

RESULTS FROM THE TELESCOPE ARRAY

ISVH/ECRI20 Puerto Vallarta, México 8 -12 July 24

John Matthews - University of Utah Telescope Array Collaboration

8 July 2024

OUTLINE

- Introduction
- Main Topics in UHECR
 - Energy Spectrum and Features
 - Anisotropy and Sources
 - Chemical Composition
- Conclusions

TELESCOPE ARRAY: THE LARGEST COSMIC RAY OBSERVATORY IN THE NORTHERN HEMISPHERE

Telescope Array Delta, Utah, USA. ~ 39° N, 113° W 1400m a.s.l. Collaborators from HiRes, AGASA joined by other institutes

YOU ARE HERE Puerto Vallarta, MX

20° N, 105° W 15m a.s.l

3D

8 July 2024

cus U.S. Geological Sugrey 🗁 X 🗇 11 506 km 18*23*14*N 81*42:06*W 100%.

TELESCOPE ARRAY

Telescope Array Detectors Surface Detector Array (3/2008)

- 507 Scintillator Counters
- 3 m² area
- 1.2 km spacing
- ~700 km²

Fluorescence Telescopes (2007)

- 3 Stations
- 12–14 Telescopes ea
- 3°-31° elevation
- Above SD Array

Scintillator Detector

TELESCOPES

- Segmented mirrors
- 256 hexagonal PMTs/camera
- pixel views ~1° of sky
- UV band-pass filter

SCINTILLATOR SURFACE DETECTORS

- 2 layers scintillator
- 1.25 cm thick, 3m² area
- WS Optical fibers to PMTs

Scintillator Detectors on a 1.2 km square grid

- Power: Solar/Battery Readout: Radio
- Self-calibrated: µ

TELESCOPE ARRAY WITH AIRFLY YIELD & AUGER MISSING ENERGY

AROJECT PERMIT

- Before: difference between Telescope Array and Auger Spectra was ~9%, well within the uncertainty of either experiment
- After modifying Telescope Array to use AirFly fluorescence yield and Auger missing energy correction, agree ~1%, for E<10^19.5 eV

TA×4 SD ENERGY SPECTRUM

K. Fujisue

- The energy spectrum was measured by the TA×4 SD using data (3 years: Oct. 2019–Sep. 2022).
- Limited statistics in TAx4 SD start-up due to the absence of the intertower trigger system in this period.
- Consistent with the energy spectrum measured by the TA SD array.

FITTING BOTH SPECTRA IN THEIR FULL APERTURES: 8.0σ DIFFERENCE

TA SD (2022) $-15.7^{\circ} < \delta < 90^{\circ}$

Auger (PRD 2020) -90° < δ < 25°

DECLINATION DEPENDENCE IN THE TA SD SPECTRUM

- Differences in the cutoff energies
 log(E/eV)=19.84 ±0.02
 for higher declination (24.8°-90°)
 log(E/eV)=19.65 ±0.03
 for lower declination (-16°-24.8°)
 The local significance is 4.8σ.
- The global significance of the difference is estimated to be 4.4σ .
- No instrumental causes were found.

ANISOTROPY SIGNAL/EXCESS REGIONS IN TELESCOPE ARRAY DATA (14 YRS)

J.H.Kim

TA Hotspot E > 10^{19.75} eV 3.2σ post-trial (brightness not sustained recently)

Perseus-Pisces SC $E > 10^{19.4} eV$ 4.0σ local

FIGURE 4: SKY MAP IN EQUATORIAL COORDINATES

TA INSIDE/OUTSIDE HOTSPOT+PPSC

Telescope Array INSIDE the Excesses

Telescope Array OUTSIDE the Excesses

FITTING BOTH SPECTRA, TA -5° $\leq \delta < 24.8^{\circ}$ & EXCL. HOTSPOT + PPSC: **1.8** σ

EXTREMELY ENERGETIC COSMIC RAY OBSERVED BY TA

- 2021-05-27 10:35:56 UTC, No FD observation
- E = 244±29 EeV in the direction of (255.9°,16.1°) in the equatorial coordinates

COMPOSITION ANALYSIS WITH TA HYBRID XMAX

- Energy Range: $10^{18.2} \text{ eV} 10^{19.1} \text{ eV}$
- 3560 events after the quality cuts
- Systematic uncertainty of <Xmax>: ± 17 g/cm²
- QGSjetII-04 interaction model was compared with the data
 → agreement with light composition
- More events are needed to study highest energies
- Also working on more models

COMPOSITION

- TA SD composition: BDT analysis using 16 composition sensitive signals (12 years: 2008– 2020)
- Find light, unchanging composition above 1 EeV, with two different highenergy interaction models

TA×4 HYBRID 3 YEARS OF DATA (NOVEMBER 2020–DECEMBER 2023)

Z. Gerber, APS April 2024

- (X_{max}) values vs energy for ~3 years data
- Compared to QGSJET II-04 Monte Carlo simulation distributions
- Point to a composition that is light and unchanging $10^{18.6}$ to 10^{20} eV
- Consistent with previous TA and HiRes results

Ivan Kharuk, ICRC2023

Telescope Array SD UHE Photon Search

Neural network trained to classify protons and photons ۲

Telescope Array and Auger have searched for photons and neutrinos in their data and observed neither - setting limits

Observation and study of Terrestrial Gamma-Ray Flashes with Telescope Array SD

Rasha Abbasi, ICRC2023

SUMMARY – RESULTS FROM TELESCOPE ARRAY

Spectrum

- Spectrum measurements over >5 orders-of-magnitude in energy
- TA finds a significant difference in its own HE suppression above and below 25° declination (agreement with Auger in overlapping region) > 4σ
- > 8σ difference HE spectrum between TA and Auger in the full field of view
- Difference within common band can be reduced to 1.8σ by cutting excesses and exposure edge Anisotropy
- Hotspot persists, but significance not increasing very quickly
- New significant excess at slightly lower energy in conjunction with the Perseus-Pisces Supercluster
 Composition
- Appears Light and Steady for E> 10¹⁸ eV
- But a Sibyll generated/reconstructed Auger mix similar in sky

High Energy Event Observed

- High Energy event: 2.4x10²⁰ eV
- Approaching Fly's Eye (1991 OMG) particle energy: 3.2x10²⁰ eV
- Events > 10²⁰ eV appear isotropic.....

Future

• TAx4 to Improve statistics especially for Anisotropy and Composition measurements JNMatthews ISVHECRI 2024 PVR

Telescope Array Collaboration

R.U. Abbasi¹, Y. Abe², T. Abu-Zavyad^{1,3}, M. Allen³, E. Barcikowski³, J.W. Belz³ D.R. Bergman³, S.A. Blake³, I. Buckland³, W. Campbell³, B.G. Cheon⁴, M. Chikawa⁵ K. Endo⁶, A. Fedynitch^{5,7}, T. Fujii^{6,8}, K. Fujisue⁵, K. Fujita⁵, M. Fukushima⁵, G. Furlich⁴ Z. Gerber³, N. Globus^{*9}, W. Hanlon³, N. Hayashida¹⁰, H. He⁹, R. Hibi², K. Hibino¹⁰, R. Higuchi⁹, K. Honda¹¹, D. Ikeda¹⁰, N. Inoue¹², T. Ishii¹¹, H. Ito⁹, D. Ivanov³, H.M. Jeong¹³, S. Jeong¹³, C.C.H. Jui³, K. Kadota¹⁴, F. Kakimoto¹⁰, O. Kalashev¹⁵ K. Kasahara¹⁶, S. Kasami¹⁷, Y. Kawachi⁶, S. Kawakami⁶, K. Kawata⁵, I. Kharuk¹⁵ E. Kido⁹, H.B. Kim⁴, J.H. Kim³, J.H. Kim^{†3}, S.W. Kim¹³, Y. Kimura⁶, R. Kobo⁶. I. Komae⁶, K. Komori¹⁷, Y. Kusumori¹⁷, M. Kuznetsov^{15,18}, Y.J. Kwon¹⁹, K.H. Lee⁴ M.J. Lee¹³, B. Lubsandorzhiev¹⁵, J.P. Lundquist^{3,20}, T. Matsuvama⁶, J.A. Matthews³ J.N. Matthews³, R. Mavta⁶, K. Mivashita², K. Mizuno², M. Mori¹⁷, M. Murakami¹⁷, I. Myers³, S. Nagataki⁹, M. Nakahara⁶, K. Nakai⁶, T. Nakamura²¹, E. Nishio¹⁷, T. Nonaka⁵, S. Ogio⁵, H. Ohoka⁵, N. Okazaki⁵, Y. Oku¹⁷, T. Okuda²², Y. Omura⁶, M. Onishi⁵, M. Ono⁹, A. Oshima²³, H. Oshima⁵, S. Ozawa²⁴, I.H. Park¹³, K.Y. Park⁴ M. Potts³, M. Przybylak^{‡25}, M.S. Pshirkov^{15,26}, J. Remington³, D.C. Rodriguez³. C. Rott^{3,13}, G.I. Rubtsov¹⁵, D. Rvu²⁷, H. Sagawa⁵, R. Saito², N. Sakaki⁵, T. Sako⁵. S. Sakurai¹⁷, D. Sato², S. Sato¹⁷, K. Sekino⁵, P.D. Shah³, N. Shibata¹⁷, T. Shibata⁵ J. Shikita⁶, H. Shimodaira⁵, B.K. Shin²⁷, H.S. Shin^{6,8}, K. Shinozaki²⁵, D. Shinto¹⁷ J.D. Smith³, P. Sokolsky³, B.T. Stokes³, T.A. Stroman³, Y. Takagi¹⁷, K. Takahashi⁵ M. Takamura²⁸, M. Takeda⁵, R. Takeishi⁵, A. Taketa²⁹, M. Takita⁵, Y. Tameda¹⁷ K. Tanaka³⁰, M. Tanaka³¹, S.B. Thomas³, G.B. Thomson³, P. Tinyakov^{15,18}, I. Tkachev¹⁵ H. Tokuno³², T. Tomida², S. Troitsky¹⁵, Y. Tsunesada^{6,8}, S. Udo¹⁰, F. Urban³³. I.A. Vaiman¹⁵, M. Vrábel²⁵, D. Warren⁹, T. Wong³, K. Yamazaki²³, K. Yashiro²⁸, F. Yoshida¹⁷, Y. Zhezher^{5,15}, Z. Zundel³, and J. Zvirzdin³

¹Department of Physics, Loyola University Chicago, Chicago, Illinois 60660, USA ²Academic Assembly School of Science and Technology Institute of Engineering. Shinshu University, Nagano, Nagano 380-8554, Japan ³High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112-0830, USA ⁴Graduate School of Science, Osaka Metropolitan University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan ⁵Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul 426-791, Korea ^bInstitute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan ⁷Institute of Physics, Academia Sinica, Taipei City 115201, Taiwan ⁸Nambu Yoichiro Institute of Theoretical and Experimental Physics, Osaka Metropolitan University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan ⁹Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama 351-0198, Japan ¹⁰Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa 221-8686, Japan ¹¹Interdisciplinary Graduate School of Medicine and Engineering. University of Yamanashi, Kofu, Yamanashi 400-8511, Japan ¹² The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338-8570, Japan ¹³Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon 16419, Korea ¹⁴Department of Physics, Tokyo City University, Setagaya-ku, Tokyo 158-8557, Japan ¹⁵Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia ¹⁶ Faculty of Systems Engineering and Science, Shibaura Institute of Technology, Minato-ku, Tokyo 337-8570, Japan ¹⁷ Graduate School of Engineering, Osaka Electro-Communication University, Neyagawa-shi, Osaka 572-8530, Japan ¹⁸Department of Physics, Yonsei University, Seodaemun-gu, Seoul 120-749, Korea ¹⁹Center for Astrophysics and Cosmology, University of Nova Gorica, Nova Gorica 5297, Slovenia ²⁰Faculty of Science, Kochi University, Kochi, Kochi 780-8520, Japan ²¹ Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan ²²College of Science and Engineering, Chubu University, Kasugai, Aichi 487-8501, Japan ²³Quantum ICT Advanced Development Center, National Institute for Information and Communications Technology, Koganei, Tokyo 184-8795, Japan ²⁴Astrophysics Division, National Centre for Nuclear Research, Warsaw 02-093, Poland ²⁵Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow 119991, Russia ²⁶Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan 689-798, Korea ²⁷Department of Physics, Tokyo University of Science, Noda, Chiba 162-8601, Japan ²⁸Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo 277-8582, Japan ²⁹ Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima 731-3194, Japan ³⁰Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki 305-0801, Japan ³¹Service de Physique Théorique, Université Libre de Bruxelles, Brussels 1050, Belgium ³²Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan ³³CEICO, Institute of Physics, Czech Academy of Sciences, Prague 182 21, Czech Republic

148 members, 33 institutes, 7 countries

•FIN

