axigluon would be 
heavy and strongly coupled
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Conclusions

• Axigluon arguably most sensible new 
physics explanation of asymmetry, 
currently being tested at the LHC

• Other NP explanations also tested
• To understand asymmetry, important to 

look at Bottom Quarks, perhaps Charm
• Experimental Fluke, Large NNLO, 

Other SM Effect, or New Physics???
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