



# Summary of WP3

J. Pozimski



#### **Overview**



#### Status of WP3:

Milestones and Deliverables

**IDR** 

Costing





## **WP3 - Milestones**



| Milestone | month (from start) |
|-----------|--------------------|
|-----------|--------------------|

| Evaluation of baseline front-end                                    | 15 √ |
|---------------------------------------------------------------------|------|
| Evaluation of acceleration systems                                  | 18 √ |
| Evaluation of performance of alternative cooling and acceleration   | 24 √ |
| Specification of proton-beam handling system                        | 24   |
| - Report written and ready for submission                           |      |
| Benchmark costing for muon front-end and acceleration systems       | 30   |
| - work in progress                                                  |      |
| Initial health-and-safety evaluation of proton-beam handling system | 38   |
| - work in progress                                                  |      |
| Cost and Performance evaluation complete                            | 40   |
| Comparison of physics performance of all facilities                 | 43   |



#### WP3 - Deliverables



- Completed review of ionisation-cooling and muon front end 15 month 1

Completed review of muon acceleration 18 month

- Completed simulation of baseline and alternative ionisation-cooling channel, including a cost and performance analyses for reference muon front end.
  - 30 month work in progress, simulations complete
- Completed simulation of baseline and alternative muon acceleration system and the decay rings and evaluation of reference design for spent proton-beam handing system, including a cost and performance analyses.
  - 38 month
- 5 Complete end-to-end simulation and evaluation of the performance of the Neutrino Factory as input to the comparison
  - 42 month



### **Major achievements**



- Benchmarking Fluka results with Mars and comparison with HARP data
- Investigation of particle dynamics in the baseline muon front end lattice and investigation of the performance of alternative lattices
- Studies of power deposition in the target and pion capture area due to secondary radiation
- => trigger for significant change in design of target& capture area => revaluation of capture
- Studies of solid and liquidized power jet targets for mercury risk mitigation
- Detailed studies of fringe field effects in linac, benchmarking of Optima gainst MADX, GPT and G4beamline
- Modelling of accelerator components (cavities, solenoids, dipoles, quadrupoles and sextupoles), calculation of field maps and comparison with study 2a results
- Multi-particle simulations of the muon linac using field maps, comparison of gained results from various software packages with good agreement in transversal and longitudinal particle dynamics and particle loss pattern.
- Detailed studies of beam injection and extraction into the FFAG, first preliminary studies of kicker and septum design as well as kicker electronics.
  - => trigger for significant change in FFAG design.
- First studies of combined function FFAG magnets and particle tracking in fieldmaps
- Detailed studies of beam loading effects in the muon accelerator
- Test of data exchange between accelerator sections for the end to end simulations
- Studies of beam instrumentation in decay rings
  J. Pozimski EUROv WP3 status 18th March 2011



## **Publications** / **Presentations**



- .....talks at NUFACT, etc.....
- 2 EUROv Deliverables :
- C. Rogers and G. Prior, Review of the Neutrino Factory Muon Front End, Euronu Milestone Report, 2010.
- J. Pozimski, M. Aslaninejad, C. Bontoiu, J. Pasternak, D. Kelliher, H. Witte, Review of the Neutrino Factory Muon Accelerator, Eurov Milestone Report, 2010.
- .... many publications ....
- [1] D. Neuffer, et al., Muon Capture in the Front End of the IDS Neutrino Factory, Proceedings IPAC'10 conference 2010 Kyoto, Japan,
- [2] A. Alekou et al., Alternative Muon Front-end for the International Design Study (IDS)\_Proceedings IPAC'10 conference 2010 Kyoto, Japan,
- [3] A. Alekou et al., Muon Cooling Performance in Various Neutrino Factory Cooling Cell Configurations using G4MICE, Proceedings IPAC'10 conference 2010 Kyoto, Japan
- [4] M. Aslaninejad et al., Solenoid Fringe Field Effects for the Neutrino Factory Linac - MAD-X Investigation, Proceedings IPAC'10 conference 2010 Kyoto, Japan



#### **Publications**



- [5] C. Bontoiu et al. Beam Dynamics Studies for the First Muon Linac of the Neutrino Factory, Proceedings IPAC'10 conference 2010 Kyoto, Japan
- [6] J. Pasternak et al., Injection/Extraction System of the Muon FFAG for the Neutrino Factory, Proceedings IPAC'10 conference 2010 Kyoto, Japan
- [7] J. Pozimski et al., Investigation of Beam Loading Effects for the Neutrino Factory Muon Accelerator, Proceedings IPAC'10 conference 2010 Kyoto, Japan
- [8] M. Apollonio et al., Muon Polarimeter in a Neutrino Factory Decay Ring, Proceedings IPAC'10 conference 2010 Kyoto, Japan
- [9] G. P. "Skoro et al., Overview of Solid Target Studies for a Neutrino Factory, Proceedings IPAC'10 conference 2010 Kyoto, Japan
- [10] T. R. Edgecock et al., Tungsten Behavior at High Temperature and High Stress, Proceedings IPAC'10 conference 2010 Kyoto, Japan....

.....and the IDR..... but need to ensure that all is documented on web



#### IDR



#### Original Goals:

Complete design of Neutrinofactory accelerator complex

Produce cost estimate

Achieved:

Practically complete lattice design

Redesign of target area identified (new design now available)

Costing not ready for inclusion => increased effort since then



#### **Deliverable:**

# **Specification of proton-beam handling system**J. Back Warwick













## **Deliverable: Specification of proton-beam handling system**



| Region              | Normal          | 30 cm Hg jet    | No <u>B</u>     | No Hg jet       | No $\underline{B}$ & No Hg jet |
|---------------------|-----------------|-----------------|-----------------|-----------------|--------------------------------|
| SC1                 | $0.05 \pm 0.01$ | $0.04 \pm 0.01$ | $0.04 \pm 0.01$ | < 0.01          | < 0.01                         |
| SC2                 | $0.03 \pm 0.01$ | $0.04 \pm 0.01$ | $0.03 \pm 0.01$ | < 0.01          | < 0.01                         |
| SC3                 | $0.26 \pm 0.06$ | $0.28 \pm 0.06$ | $0.28 \pm 0.06$ | $0.22 \pm 0.05$ | $0.26 \pm 0.06$                |
| SC4                 | < 0.01          | < 0.01          | $0.35 \pm 0.06$ | $0.01 \pm 0.01$ | $1.1 \pm 0.1$                  |
| SC5                 | $0.07 \pm 0.01$ | $0.07 \pm 0.01$ | $3.3 \pm 0.3$   | $0.09 \pm 0.01$ | $9.2 \pm 1.0$                  |
| SC6 to SC10         | $0.08 \pm 0.01$ | $0.10 \pm 0.02$ | $0.47 \pm 0.08$ | $0.05 \pm 0.01$ | $1.0 \pm 0.1$                  |
| SC11 to SC19        | $0.07 \pm 0.01$ | $0.07 \pm 0.01$ | $0.02 \pm 0.01$ | $0.02 \pm 0.01$ | < 0.01                         |
| Shielding           | $2149 \pm 14$   | $2157\pm15$     | $2096 \pm 14$   | $2567 \pm 20$   | $1693 \pm 12$                  |
| Inner shield casing | $483 \pm 7$     | $487\pm7$       | $301 \pm 6$     | $627 \pm 9$     | $17\pm1$                       |
| Hg jet              | $319 \pm 5$     | $302 \pm 5$     | $183 \pm 3$     | _               | _                              |
| Hg pool             | $4.4 \pm 0.4$   | $5.7 \pm 0.5$   | $640 \pm 10$    | $13 \pm 1$      | $1835 \pm 12$                  |
| Cu magnets          | $405 \pm 7$     | $400 \pm 7$     | $329 \pm 6$     | $350 \pm 6$     | $4.0 \pm 0.5$                  |
| 4 mm Be window      | $2.1 \pm 0.2$   | $2.2 \pm 0.2$   | $0.02 \pm 0.01$ | $0.01 \pm 0.01$ | < 0.01                         |



# **IDR** delivers component list for costing



| beamline        | RF cavities |        | solenoids | dipoles | quads | sext |
|-----------------|-------------|--------|-----------|---------|-------|------|
|                 | 1-cell      | 2-cell |           |         |       |      |
| pre-accelerator | 6           | 62     | 25        |         |       |      |
| inj-chic l      |             |        |           | 8+3     | 16    | 3    |
| RLAI            |             |        |           |         |       |      |
| linac           |             | 24     |           |         | 26    |      |
| arc1            |             |        |           | 35      | 43    |      |
| arc2            |             |        |           | 49      | 57    | 8    |
| arc3            |             |        |           | 63      | 71    | 8    |
| ı arc4          |             |        |           | 77      | 85    | 8    |
| inj-chic II     |             |        |           | 8+3     | 16    | 3    |
| RLAII           |             |        |           |         |       |      |
| linac           |             | 80     |           |         | 42    |      |
| arc1            |             |        |           | 35      | 43    |      |
| arc2            |             |        |           | 49      | 57    | 8    |
| arc3            |             |        |           | 63      | 71    | 8    |
| arc4            |             |        |           | 77      | 85    | 8    |
| Lambertson      |             |        |           | 1       |       |      |



# Preparing engineering layout for costing



N. Bliss, STFC daresbury





## CERN costing tool now available Preparing the WBS for data



A. Kurup, Imperial





# **Summary**



- IDR nearly ready for publication
- Deliverables D5 & D6 submitted
- Good progress on all fields
- Goal of costing for IDR not yet reached.
- Risk mitigation and fall back options defined
- Next steps: Cost per element evaluation

Evaluation of capture rate

handling of secondaries in the decay

channel

Particle tracking (end to end)