

Collider Ring Parameters

C. Carli on behalf of many contributors

Accelerator Design Meeting, 25th September 2023

- Luminosity
- Collider Ring Parameters
- Not (yet) in List of Collider Parameters or in other Presentations

Luminosity

Luminosity per IP given by:
$$L = \frac{N^2}{4\pi \,\varepsilon_{ph}\beta^*} f_{hg} f_r \frac{\gamma \,T_{\mu}}{2T_{rev}}$$

for round muon beams and one bunch per beam and with

- f_r the complex repetition rate, N the number of muons in bunch
- $\varepsilon_{ph} = \varepsilon_n / \gamma$ the physical rms emittance with $\varepsilon_n = 27.5 \ \mu m$ the normalized rms emittance and γ the relativistic Lorentz factor
- β^* the Twiss betatron function at the IP, σ_z the rms bunch length
- $T_{\mu} \approx 2.2 \ \mu s$ the muon life-time at rest, T_{rev} the revolution time
- f_{hg} the "hourglass" luminosity reduction factor a function of σ_z/β^* (for short bunches $f_{hg}(\sigma_z \ll \beta^*) \approx 1$)
- Assumptions
 - Bunch length $\sigma_z = \varepsilon_L / (\gamma \sigma_\delta)$ expressed by geometric longitudinal rms emittance ε_L and rms relative momentum spread
 - $\beta^* = \sigma_z$ giving moderate luminosity loss due to hourglass effect $f_{hg} = 0.758$
 - Revolution time $T_{rev} = 2\pi \frac{\gamma E_{\mu}}{e c^2 \overline{B}}$ with $E_{\mu} = 105.658$ MeV the muon rest energy and \overline{B} the average bending field

→ gives luminosity per IP
$$L = \frac{e c^2 T_{\mu}}{16 \pi^2 E_{\mu}} \frac{f_r N^2 \gamma^2 \sigma_{\delta} \overline{B} f_{hg}}{\varepsilon_n \varepsilon_L}$$

Large (average bending) magnetic field helps

- Large longitudinal acceptance to operate with large rms momentum spread σ_{δ} => corresponds to small $\beta^* = \sigma_z$ - both a challenge for lattice design
- Consequence of assumption and optimizations made:
 - ♦ Bunch length σ_z and β^* decrease with energy
 - o Divergence at IP independent of energy!
 - Lattice design becomes more difficult for higher energies (higher beam rigidity, longer innertriolet, more chromatic effects ...)

Nominal 10 TeV com Collider Parameters

Parameter	Symbol	Value
Beam energy	Ε	5000 GeV
Relativistic Lorentz factor	γ	47 322
Circumference	С	$\approx 10\ 000\ { m m}$
Magnetic (average bending) field	\overline{B}	pprox 10.48 T
Repetition rate	f_r	5 Hz
Bunch intensity (one bunch per beam)	N_{μ}	$1.8 \cdot 10^{12}$
Beam power for both beams together	P_B	14.4 MW
Power from muon decays to W absorber	P_L	$\approx 5 \text{ MW}$
Power from decays to cold mass (40 mm W)		$\approx 5 \text{ W/m}$
Normalized transverse rms emittance	ε_n	27.5 μm
Physical transverse rms emittance	$arepsilon_{ph}$	0.581 nm
Long. geometric rms emittance $\gamma \sigma_z \sigma_\delta$	\mathcal{E}_L	77 mm
Rms relative momentum spread	$\sigma_{\delta} = \sigma_p / p$	$1 \cdot 10^{-3}$
Rms bunch length	σ_{z}	1.65 mm (≈ 5.5 ps)
Twiss betatron function at the IP	eta^*	1.65 mm
Rms beam size at IP	$\sigma_{\perp,IP}$	0.98 μm
Luminosity	L	$17.2 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
Beam-beam tune shift per IP		0.071 4

Not (yet?) in List of Collider Parameters or covered in other Presentations

- Details on optics as Twiss functions, (maximum) chromatic aberrations, working point
- Radial built in presentation on MDI
- Assumptions on maximum magnetic fields and gradients

•
$$\left(\frac{1}{\rho} + k\left(5\sqrt{\beta \varepsilon_{ph} + (\sigma_{\delta} D)^2} + d\right)\right) \frac{p}{q} \begin{cases} < 20 \text{ T for region close to IP} \\ < 16 \text{ T for other regions (arc)} \end{cases}$$

- Similar relation for sextupoles
- To be discussed and coordinated further (aperture in arc, maximum fields, mechanical stress management)
- Parameters relevant for neutrino radiation
 - Maximum equivalent dose at Earth's surface (10 μSv/year for site in Europe)
 - Computations (FLUKA results, analythical estimates and folding integrals ...)
 - Longitudinal magnetic field profile around interconnects (now hard edge model with 30 cm between magnets) – input from magnets working group required
 - Parameters for machine wobbling: 1 mrad amplitude (feasibility?)
 - Depth of tunnel
- Impedances
- Cryogenic system
- Vacuum system and needs