Soft OCD Review — with some emphasis on string models, LHC, and PYTHIA

Peter Skands — Monash University & University of Oxford

Australian Government Australian Research Council

Soft QCD — Theory Models

+ Unitarity & IR Regularisation

→ Multi-parton interactions (MPI)

+ Parton Showers & Hadronization Regulate $d\sigma$ at low $p_{T0} \sim few \text{ GeV}$ Screening/Saturation $\rightarrow \sqrt{s}$ -dependent p_{T0}

Total cross sections from Regge Theory (Donnachie-Landshoff + Parametrizations)

HERWIG, PYTHIA, SHERPA, SIBYLL

The Structure of an LHC pp Collision

Linear Confinement

On lattice, compute potential energy of a colour-singlet $q\bar{q}$ state, as function of the distance, R, between the q and \bar{q} :

$F(r) \approx \text{const} = \kappa \text{Line ar Vérm } = Model as strings (Lund Model)$

The string model provides a mapping:

- Quarks > String endpoints
- Gluons > Kinks on strings
- Further evolution then governed by string world sheet (area law)

+ string breaks by tunnelling

By analogy with "Schwinger mechanism" in QED (electronpositron pair production in strong electric field)

(Jets of) Hadrons!

String breaks by quark pair production

 \implies strangeness suppression

$$\propto \frac{\exp\left(\frac{-\pi m_s^2}{\kappa}\right)}{\exp\left(\frac{-\pi m_{u,d}^2}{\kappa}\right)}$$

Alternative: The Cluster Model — Used in HERWIG & SHERPA

In "unquenched" QCD $g \rightarrow q\bar{q} \implies$ The strings will "break" Non-perturbative so can't use $P_{g \rightarrow q\bar{q}}(z)$ Alternative: force $g \rightarrow q\bar{q}$ at end of shower "Clusters" Parton Hard Process' **Is**otropic 2-body decays to hadrons According to phase space e^+ e

6

Regard tension κ as an emergent quantity (not fundamental strings)

May depend on (invariant) time τ ?

E.g., hot strings which cool down [Hunt-Smith & PZS EPJ C 80 (2020) 11]

May depend on spatial coordinate σ ?

Work in progress with E. Carragher & J. March-Russell (Oxford).

May depend on environment? (e.g., other strings nearby) Two approaches (so far) within Lund string-model context: **Colour Ropes** [Bierlich et al. 2015] + several more recent **Close-Packing** [Fischer & Sjöstrand 2017] + Work in progress with L. Bernardinis & V. Zaccolo (Trieste)

The Environment — in Hadronic Collisions

In hadronic collisions, we are not hadronizing $a_{\underline{q}}^{\underline{p}}$ simple $q - \sigma_{\underline{q}} -$ Coloured initial states + gluon exchanges \implies more complicated colour flows **Also:** Protons are composite **One** proton = **beam** of partons + QCD 2 \rightarrow 2 scattering diverges at low p_T $\Rightarrow \sigma_{\text{parton-parton}}(\hat{p}_{\perp}) > \sigma_{\text{proton-proton}}$ Interpretation: $\frac{\sigma_{\text{parton-parton}}(\hat{p}_{\perp})}{\bar{p}_{\perp}} \sim \langle n \rangle_{\text{parton-parton}}(\hat{p}_{\perp})$ $\sigma_{hadron-hadron}$ (Regulated at low \hat{p}_{\perp} by IR cutoff ~ colour screening)

Multiple Parton-Parton Interactions (MPI) → Additional colour exchanges

 10^{3}

Sec

Section (agha)ted

Integrated Cross

α_s=0.130 NNPDF2.3LO α_=0.135 CTEQ6L1

↔ cut pomerons in Regge Theory

0.5

00

MPI & Confinement

MPI / cut pomerons \Rightarrow lots of coloured partons scattered into final state With significant overlaps in phase space Who gets confined with whom?

Each has a colour ambiguity $\sim 1/N_C^2 \sim 10\%$

E.g.: random triplet charge has 1/9 chance to be in **singlet** state with **random antitriplet**:

 $3 \otimes \overline{3} = 8 \oplus 1$

 $3 \otimes 8 = 15 + 6 + 3$, etc.

Many charges -> Colour Reconnections* (CR) more likely than not $n_{\rm MPI}$

Expect Prob(no CR)
$$\propto \left(1 - \frac{1}{N_C^2}\right)$$

*): in this context, QCD CR simply refers to an ambiguity beyond Leading N_c , known to exist. Note the term "CR" can also be used more broadly to incorporate further physics concepts.

\leftrightarrow related to coalescence models

299

"Parton Level" (Event structure before confinement)

What about Baryon Number?

Types of string topologies:

P. Skands

String Formation Beyond Leading Colour Christiansen & PS, 1505.01681

String Junctions at LHC ?

Stochastic sampling of SU(3) group probabilities (e.g., $3 \otimes 3 = 6 \oplus \overline{3}$)

New: String Junctions Revisited, Altmann & PS, 2404.12040

Non-Linear String Dynamics?

Count # of (oriented) flux lines crossing y = 0 in pp collisions at LHC

(accondimptos P(y=0, HA), And classify by SU(3) multiplet: Close-packing

→ Is "emergent tension" driving strangeness enhancement in pp?

Strange Junctions Colour Ropes (Bierlich et al.), 40 45 50 + Close-Packing: Altmann, Bernardinis, Jueid, PS, Zaccolo (in progress) LE

1 /

Work in Progress: Strangeness Enhancement from Close-Packing Enhancomo

Idea: each string exists in an effective background produced by the others

Close-packing $_{q=0}^{p=2}$ $C_6 = 2.5C_F$ p = 1q = 1 $C_8 = 2.25 C_F$

Dense string environments

P. Skands

Slide adapted from J. Altmann

Beyond Strings — QGP?

Currently most realistic complete approach for pp \leftrightarrow pA \leftrightarrow AA? The core-corona solution [Werner 2007]: mix discrete strings with continuous QGP

peripheral AA high mult pp low mult pp

core => hydro => statistical decay ($\mu = 0$) corona => string decay

Allows smooth transition between string and hydro descriptions. Implemented in **EPOS MC** Qualitatively agrees with ALICE strangeness data (but too steep rise with multiplicity?)

Thorny Issue 🔔 The **Proton-to-Pion** Ratio

hanism for diquark production

P. Skands

Slide adapted from J. Altmann

Forward Physics


```
Forward region important for
LHCf s=13TeV photon
 Cosmic-ray physics 81 \le 9, 49, 49, 49, 40^{-6}
   10^{-6}
 Also for FASER/...and
The Forward Physics Facility.
∛Vide spread of predictions;
∠no<sup>10</sup>generator perfect.
 PY6-THIA: \pi^0 too hard,
 n too soft.
 Ma_{2000}^{10^{-10}} require_{2000} proved_{4000}
                                         5000
                                                6000
 modelling of
    ●<sub>2</sub> beam remnant,
    • diffraction, and
    • c/100/\tau production 1000
                                        5000
                                                6000
                       Energy [GeV]
```

Improved Beam-Remnant Modelling & New Forward Tune in PYTHIA

[Fieg, Kling, Schulz, Sjöstrand, 2309.08604]

Some possible actions for harder baryons and softer mesons:

- Use QCDCR for better central baryon production. [Christiansen & PS, <u>1505.01681</u>]
- Make diquark remnant take more than twice quark ditto: (already default) helps some.
- In string diquark picture B and \overline{B} are nearest neighbours, but with popcorn allow intermediate meson: ... BMB... Thus leading diquark either BMM... or MBM.... New: forbid latter possibility (or only suppress it).
- Normal fragmentation function

$$f(z) \propto rac{1}{z} \left(1-z
ight)^{a} \exp\left(-rac{bm_{\perp}^{2}}{z}
ight) \,,$$

modified with separately tuned (*a* and) *b* for leading diquark. • Reduce primordial k_{\perp} in remnant for soft collisions.

$$z = rac{(E+p_z)_{
m hadron}}{(E+p_z)_{
m left~in~string}}$$

New Forward Results [Fieg, Kling, Schulz, Sjöstrand, <u>2309.08604]</u>

Slide adapted from T. Sjöstrand

18

A New Framework for Hadronic Collisions (\rightarrow Cosmic Rays)

Based on 2 articles by Marius Utheim & TS: "A Framework for Hadronic Rescattering in pp Collisions", Eur. Phys. J. C80 (2020) 907, arXiv:2005.05658 "Hadron Interactions for Arbitrary Energies and Species, with Applications to Cosmic Rays", Eur. Phys. J. C82 (2022) 21, arXiv:2108.03481

- Models arbitrary hadron-hadron collisions at low energies.
- Models arbitrary hadron-p/n collisions at any energy.
- Initialization slow, ~ 15 minutes, \star but thereafter works for any hadron-p/n at any energy, and * initialization data can be saved, so only need to do once. • The ANGANTYR nuclear geometry part used to extend to
- hadron-nucleus at any energy.
- Native C++ simplifies interfacing PYTHIA $8 \leftrightarrow \text{CORSIKA } 8$.
- So far limited comparisons with data.

Comparison to Other Models — 1

Maximilian Reininghaus, TS, M. Utheim, arXiv:2303:02792

Comparison to Other Models — 2

Slide adapted from T. Sjöstrand

P. Skands

Thank you

Extra Slides

Returning to Strings: the String Fragmentation Function

Schwinger \implies Gaussian p_{\perp} spectrum (transverse to string axis) & Prob(d:u:s) \approx 1:1:0.2 The meson M takes a fraction z of the quark momentum, Probability distribution in $z \in [0,1]$ parametrised by **Fragmentation Function**, $f(z, Q_{HAD}^2)$

Observation: All string breaks are **causally disconnected**

- Lorentz invariance \implies string breaks can be considered in any order. Imposes "left-right symmetry" on the **FF**
- \implies **FF** constrained to a form with **two free parameters**, *a* & *b*: constrained by fits to measured hadron spectra

$$x \frac{1}{z} (1-z)^{a} \exp \left(-\frac{b(m_{h}^{2}+p_{\perp h}^{2})}{\sum_{\substack{i=1\\ \text{Supresses}\\ \text{high-z}\\ \text{hadrons}}} \right)$$

(Note on the Length of Strings)

In Spacetime:

String tension \approx 1 GeV/fm \rightarrow a 50-GeV quark can travel 50 fm before all its kinetic energy is transformed to potential energy in the string. Then it must start moving the other way.

 $(\rightarrow$ "yo-yo" model of mesons. Note: string breaks \rightarrow several mesons)

The MC implementation is formulated in momentum space Lightcone momenta $p_{\pm} = E \pm p_z$ along string axis \rightarrow Rapidity (along string axis) and p_{\perp} transverse to it $y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) = \frac{1}{2} \ln \left(\frac{(E + p_z)^2}{E^2 - p_z^2} \right)$

Particle Production:

Scaling in $z \implies$ flat in rapidity (long. boost invariance) "Lightcone scaling"

 $\langle n_{\rm ch} \rangle \approx c_0 + c_1 \ln E_{\rm cm}$, ~ Poissonian multiplicity distribution

A Brief History of MPI (in PYTHIA)

1987 [Sjöstrand & van Zijl, Phys.Rev.D 36 (1987) 2019]

Cast MPI as Sudakov-style evolution equation

Analogous to $\sigma_{X+jet}(p_{\perp})/\sigma_X$ for parton showers

$$\frac{dP_{hardest}}{d^2b dx_{T1}} = p(x_{T1}, b) \exp\{-\int_{x_{T1}}^{1} p(x_{T}, b) dx_{T}^*\}$$

$$p(x_{T1}, b) dx_{T1}^*$$

$$p(x_{T1}, b) dx_{T1}^*$$

with Impact-parameter dependence

Crucial to describe "Underlying Event"

a.k.a. "Jet Pedestal": hard jets are accompanied by — and sit on top of — higher-than average particle densities (compared with the average = minimum-bias pp collision)

Interleaved Evolution in PYTHIA

How many MPI are there?

Example for pp collisions at 13 TeV — PYTHIA's default MPI model

Averaged over all pp impact parameters (Really: averaged over all pp overlap enhancement factors)

13000 GeV ---- ND --**→**-- UE (p̂_{_}=20) -·· •• - Z CIAROO 20 n_{MPI}

*note: can be arbitrarily soft

Collective Flow in PYTHIA: String Shoving

 $(\Delta \phi)$

Bierlich, Chakraborty, Gustafson, Lönnblad, arXiv:1710.09725, 2010.07595

 $90 \le N < 110$

Strings should push each other transversely Colour-electric fields -> Classical force

Model string radial shape & shoving physics

$$\Rightarrow \text{force} \quad f(d_{\perp}) = \frac{g\kappa d_{\perp}}{R^2} \exp\left(-\frac{d_{\perp}^2}{4R^2}\right)$$

g: fraction of energy in chromo-electric field (as opposed to in condensate or magnetic flux)

 d_{\perp} : transverse distance (in string-string "shoving frame")

R: string radius

 κ : string tension ~ 1 GeV/fm

What a strange world we live in, said Alice

We know ratios of strange hadrons to pions strongly increase with event activity Landmark measurement by ALICE (2017)

TOPOLOGICAL PHOTONICS Optical Weyl points and Fermi arcs

Confront with Measurements

LHC experiments report very large (factor-10) enhancements in heavyflavour baryon-to-meson ratios at low p_T!

lunabions

Confront with Measurements: Strangeness

P 32

