Reinterpretation: How can we maximise the science impact of SUSY searches?

Anders Kvellestad, University of Oslo ATLAS SUSY workshop — Oslo, September 13, 2023

As a community we can **learn far more physics** from an experimental result that is **reinterpretable** compared to one that is not.

Understanding the full implications of [experimental] searches requires the interpretation of the experimental results in the context of many more theoretical models than are currently explored at the time of publication.

See also:

- Publishing statistical models: Getting the most out of particle physics experiments [arxiv:2109.04981]
- [arxiv:2003.07868]
- Simple and statistically sound strategies for analysing physical theories [arxiv:2012.09874]

HEP Software Foundation [arxiv:1712.06982]

• Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2

GAMBIT: The Global And Modular BSM Inference Tool EPJC 77 (2017) 784 arXiv:1705.07908

gambit.hepforge.org

github.com/GambitBSM

- Extensive model database, beyond SUSY
- Fast definition of new datasets, theories
- Extensive observable/data libraries
- Plug&play scanning/physics/likelihood packages
- Various statistical options (frequentist /Bayesian)
- Fast LHC likelihood calculator
- Massively parallel
- Fully open-source

Members of: ATLAS, Belle-II, CLiC, CMS,

Recent collaborators: V Ananyev, P Athron, N Avis-Kozar, C Balázs, A Beniwal, S Bloor, LL Braseth, T Bringmann, A Buckley, J CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHiP, XENON Butterworth, J-E Camargo-Molina, C Chang, M Chrzaszcz, J Conrad, J Cornell, M Danninger, J Edsjö, T Emken, A Fowlie, T Authors of: BubbleProfiler, Capt'n General, Contur, Gonzalo, W Handley, J Harz, S Hoof, F Kahlhoefer, A Kvellestad, DarkAges, DarkSUSY, DDCalc, DirectDM, Diver, M Lecroq, P Jackson, D Jacob, C Lin, FN Mahmoudi, G Martinez, EasyScanHEP, ExoCLASS, FlexibleSUSY, gamLike, GM2Calc, H Pacey, MT Prim, T Procter, F Rajec, A Raklev, JJ Renk, R Ruiz, A HEPLike, IsaTools, MARTY, nuLike, PhaseTracer, PolyChord, Scaffidi, P Scott, N Serra, P Stöcker, W. Su, J Van den Abeele, A Rivet, SOFTSUSY, Superlso, SUSY-AI, xsec, Vevacious, Vincent, C Weniger, A Woodcock, M White, Y Zhang ++ WIMPSim

80+ participants in many experiments and numerous major theory codes

Vector and fermion Higgs portal DM: 1808.10465

EW-MSSM: 1809.02097

More axion-like particles: 2007.05517

Simplified DM, scalar/fermion: 2209.13266

Flavour EFT: 2006.03489

Cosmo ALPs: 2205.13549

Anders Kvellestad

Scalar Higgs portal DM: 1705.07931

Axion-like particles: 1810.07192

GAMBIT::CosmoBit

0.04 (e)

0.15

0.05 Ñ

Neutrinos and cosmo: 2009.03287

Simplified DM, vector: 2303.08351

Scalar Higgs portal DM w/ vac. stability: 1806.11281

Right-handed neutrinos: 1908.02302

Dark matter EFTs: 2106.02056

EW-MSSM w/ light gravitino: 2303.09082

- **1.** The many interpretations of reinterpretation
- 2. How we can learn more
- **3. A recent SUSY reinterpretation example**
- 4. Some challenges for reinterpretation
- 5. Moving forward: how to best help each other?

1. The many interpretations of reinterpretation

There are many types of reinterpretation

Analysis preservation and reuse internally in an experiment •

- High accuracy (full access to analysis details, full detector simulation, ...) •
- High computational cost per model point ٠

There are many types of reinterpretation

Simulation-based reinterpretation by outside groups •

- Medium accuracy (faster simulations, reimplementing analyses from public info, ...) •
- Medium-to-high computational cost per model point •

- MadAnalysis
- CheckMATE •
- GAMBIT (ColliderBit)
- Contur+Rivet

. . .

There are many types of reinterpretation

Simulation-less reinterpretation by outside groups •

- Medium accuracy •
- Reduced exclusion sensitivity compared to simulation-based methods •
- (Very) low computational cost per model point •

[2306.17676]

- SModelS •
- HiggsTools
- DarkCast

Why the need for speed?

•

٠

- First, BSM parameter spaces are high-dimensional!
 - And theorists have limited CPU resources :)
- Second, in **global fits** we seek statistically rigorous conclusions about **regions of BSM parameter spaces**
 - Need properly converged explorations of the likelihood function / posterior distribution
 - Must use adaptive sampling algorithms, that focus on higher-likelihood regions
 - So the problem is not trivially parallelisable (we can't just sample first, simulate later)

Four-dimensional Rosenbrock function

2. How we can learn more

• From Roberto Franceschini's talk on Monday:

it is quite hard to find an experimental signature that can be attained in another model and cannot be attained in SUSY (including

the model also comes with "some" way to judge how likely it is the particular signal at hand (how much do I have to sweat to get this

the model allows to derive the experimental implications of observing such signal (what other signals should I see besides this?)

All the hard-won event counts with background estimates from the LHC SUSY programme hold **a lot** of information about BSM theory space.

What we have learned at time of publication

Impossible to reinterpret

Anders Kvellestad

What we have learned long after publication

Learning more #1: We can probe much more of SUSY theory space

Anders Kvellestad

4000

Reminder: **Theory space is a strange, implausible place**

- «Everyone» would assign negligible prior belief to almost all points in the low-scale MSSM parameter space
- MSSM expresses our ignorance of SUSY breaking
- Any «elegant»/«economic»/«reasonable» high-scale model maps to some tiny subspace of the low-scale MSSM
- And any simplified model plane maps to some strange hypersurface through low-scale MSSM
- A «large» exclusion in simplified model space:
 - Maybe large, maybe small impact on MSSM
- A «large» exclusion in low-scale MSSM
 - Maybe decisive, maybe negligible impact on the space of plausible high-scale models

[hep-ph/9709356]

Learning more #2: We can probe much more of BSM theory space

Learning more #3: We can identify best-fit scenarios

Explore MSSM EWino sector [1809.02097]

Anders Kvellestad

Explore space of simplified models [2012.12246]

Learning more #4: We can learn how to plug «holes» in theory space

• Example:

- Light Higgsinos, heavier winos
- Dominant production mode can be the heavier wino pair (if not too heavy)

Learning more #4: We can learn how to plug «holes» in theory space

- Studied benchmark points that survived 36 fb⁻¹ searches. Example:
 - 3 Higgsinos ~200 GeV, Δm ~ 40 GeV
 - 2 winos ~ 300 GeV •
- Compare to wino/bino simplified model with Δm ~ 100 GeV
 - Main signature is similar: on-shell W + Z + MET
 - But gives **less clean final states**, due to not-necessarily-soft products from decays between higgsinos
 - Replace «simplified model cut» **n**_{jets} = **0** with a «less simplified» cut $H_T < X$?

In short: Given a null-result, the exclusion limits are very interesting and useful...

[ATLAS, 2106.01676]

...but this is the real gold! :)

		Regions	$SR_{SFOS}^{Wh} - 1$	$SR_{SFOS}^{Wh} - 2$	$SR_{SFOS}^{Wh} - 3$	$SR_{SEOS}^{Wh} - 4$	$SR_{SFOS}^{Wh} - 5$	SR_{SEOS}^{Wh} -	6 SR ^{Wh} _{SEOS} -7					
		Observed	152	14	8	47	6	15	19					
		Fitted SM	136 ± 13	13.5 ± 1.7	4.3 ± 0.9	50 ± 5	4.3 ± 0.7	$20.2 \pm 2.$	$.1 16.0 \pm 2.1$					
		WZ	107 ± 12	10.2 ± 1.7	3.8 ± 0.8	32 ± 4	2.7 ± 0.6	$12.3 \pm 1.$.6 10.8 ± 1.7					
		tī	10.3 ± 2.5	1.6 ± 0.6	0.13 ± 0.12	7.7 ± 1.9	0.74 ± 0.34	$3.5 \pm 1.$	$.0 2.5 \pm 0.7$					
		Z+jets	2.5 ± 2.9	$0.00 \pm 0.02_{0.00}$	$0.00 \pm 0.02_{0.00}$	2.0 ± 1.6	$0.00 \pm 0.04_{0.00}$	$0.00\pm_{0.0}^{0.0}$	$^{40}_{00} 0.00 \pm ^{0.02}_{0.00}$					
		Higgs	5.7 ± 0.6	0.69 ± 0.07	0.20 ± 0.03	3.12 ± 0.31	0.26 ± 0.05	1						
		Triboson	1.9 ± 0.5	0.22 ± 0.07	0.07 ± 0.02	1.4 ± 0.4	0.28 ± 0.09	0 Rivet	t analyses refere	nce				
		Others	8.6 ± 1.9	0.84 ± 0.11	0.08 ± 0.05	4.0 ± 0.5	0.23 ± 0.24	² ATLAS	S_2020_I1803608					
		Regions	SR ^{Wh} _{SFOS} -8	$SR_{SFOS}^{Wh} - 9$	$SR_{SFOS}^{Wh} - 10$	SR_{SFOS}^{Wh} - 11	SR ^{Wh} _{SFOS} -12	Electro	weak Zjj at 13 TeV					
		Observed	113	184	28	5	82	Inspire	ID: 1803608					
		Fitted SM	108 ± 13	180 ± 17	31 ± 4	6.6 ± 0.9	90 ± 11	1 Authors	s:					
		WZ	54 ± 6	127 ± 13	19.3 ± 2.3	5.3 ± 0.8	47 ± 6	• Ste	ephen Weber					
		tī	21 ± 6	33 ± 10	8.2 ± 2.3	0.7 ± 0.5	28 ± 8	• Da	ag Gillberg					
		Z+jets	19 ± 10	2.3 ± 1.9	1.0 ± 1.3	0.10 ± 0.21	2.1 ± 3.1	Referen	nces:					
		Higgs	1.91 ± 0.19	3.63 ± 0.35	0.67 ± 0.06	0.15 ± 0.02	2.98 ± 0.25	0 . ar	Xiv: 2006.15458					
		Triboson	0.79 ± 0.24	1.4 ± 0.4	0.41 ± 0.13	0.12 ± 0.05	1.6 ± 0.5	0 . Eu	ur. Phys. J. C 81 (2021) 16	3				
		Others	11.1 ± 2.2	12.2 ± 2.2	1.8 ± 0.4	0.22 ± 0.05	9.0 ± 1.1	Beams:	: p+ p+					
		Regions	SR_{SFOS}^{Wh} - 15	SR_{SFOS}^{Wh} - 16	SR_{SFOS}^{Wh} – 17	SR_{SFOS}^{Wh} - 18	SR_{SFOS}^{Wh} - 19	Beam e Run det	nergies: (6500.0, 6500.0) tails:	GeV				
		Observed	51	5	37	7	4	• pp	> -> Z [-> ee and mumu] + j	ets production at 13 TeV				
		Fitted SM	46 ± 7	9.8 ± 1.6	43 ± 7	12.6 ± 1.7	1.8 ± 0.4	Different	tial cross-section measure	ments are presented for th				
		WZ	18.9 ± 2.2	3.9 ± 0.8	35 ± 6	9.8 ± 1.6	1.44 ± 0.32	0 provide	a fundamental test of the g	auge structure of the Star				
		$t\bar{t}$	18 ± 6	3.2 ± 1.3	1.00 ± 0.34	0.33 ± 0.17	$0.00 \pm 0.01 \\ 0.00 $	proton-p	proton collision data collect	ed by ATLAS at $\sqrt{s} = 13$ measured in the $Z \rightarrow \ell^+$				
	•	7+iets	0.00 ± 0.12	0.00 ± 0.12	0.00 ± 0.12	0.00 ± 0.12	0.00 ± 0.12	observal	bles: the dijet invariant ma	ss, the rapidity interval spa				
	l GitLab ≡	Menu						detector	r inefficiency and resolution	and are sufficiently precision and Powheet Pythia8				
S	Simple Analys	is	C++ A	NA-SUST-2017-0	3_2LRJ.CXX	Include	all public codes in	sections	s are used to search for an	omalous weak-boson self-				
	Project informat	Project information		NA-SUSY-2017-0	3_3LRJ.cxx	Include	all public codes in	re to the in test of cl	to the interference between the Standard Model and dimens test of charge-conjugation and parity invariance in the weak- point is for the inclusive Z+2jet selections. For the EW-only r					
Ð	Repository		C++ A	NA-SUSY-2018-0	4.cxx	Include	all public codes in	re both cas	ses, electron and muon cha	annels are to be summed.				
	Files		C++ A	NA-SUSY-2018-0	06.cxx	Include	all public codes in	re	(-*- (++ -*-					
	Commits		C++ A	NA-SUSY-2018-0	9.cxx	Include	all public codes in	2 #1 3 #1	2 #include "Rivet/Analysis.hh" 3 #include "Rivet/Projections/FinalState.hh" 4 #include "Rivet/Projections (Properties)					
	Branches			NA-SUSY-2018-1	2.cxx	Include	all public codes in	5 #1 6 #1 7	5 #include "Rivet/Projections/Fromperina/State.hh" 6 #include "Rivet/Projections/FastJets.hh" 7					
	Tags Contributors Graph Compare		C++ A	NA-SUSY-2018-1	6.cxx	Include	all public codes in	8 na 9 re 10	<pre>8 namespace Rivet { 9 10 10 11 /// VBFZ in pp at 13 TeV 12 class ATLAS_2020_I1803608 : public Analysis { 13 public: 14 15 /// Constructor 16 RIVET DEFAULT ANALYSIS CTOR(ATLAS 2020 I180</pre>					
			C++ A	NA-SUSY-2018-1	6 VBF.cxx	Include	all public codes in	11 12 re 13						
			C++ A	NA-SUSY-2018-2	2 BDT cyx	Include	all public codes in	14 15 16						
	Locked Files					Include		17 18 19	17 18 19 /// @name Analysis methods					
D	Issues	0	C++ A	NA-SUSY-2018-2	2_Discovery	Include	all public codes in	re 20 21 22	/// @{ /// Book histograms a	nd initialise projection				
ľ	Merge requests	0	C++ A	NA-SUSY-2018-2	2_MultiBin.c	Include	all public codes in	re 23 24	<pre>void init() { FinalState fs(Cuts:</pre>	:abseta < 5.0);				
.0,	₽ CI/CD			NA-SUSY-2018-2	3.cxx	Include	all public codes in	76 26 PromptFinalState photons(Cuts::abspid = 27 PromptFinalState electrons(Cuts::abspid 28 PromptFinalState muons(Cuts::abspid - 28 PromptFinalState muons(PromptFinalState muons(P						
0	Deployments		C++ A	NA-SUSY-2018-3	1.cxx	Include	all public codes in	re 29 30	::pT > 25*GeV) && (Cuts					
Monitor			C++ A	NA-SUSY-2018-3	2.cxx	Include	all public codes in	re 32 33	re 32 32 DressedLeptons dressed_electrons(ph					
Lu Analytics			C++ A	NA-SUSY-2019-0	l8.cxx	Include	all public codes in	re 36 DressedLeptons dressed_muons(photons, muo						
	Collapse sideba	r						57	sectore (areased_indo	in the second state of the				

ļ	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ \tilde{\chi}_1^0 \tilde{\chi}_1^0$ wino/bino (+)								m(j	$(\hat{\chi}_{1}^{0}, \hat{\chi}_{1}^{0}) = (12)$	5, 85) GeV								
	Common cuts	a	b			c	ć		e			f1		f2		g1	1	g2	a through g2
	$ \begin{array}{l} \mathcal{L} \times \sigma \\ \mathcal{L} \times \sigma \times \mathrm{BF} \\ \mathcal{L} \times \sigma \times \mathrm{BF} \times \mathrm{filt.} \ \mathrm{eff.} \\ 3 \ \mathrm{isolated} \ \mathrm{lepton} \ \mathrm{selection} \\ \mathrm{b} \cdot \mathrm{veto} \\ \mathrm{Trigger selection} \\ m_{\ell\ell}, m_{\ell\ell}^{\mathrm{max}} \ \mathrm{[GeV]} \end{array} $								[< 75]	1394866 45634 16811 2.66e+0 2.55e+0 1.81e+0 1.79e+0	3 3 3 3								1394866 45634 16811 2.66e+03 2.55e+03 1.81e+03 1.79e+03
	Common cuts SR_{1ower}^{artue} , $m_{\ell\ell}^{artia}$ [GeV] lepton $p_{T}^{1,23}$ [GeV] FNP lepton cleaning (conversions $m_{\ell\ell}^{artua}$ [GeV] $m_{\ell\ell}^{artua}$ [GeV] $m_{\ell\ell}^{artua}$ [GeV] $m_{\ell\ell}^{artua}$ [GeV] $m_{\ell\ell}^{artua}$ [GeV] $m_{\ell\ell}^{artua}$ [GeV] $m_{\ell\ell}^{artua}$ [GeV] $m_{\ell\ell}^{artua}$ [GeV])	· · · [€ [12, 15]] · [< 115] · [< 1.6]	47.0 19.4 19.4	[€ [15, 20]] [< 120] [< 1.6]	[€ [12, 40]] [> 10] [< 60]] 119 74.7 73.2	1.70e+03 1.44e+03 1.12e+03 1.02e+03 [€ [20, 30]] [< 130] [< 1.6]	406 374 295	[€ [30,40]]	452 452 452		[€ [40, 60]	5.92 5.92 5.92	[€ [40, 75 [> 15]]] 14.6 7.74 5.92 5.92	[∈ [60,75]	0 0 0		1.71e+03 1.45e+03 1.12e+03 1.03e+03 1.03e+03 926 846
3	$ \begin{array}{l} & \mathcal{L}_{\mathrm{T}} = \mathcal{L}_{\mathrm{T}} \otimes \mathcal{L}_{\mathrm{T}} \\ & \mathcal{R}_{\mathrm{T}} \otimes \mathcal{R}_{\mathrm{T}} \\ \mathcal{R}_{\mathrm{T}} \otimes \mathcal{R}_{\mathrm{T}} \otimes \mathcal{R}_{\mathrm{T}} \\ \mathcal{R}_{\mathrm{T}} \otimes \mathcal{R}_{\mathrm{T}} \otimes \mathcal{R}_{\mathrm{T}} \\ & \mathcal{R}_{\mathrm{T}} \otimes \mathcal{R}_{\mathrm{T}} \\ & \mathcal{R}_{\mathrm{T}} \otimes \mathcal{R}_{\mathrm{T}} \\ \end{array} $		- [= 0] - [< 50] - [> 1.5]	12.2 11.2 8.57 8.57	[= 0] [< 50] [> 1.5]	49.5 42.9 34.7 24.7	[= 0] [< 50] [> 1.5] [< 50] [< 1.1]	186 147 123 123 97.8 64.3 59.3	[= 0] [< 50] [> 1.5] [< 60] [< 1.3]	291 242 182 182 158 138 126	[< 60] [< 1.4]	[= 0] [< 50] [> 1.5] [> 100] 0.560 0.560 0.525	3.28 2.62 1.91 0.656 [> 90] [< 1.4]	0 0 0	[< 60] [< 1.4]	[= 0] [< 50] [> 1.5] [> 100] 0 0 0	0 0 0 [> 90] [< 1.4]	0 0 0	512 446 350 349 297 231 211
							[> 0] [< 200] [> 3.0] [< 50] [< 1.0]	110 102 76.3 42.9 36.5 33.7	[> 0] [< 200] [> 3.0] [< 60] [< 1.0]	161 150 106 65.7 59.9 53.0	[< 60] [< 1.2]	[> 0] [< 200] [> 3.0] 1.41 1.34 1.25	2.64 2.64 1.70 [> 90] [< 1.2]	0 0 0	[< 60] [< 1.2]	[> 0] [< 200] [> 3.0] 0 0 0	0 0 [> 90] [< 1.2]	0 0 0	304 282 205 124 111 100
							[€ [20, 30]] [< 130] [= 0] [> 50] [> 3.0] [< 60]	422 388 239 50.8 46.1 43.3 40.2	[> 25, 15, 10] [€ [30,40]] [< 140] [= 0] [> 50] [> 3.0] [< 60]	1.17e+0 541 540 341 67.0 60.5 52.4 48.6	3 [< 70]	[€ [40, 60] [< 160] [= 0] [> 50] [> 3.0] 0.805 0.760	11.1 11.1 7.28 1.08 0.805 [> 90]	0	[< 70]	[€ [60,75]] [< 175] [= 0] [> 50] [> 3.0] 0 0	0.148 0.148 0.148 0 0 [> 90]	0	1.17e+03 1.14e+03 1.03e+03 649 131 119 107 99.5
									[>4.5,3]	1.79e+0	3								1.79e+03
roduction at 13 TeV s are presented for the ele s are sensitive to the vect	ectroweak production of two	ets in association	1				[∈ [20, 30]] [< 130] [> 0]	661 607 252	[€ [30,40]] [< 140] [> 0]	746 744 287		[∈ [40, 60] [< 160] [> 0]	f 14.5 14.5 5.24			[∈ [60,75]] [< 175] [> 0]	g 0.148 0.148 0		1.79e+03 1.56e+03 622
/ ATLAS at $\sqrt{s} = 13$ TeV sured in the $Z \rightarrow \ell^+ \ell^-$ de re rapidity interval spanner emomentum of the dilepti are sufficiently precise to Powheg+Pythia8, Herwig ous weak-boson self-inter, azimuthal angle between rd Model and dimension-s variance in the weak-bosc ns. For the EW-only meas Is are to be summed.	Y and with an integrated lum lecay channel ($\ell = e, \mu$) as d by the two jets, the signed ton pair. The data are correct distinguish between differe (7+Vbfnio and Sherpa 2.2. T actions using a dimension-s the two jets is found to be six scattering amplitudes an on self-interactions. Note that unement use the option TYR								Q	5	HI	EP	D	at	а				
nalState.hh" "omptFinalState.hh" "essedLeptons.hh" hstJets.hh"					R	epos	itory	for	public	atio	n-re	lated	Higł	n-Ene	ergy	Physi	cs da	ita	
public Analysis {																			
DR(ATLAS_2020_I1803608);	:					5	Searc	n on	9506	oubli	icatio	ons ar	nd 10	0479	data	table	s.		
nitialise projections be	efore the run				Q s	earch	for a pa	per, a	uthor, ex	perin	nent, r	eaction			Sear	rch	Adva	anced	
eta < 5.0); ;(Cuts::abspid == PID::F ns(Cuts::abspid == PTD:	PHOTON); ::ELECTRON):					g. roo	tion P	0	0102	title b	ac "nb	oton ce	Ilision	s" coll	ahorati	ion is L	l(for [0	
uts::abspid == PID::MUO	DN);				e	.g. read	uon P	> L	QLQX,	inte na	as pn	oton co	unsion	s, coll	aborati	UT IS LI	ICI OF L	<i>.</i>	
> 25*GeV) && (Cuts::ab	bseta < 1.37 (Cuts::ab																		
> 25*GeV) ଋଢି (Cuts::at > 25*GeV) ଋଢି (Cuts::abs :lectrons(photons, elect	oseta < 1.37 (Cuts::ab seta < 2.4); trons, 0.1, cuts_el);																		

. . .

Anders Kvellestad

A huge thank you to everyone who works hard to produce some cutflow, a SimpleAnalysis code snippet, an efficiency map, a JSON likelihood file,

3. A recent SUSY reinterpretation example

Collider constraints on electroweakinos in the presence of a light gravitino

The GAMBIT Collaboration: Viktor Ananyev¹, Csaba Balázs², Ankit Beniwal³, Lasse Lorentz Braseth¹, Andy Buckley⁴, Jonathan Butterworth⁵, Christopher Chang⁶, Matthias Danninger⁷, Andrew Fowlie⁸, Tomás E. Gonzalo⁹, Anders Kvellestad¹, Farvah Mahmoudi^{10,11}, Gregory D. Martinez¹², Markus T. Prim¹³, Tomasz Procter⁴, Are Raklev¹, Pat Scott¹⁴, Patrick Stöcker¹⁵, Jeriek Van den Abeele¹, Martin White¹⁶, Yang Zhang^{17,18}

EW SUSY w/ light gravitino at the LHC

Usual ATLAS/CMS simplified model:

- Production of lightest neutralinos/charginos
- 1-2 fixed branching ratios
- Near massless gravitino as LSP

Our model: all EWinos + light gravitino

- Model: MSSM w/ neutralinos, charginos and gravitino within LHC reach
- 7 SUSY particles below 1 TeV: 4 neutralinos, 2 charginos, light gravitino
- 4D theory parameter space: M1, M2, mu, tan beta
- \cdot Why a gravitino?
 - necessary consequence of supergravity
 - gauge-mediated symmetry breaking (GMSB): gravitino likely the LSP
- Distinct collider pheno: the lightest neutralino/chargino will decay
- Gravitino mass fixed to 1 eV \rightarrow prompt decay of lightest neutralino/chargino

Analysis

- Series of parameter scans w/ GAMBIT
- Scanner: **Diver** (differential evolution)
- Per point: simulate 16M SUSY events (Pythia, via ColliderBit)
- CPU cost: tens of millions of CPU hours... •
- Likelihoods: •
 - 15 ATLAS + 12 CMS searches (in ColliderBit)
 - 22 «pools» of 45 ATLAS, CMS and LHCB measurements (Contur+Rivet, via ColliderBit)
 - apply relevant LEP cross-section limits (in ColliderBit) •

It's a complicated profile likelihood...

It's a complicated profile likelihood...

Best fit for light higgsino scenarios

Anders Kvellestad

33

Several different surviving scenarios

Anders Kvellestad

Profile likelihood ratio $\mathcal{L}/\mathcal{L}_{ ext{max}}$

4. Some challenges for reinterpretation

(Reinterpretation of experiments in other areas of particle physics still often involves scraping data from Figure 73 in Appendix B of an old PhD thesis...)

Anders Kvellestad

The ATLAS and CMS SUSY groups are overall doing a really good job at providing public material for reinterpretation!

What we do in ColliderBit

- For each parameter point in a scan:
 - Run Pythia simulations of all relevant SUSY processes
 - Pass events through fast detector simulation (four-vector smearing + efficiencies)
 - Pass events through our implementations of ATLAS and CMS searches
 - \rightarrow signal predictions for all SRs
 - Compute a combined likelihood for the parameter point
 - We combine as many analyses and SRs as we reasonably can, given available info
 - Plus an analogous pipeline for measurements, using Rivet + Contur

39

The information we need to do this

Implementing the analysis:

- Clear analysis description in the paper •
- SimpleAnalysis code snippets •
- **Reusable NNs?** •

Validating our implementation:

- Cutflows for benchmark points •
 - Clear definition of signal model (SLHA file) •
 - Any preselections not mentioned in cutflow?
 - How many MC events generated? •

Fully utilising the data (and improving stability):

- Full likelihoods, JSON (ATLAS) •
- Correlation matrices for simplified likelihoods (CMS) •

•

٠

•

	_					
	=		$\mathrm{m}(ilde{\chi}^0_2, ilde{\chi}^0_1)$ [GeV]		
	S	Selection	(300, 200)	(600, 100)		
	4	$\mathcal{L} \times \sigma$	53784	2799		
	4	$\mathcal{L} \times \sigma \times \mathrm{BF}$	1760		•	$m(\tilde{z}^0, \tilde{z}^0)$ [GeV]
	4	$\mathcal{L} \times \sigma \times BF \times \text{filt. eff.}$	1322	Selection		$\frac{\operatorname{III}(\chi_2,\chi_1)[\operatorname{Oev}]}{(190,60)}$
	3	$\frac{1}{2}$ isolated lepton selection,	227	Selection	I	(190, 00)
		lepton $p_{\rm T}^{1,25} > 25, 20, 10$ GeV,	227	$\mathcal{L} \times \sigma$		303527
		$E_{\rm T}^{\rm max} > 50 {\rm GeV}$	226	$\mathcal{L} \times \sigma \times$	BF	10927
	<i>n</i> 1	$l_{\rm SFOS} \ge 1$	220	$\mathcal{L} \times \sigma \times$	$BF \times filt.$ eff.	1174
	1	h = 0	209	3 isolated	l lepton selection,	102
	/' F	$r_{b-jets} = 0$ Resonance veto $m_{es} > 12$ GeV	209	lepton	$p_{\rm T}^{1,2,5} > 25, 20, 10$ GeV,	192
	1	$m_{3\ell} - m_{Z} > 15 \text{ GeV}$	203	$E_{\rm T}^{\rm mas}$	> 50 GeV	107
	n	$n_{\ell\ell} \in [75, 105] \text{ GeV}$	196	Trigger s	election	186
	v	with MC to data weight	186	$n_{\rm b-jets} = 0$	0	171
	n	$i_{\text{iets}} = 0$	76.4	$= n_{SFOS} \ge$	1	137
	v	with MC to data weight	73.3	Resonance	ce veto $m_{\ell\ell} > 12 \text{ GeV}$	133
	-	$m_{\rm T} \in [100, 160] {\rm GeV}$	26.7	$ m_{3\ell} - m$	Z > 15 GeV	110
		$SR^{WZ} - 1$	20.9	with MC	to data weight	104
		SR ^{WZ} -2	4.86	$m_{\ell\ell} < 75$	o GeV	56.2
		$SR^{W2} - 3$	0.78	$n_{\rm jets} =$	$= 0 \left((SR_{1 \circ W - \mathfrak{m}_{11} \circ \vartheta j}^{m_{11}}) \right)$	22.3
	_	SR" ² -4	0.14	S	$SR_{SFOS}^{WID} = 1$	8.26
		$m_{\rm T} > 160 \text{ GeV}$	5.80	S	SR _{SFOS} -2	1.57
		SR -5	4.64	S	SR _{SFOS} -3	0.50
		אר - ט SR ^{WZ} _ 7	0.10	S	SR _{SFOS} -4	5.97
		SR ^{WZ} -8	0	S	SR _{SFOS} -5	0.64
	3	SR_{ex}^{WZ} (SR_{ex}^{WZ} -1 to 8)	31.4	S	SR ^{wh} _{SFOS} -6	2.67
	=	$h_{0} = 0.0 H_{-} < 200 GeV$	07.5	=S	SR ³¹¹ _{SFOS} -7	2.75
	<i>n</i>	$r_{jets} > 0, n_T < 200 \text{ GeV}$ with MC to data weight	97.5	$n_{\rm jets}$ >	$> 0, H_{\rm T} < 200 \text{ GeV} (\text{SR}_{low-m_{\rm in}-nj}^{\text{Wn}})$	26.5
	<u>-</u>	$m_{T} \in [100, 160] \text{ GeV}$	29.6	S	SR ^{win} _{SFOS} -8	2.95
		SR ^{WZ} -9	8.75	S	$R_{SFOS}^{WII} - 9$	5.28
		$SR^{WZ} - 10$	3.46	S	SR _{SFOS} -10	1.59
		$SR^{WZ} - 11$	0.54	S	SR _{SFOS} -11	0.63
		$SR^{WZ}-12$	0	S	$SR_{SFOS}^{Wn} = 12$	5.55
		$m_{\rm T} > 160 { m ~GeV}$	9.50	S	$SR_{SFOS}^{wn} = 13$	2.91
		SR ^{WZ} -13	7.19	S	$SR_{SFOS}^{WI} - 14$	0.68
		$SR^{WZ} - 14$	1.53	S	$SR_{SFOS}^{wn} - 15$	5.48
		$SR^{*2}-15$	0.09	S	SR ^{win} _{SFOS} -16	1.39
	=	SR -16	0	$n_{SFOS} = 0$)	34
	n	$u_{\text{jets}} > 0, H_{\text{T}} > 200 \text{ GeV}$	22.2	with MC	to data weight	33.5
	1	$H_{\rm T}^{\rm hep} < 350 {\rm GeV}$	20.9	$n_{\rm jets} =$	= 0	14.8
	v	with MC to data weight	19.3	p,	$r_{\rm T}^{\ell_3} > 15 {\rm GeV}$	12.2
		$m_{\rm T} > 100 \text{ GeV}$	10.8	E	T_{T}^{miss} significance > 8	5.36
		SK = 17 $SP^{WZ} = 18$	2.55	Δ	$R_{\rm OS,near} < 1.2$	4.73
		$SR^{WZ} = 19$	1.09	$n_{\rm jets} \in$	∈ [1, 2]	15.6
		$SR^{WZ} - 20$	1.13	p.	$\ell_3 > 20 \text{ GeV}$	9.4
	S	$SR_{\text{ni}}^{\text{WZ}}$ (SR^{WZ} -9 to 20)	29.4	E	$_{\rm T}^{\rm miss}$ significance > 8	3.91
Publicatio	n Resou	rces		Δ	$R_{\rm OS,near} < 1.0$	2.84
				SR ^{Wh} DFOS		7.57
					_	
		=				ſ
		E	-		E	
urcos		C++	File		C++ F	ile
urces		C · · ·			C · · · ·	
		SimpleAnalysis code sn	ippet (onshell analysi	s)	SimpleAnalysis code snip	ppet (offshell analysis)
able of						
	0	10.17182/hepda	ata.95751.v2/r1		10.17182/hepdat	a.95751.v2/r2
ontrol and		Dowr	load		Downle	oad
on Vields	2					
on netus						
اميد امينده						
ontrol and						
on Yields	2	_				<
WZ Signal		Ľ				
able	2	HistFact	ory File		tar F	ile
Wh Signal		Archive of full likelihoods	in the HistFactory JS	ON	SLHA files for mass point	s used in the cutflows
wir Signat		format.Likelihoods ar	e provided for the 31			
able	2	onsholl and offsholl and	lyses The backgroup	d	10.17182/hepdat	a.95751.v2/r4
NZ Signal		Information is contained	I in the 'bkg_' files. A s	set	Downle	oad
	2	of patches for various sig	gnal models is provid	ed		
		in the files ending in 'pat	chset.ison' A READM	Eis		

40

Additional

√ filter

ommon R

README and

Fig 4 Onshell Validation Re

Fig 8 Offshel /alidation Re

Tab 12 Onsh

Region Yields

Tab 13 Onsh **Region Yields**

Fig 10 Onshel **Region Yields**

Region Yields

Fig 11 Onshell Wh Signal

Contents

The main challenges we encounter

- Limited public information •
 - Limits our ability to validate our implementation
 - Forces us to identify best-expected SR at each point

- **Detector-level variables** •
 - We can't do sophisticated detector simulation when mapping out high-dimensional theory spaces

The big one: **neural networks** ullet

Reusing Neural Networks: Lessons learned and Suggestions for the future

Tomasz Procter Summary from the Les Houches reinterpretable ML working group

Tomasz Procter, RIF, August 2023

- Use an open-source framework (tensorflow, pytorch, etc)
- (e.g. ONNX or lwtnn).
 - Just leaving in a `.h5` file or `.pkl` file is unlikely to be stable Ο
- misstags – or surrogates), but 10 truth-level quantities + pseudo-continuous b-score is frustrating.

Tomasz Procter, RIF, August 2023

Ensure the network can be saved in a useful preservation format for inference

Be considerate with choice of inputs - if a tagger depends entirely on detector level inputs, that's fine (but please provide detailed efficiencies – including

Tomasz Procter, RIF, August 2023

Anders Kvellestad

Ensure the network can be saved in a useful preservation format for inference

Be considerate with choice of inputs - if a tagger depends entirely on detector level inputs, that's fine (but please provide detailed efficiencies – including

> A «Les Houches guide to reusable ML models» document is in preparation!

Easier and more accurate reinterpretation

Anders Kvellestad

More complicated selection variables

5. Moving forward: how to best help each other?

Join the discussions in the LHC Reinterpretation Forum!

(Re)interpretation of the LHC results for new physics

August 29, 2023 to September 1, 2023 Durham University

Europe/London timezone

What would you like from reinterpretation studies?

- Assuming that we theorists can do reinterpretation in fairly high-dimensional theory spaces at medium accuracy...
- ...what output is most useful for you?
 - Maps of impact of current searches?
 - Benchmark points from surviving scenarios?
 - New low-dimensional planes for analysis optimisation?
 - New simplified models?
 - Suggested event selection strategies?
 - Forecasting for higher luminosity or new colliders?
 - Other things? All of the above?

What experiments can do to help reinterpretations

- Consider tradeoff between gain from complicated selection ٠ variables and loss of reinterpretability
- Keep in mind that sensitivity in simplified model plane • *≠* sensitivity in BSM theory space
 - Can we e.g. use a «less simplified» SR definition? •
 - Reach out to your friendly neighbourhood theorist! •
- Consider reinterpretation by outside teams when designing ٠ new searches
 - Maybe include alternative, easy-to-reinterpret SRs?
- Support existing ATLAS efforts for reinterpretation ٠
 - SimpleAnalysis code snippets
 - Full likelihoods
 - Reusable NNs

. . .

So how can we maximise the science impact of SUSY searches?

So how can we maximise the science impact of SUSY searches?

We can make sure that physicists in our community will be able to compute **reasonably accurate predictions** for **as many of the SRs as possible**, and that this can happen **as efficiently as possible** both in **human hours** and **CPU hours.**

So how can we maximise the science impact of SUSY searches?

We can make sure that physicists in our community will be able to compute **reasonably accurate predictions** for **as many of the SRs as possible**, and that this can happen **as efficiently as possible** both in **human hours** and **CPU hours.**

(And of course, discover SUSY.)

Bonus tracks

Parameter space

Neutralinos

$$\psi^{0} = (\tilde{B}, \tilde{W}^{0}, \tilde{H}_{d}^{0}, \tilde{H}_{u}^{0})$$

$$M_{N} = \begin{pmatrix} M_{1} & 0 & -\frac{1}{2}g'vc_{\beta} & \frac{1}{2}g'vs_{\beta} \\ 0 & M_{2} & \frac{1}{2}gvc_{\beta} & -\frac{1}{2}gvs_{\beta} \\ -\frac{1}{2}g'vc_{\beta} & \frac{1}{2}gvc_{\beta} & 0 & -\mu \\ \frac{1}{2}g'vs_{\beta} & -\frac{1}{2}gvs_{\beta} & -\mu & 0 \end{pmatrix}$$

$$\psi^{\pm} = (\tilde{W}^{+}, \tilde{H}_{u}^{+}, \tilde{W}^{-}, \tilde{H}_{d}^{-})$$
$$M_{C} = \begin{pmatrix} 0 \ X^{T} \\ X \ 0 \end{pmatrix}, \text{ where } X = \begin{pmatrix} M_{2} \ \frac{gvs_{\beta}}{\sqrt{2}} \\ \frac{gvc_{\beta}}{\sqrt{2}} & \mu \end{pmatrix}$$

Charginos

(

Search label	Luminosity
ATLAS_2BoostedBosons	$139{\rm fb}^{-1}$
ATLAS_0lep	$139{\rm fb}^{-1}$
ATLAS_0lep_stop	$36{ m fb}^{-1}$
ATLAS_1lep_stop	$36{ m fb}^{-1}$
ATLAS_2lep_stop	$139{ m fb}^{-1}$
ATLAS_20Slep_Z	$139{\rm fb}^{-1}$
ATLAS_20Slep_chargino	$139{ m fb}^{-1}$
ATLAS_2b	$36{ m fb}^{-1}$
ATLAS_3b	$24{ m fb}^{-1}$
ATLAS_3lep	$139{\rm fb}^{-1}$
ATLAS_4lep	$139{\rm fb}^{-1}$
ATLAS_MultiLep_strong	$139{\rm fb}^{-1}$
ATLAS_PhotonGGM_1photon	$139{\rm fb}^{-1}$
ATLAS_PhotonGGM_2photon	$36{ m fb}^{-1}$
ATLAS_Z_photon	$80{ m fb}^{-1}$
CMS_0lep	$137\mathrm{fb}^{-1}$
CMS_1lep_bb	$36{\rm fb}^{-1}$
CMS_1lep_stop	$36{\rm fb}^{-1}$
CMS_2lep_stop	$36{\rm fb}^{-1}$
CMS_2lep_soft	$36{\rm fb}^{-1}$
CMS_20Slep	$137\mathrm{fb}^{-1}$
CMS_20Slep_chargino_stop	$36 {\rm fb}^{-1}$
CMS_2SSlep_stop	$137{\rm fb}^{-1}$
CMS_MultiLep	$137\mathrm{fb}^{-1}$
CMS_photon	$36\mathrm{fb}^{-1}$
CMS_2photon	$36{ m fb}^{-1}$
CMS_1photon_1lepton	$36{\rm fb}^{-1}$

Source

ATLAS hadronic chargino/neutralino search [100] ATLAS 0-lepton search [101] ATLAS 0-lepton stop search [102] ATLAS 1-lepton stop search [103] ATLAS 2-lepton stop search [104] ATLAS stop search with Z/H final states [105] ATLAS 2-lepton chargino search [106] ATLAS 2-*b*-jet stop/sbottom search [107] ATLAS 3-b-jet Higgsino search [108] ATLAS 3-lepton chargino/neutralino search [109] ATLAS 4-lepton search [110] ATLAS leptons + jets search [111] ATLAS 1-photon GGM search [112] ATLAS 2-photon GGM search [113] ATLAS Z + photon search [114]CMS 0-lepton search [115] CMS 1-lepton + b-jets chargino/neutralino search [116] CMS 1-lepton stop search [117]CMS 2-lepton stop search [118] CMS 2 soft lepton search [119] CMS 2-lepton search [120] CMS 2-lepton chargino/stop search [121] CMS 2 same-sign lepton stop search [122]CMS multilepton chargino/neutralino search [123] CMS 1-photon GMSB search [124] CMS 2-photon GMSB search [125] CMS 1-photon + 1-lepton GMSB search [126]

Anders Kvellestad

59

Anders Kvellestad

60

- **Explore the model parameter space** ($\theta_1, \theta_2, \theta_3, ...$) •

• (but not necessarily a *good* fit, or the most probable θ ...)

• At every point θ : compute all predictions(θ) \rightarrow evaluate likelihood L(θ)

Region of highest L(θ) or InL(θ): model's best simultaneous fit to all data

Detailed model \rightarrow many parameters \rightarrow high-dimensional parameter space High-dimensional spaces are exponentially tricky to explore...

- For given sample density, the number of required samples increases exponentially •
 - 0.01 resolution for a 1D unit interval: 100 points
 - 0.01 resolution for a 10D unit cube: $100^{10} = 10^{20}$ points
- The volume of any interesting region decreases exponentially fast with D
- A uniformly sampled point is «always» near at least one of the walls…
- \cdot ...and it's also «always» the surface of a sphere with radius sqrt(D/3)
- Relative differences in distances between points vanish («loss of contrast») •

Detailed model \rightarrow many parameters \rightarrow high-dimensional parameter space

High-dime

- For give
 - 0.01 re
 - 0.01 re
- The volu
- A uniform
- ...and it'

Relative differences in distances between points vanish («loss of contrast») •

Detailed model \rightarrow many parameters \rightarrow high-dimensional parameter space High-dimensional spaces are exponentially tricky to explore...

- For given sample density, the number of required samples increases exponentially •
 - 0.01 resolution for a 1D unit interval: 100 points
 - 0.01 resolution for a 10D unit cube: $100^{10} = 10^{20}$ points
- The volume of any interesting region decreases exponentially fast with D
- A uniformly sampled point is «always» near at least one of the walls…
- \cdot ...and it's also «always» the surface of a sphere with radius sqrt(D/3)
- Relative differences in distances between points vanish («loss of contrast») •

Detailed model → I High-dimensional

- For given sample
 - 0.01 resolution for
 - 0.01 resolution fc
- The volume of ar
- A uniformly sample
- …and it's also «a
- Relative difference

Detailed model \rightarrow many parameters \rightarrow high-dimensional parameter space High-dimensional spaces are exponentially tricky to explore...

- For given sample density, the number of required samples increases exponentially •
 - 0.01 resolution for a 1D unit interval: 100 points
 - 0.01 resolution for a 10D unit cube: $100^{10} = 10^{20}$ points
- The volume of any interesting region decreases exponentially fast with D
- A uniformly sampled point is «always» near at least one of the walls…
- \cdot ...and it's also «always» the surface of a sphere with radius sqrt(D/3)
- Relative differences in distances between points vanish («loss of contrast») •

Consequence: Detailed physics models \rightarrow huge computational challenge

[large number of observables]

[long calculation time per observable per parameter point]

[huge number of points required to explore parameter space]

So we must:

- speed up our physics computations where we can
- pick our parameter samples wisely

maximise the usefulness of the CPU hours we spend

Parameter space exploration

Parameter space exploration

Models $\quad \longleftrightarrow \quad$

Backends

CaptnGeneral, DarkSUSY, DDCalc, FeynHiggs, FlexibleSUSY, gamLike, gm2calc, HEPLike, HiggsBounds, HiggsSignals, MicrOmegas, nulike, Pythia, SPheno, SUSYHD, SUSYHIT, SuperIso, Vevacious, MontePython, CLASS, AlterBBN, ...

GAM

