Soft OCD Review - with some emphasis on string models, LHC, and PYTHIA

Peter Skands - Monash University \& University of Oxford

Soft QCD — Theory Models

A

Regge Theory

(a)

(b)

Optical Theorem

+ Eikonal multi-Pomeron exchanges

$$
\sigma_{\text {tot,inel }} \propto S^{\varepsilon} \text { or } \log ^{2}(s)
$$

Cut Pomerons \rightarrow Flux Tubes (strings)
Uncut Pomerons \rightarrow Elastic (\& eikonalization)
Cuts unify treatment of all soft processes
$E L, S D, D D, \ldots, N D$
Perturbative contributions added above Q_{0}

B

pOCD-Based

+ Unitarity \& IR Regularisation
\rightarrow Multi-parton interactions (MPI)
+ Parton Showers \& Hadronization
Regulate $\mathrm{d} \sigma$ at low рто \sim few GeV
Screening/Saturation $\rightarrow \sqrt{s}$-dependent $\mathrm{p}_{\text {то }}$
Total cross sections from Regge Theory
(Donnachie-Landshoff + Parametrizations)

The Structure of an LHC pp Collision

Linear Confinement

On lattice, compute potential energy of a colour-singlet $q \bar{q}$ state, as function of the distance, R, between the q and \bar{q} :

Linear Term $=$ Model as strings (Lund Model)

String Fragmentation in One Slide

The string model provides a mapping:

Quarks > String endpoints
Gluons > Kinks on strings
Further evolution then governed by string world sheet (area law)

+ string breaks by tunnelling
By analogy with "Schwinger mechanism" in QED (electronpositron pair production in strong electric field)
> (Jets of) Hadrons!

String breaks by quark pair production
\Longrightarrow strangeness suppression

$$
\propto \frac{\exp \left(\frac{-\pi m_{s}^{2}}{\kappa}\right)}{\exp \left(\frac{-\pi m_{u, d}^{2}}{\kappa}\right)}
$$

Alternative: The Cluster Model — Used in HERWIG \& SHERPA

In "unquenched" QCD

$g \rightarrow q \bar{q} \Longrightarrow$ The strings will "break"
Non-perturbative so can't use $P_{g \rightarrow q \bar{q}}(z)$
Alternative: force $g \rightarrow q \bar{q}$ at end of shower

New Directions in String Fragmentation

Regard tension κ as an emergent quantity

Cyclonic and Anticyclonic Winds

May depend on spatial coordinate σ ?
Work in progress with E. Carragher \& J. March-Russell (Oxford).
May depend on environment? (e.g., other strings nearby)
Two approaches (so far) within Lund string-model context:
Colour Ropes [Bierlich et al. 2015] + several more recent
Close-Packing [Fischer \& Sjöstrand 2017] + Work in progress with L. Bernardinis \& V. Zaccolo (Trieste)

The Environment — in Hadronic Collisions

In hadronic collisions, we are not hadronizing a simple $q-g-\ldots-g-\bar{q}$ string
Coloured initial states + gluon exchanges
\Longrightarrow more complicated colour flows
Also: Protons are composite
One proton = beam of partons

+ QCD $2 \rightarrow 2$ scattering diverges at low PT
$\Longrightarrow \sigma_{\text {parton-parton }}\left(\hat{p}_{\perp}\right)>\sigma_{\text {proton-proton }}$
Interpretation: $\frac{\sigma_{\text {parton-parton }}\left(\hat{p}_{\perp}\right)}{\sigma_{\text {hadron-hadron }}} \sim\langle n\rangle_{\text {parton-parton }}\left(\hat{p}_{\perp}\right)$
(Regulated at low \hat{p}_{\perp} by IR cutoff \sim colour screening)
Multiple Parton-Parton Interactions (MPI)
\rightarrow Additional colour exchanges

MPI \& Confinement

MPI / cut pomerons \Rightarrow lots of coloured partons scattered into final state

With significant overlaps in phase space Who gets confined with whom?

Each has a colour ambiguity $\sim 1 / N_{C}^{2} \sim 10 \%$

E.g.: random triplet charge has $1 / 9$ chance to be in singlet state with random antitriplet:

$$
\begin{aligned}
& 3 \otimes \overline{3}=8 \oplus 1 \\
& 3 \otimes 8=15+6+3, \text { etc. }
\end{aligned}
$$

Many charges \rightarrow Colour Reconnections* (CR) more likely than not

$$
\text { Expect Prob(no CR) } \propto\left(1-\frac{1}{N_{C}^{2}}\right)^{n_{\mathrm{MPI}}}
$$

\leftrightarrow related to coalescence models

> "Parton Level"
(Event structure before confinement)

What about Baryon Number?

Types of string topologies:

Open Strings

$(3 \otimes \overline{3})_{\text {singlet }}=\frac{1}{9}$

SU(3) String Junction

Closed Strings

$(8 \otimes \overline{8})_{\text {singlet }}=\frac{1}{64}$

$(3 \otimes 3 \otimes 3)_{\text {singlet }}=\frac{1}{27}$
Could we get these at LHC?

Stochastic sampling of $\operatorname{SU}(3)$ group probabilities (e.g., $3 \otimes 3=6 \oplus \overline{3}$)

\Longrightarrow Random (re)connections in colour space (weighted by group weights)
"QCD Colour Reconnections"

Example of possible colour configuration
正 Choose this string configuration instead if "string length" ~ total potential energy is lower

New source of baryon-

[^0]ALICE 2021

Non-Linear String Dynamics?

Count \# of (oriented) flux lines crossing $y=0$ in pp collisions at LHC (according to PYTHIA) - And classify by SU(3) multiplet:

Confining fields may be reaching higher effective representations than simple $q \bar{q}$ (3) ones.
E.g.: 27

\rightarrow Is "emergent tension" driving strangeness enhancement in pp?

Colour Ropes (Bierlich et al.),

+ Close-Packing: Altmann, Bernardinis,
Jueid, PS, Zaccolo (in progress)

Work in Progress: Strangeness Enhancement from Close-Packing

Idea: each string exists in an effective background produced by the others

Close-packing

Dense string environments
\rightarrow Casimir scaling of effective string tension
\rightarrow Higher probability of strange quarks

Strange Junctions

String breaks VS.

String tension could be different from the vacuum case compared to near a junction
Altmann, Bernardinis, Jueid, PS, Zaccolo (in progress)

\leftrightarrow Impact on EAS muon rates?

Beyond Strings — QGP?

Currently most realistic complete approach for $\mathrm{pp} \leftrightarrow \mathrm{pA} \leftrightarrow \mathrm{AA}$?

The core-corona solution [Werner 2007]: mix discrete strings with continuous QGP

Allows smooth transition between string and hydro descriptions. Implemented in EPOS MC Qualitatively agrees with ALICE strangeness data (but too steep rise with multiplicity?)

Thorny Issue ! The Proton-to-Pion Ratio

Note:

Observed p / π in pp collisions at LHC is lower than in $e^{+} e^{-}$ones (LEP).

I think this is now the main challenge for strangeness-enhancement models

Interactions?
Upscattering/Annihilation?
Octet vs Triplet fragmentation?...?

Forward region important for cosmic-ray physics \Rightarrow LHCf.

Also for FASER/. . . and the Forward Physics Facility.

Wide spread of predictions; no generator perfect. PYTHIA: π^{0} too hard, n too soft.

May require improved modelling of

- beam remnant,
- diffraction, and
- $\mathrm{c} / \mathrm{b} / \tau$ production.

Some possible actions for harder baryons and softer mesons:

- Use QCDCR for better central baryon production. [Christiansen \& PS, 1505.01681]
- Make diquark remnant take more than twice quark ditto: (already default) helps some.
- In string diquark picture B and $\overline{\mathrm{B}}$ are nearest neighbours, but with popcorn allow intermediate meson: ... BM $\overline{\mathrm{B}} \ldots$ Thus leading diquark either BMM . . . or MBM.... New: forbid latter possibility (or only suppress it).

- Normal fragmentation function

$$
f(z) \propto \frac{1}{z}(1-z)^{a} \exp \left(-\frac{b m_{\perp}^{2}}{z}\right), \quad z=\frac{\left(E+p_{z}\right)_{\text {hadron }}}{\left(E+p_{z}\right)_{\text {left in string }}}
$$

modified with separately tuned (a and) b for leading diquark.

- Reduce primordial k_{\perp} in remnant for soft collisions.

A New Framework for Hadronic Collisions (\rightarrow Cosmic Rays)

Based on 2 articles by Marius Utheim \& TS: "A Framework for Hadronic Rescattering in pp Collisions", Eur. Phys. J. C80 (2020) 907, arXiv:2005.05658 "Hadron Interactions for Arbitrary Energies and Species, with Applications to Cosmic Rays", Eur. Phys. J. C82 (2022) 21, arXiv:2108. 03481

- Models arbitrary hadron-hadron collisions at low energies.
- Models arbitrary hadron-p/n collisions at any energy.
- Initialization slow, ~ 15 minutes, * but thereafter works for any hadron-p/n at any energy, and \star initialization data can be saved, so only need to do once.
- The Angantyr nuclear geometry part used to extend to hadron-nucleus at any energy.
- Native C++ simplifies interfacing Pythia $8 \leftrightarrow$ Corsika 8 .
- So far limited comparisons with data.

Comparison to Other Models -

Maximilian Reininghaus, TS, M. Utheim, arXiv:2303:02792

Additive quark rule $\sigma_{\pi \mathrm{p}} \approx(2 / 3) \sigma_{\mathrm{pp}}$ at high energies.
Simple extension to pA: $\sigma_{h \mathrm{~A}}=\frac{A}{\left\langle n_{\text {coll }}\right\rangle} \sigma_{h \mathrm{p}} \quad$ where $\left\langle n_{\text {coll }}\right\rangle$ comes from Angantyr

Comparison to Other Models — 2

Hadronic
cascades quite different

EM cascades quickly decouple from hadronic ones

Some Further PYTHIA aspects:

Includes charm and bottom (and jets)
Native C++ \rightarrow multithreading
Users can do tunings themselves
\rightarrow study air-shower / accelerator interplay

Thank you

Extra Slides

Returning to Strings: the String Fragmentation Function

Schwinger \Longrightarrow Gaussian p_{\perp} spectrum (transverse to string axis) \& Prob(d:u:s) $\approx 1: 1: 0.2$
The meson M takes a fraction z of the quark momentum, Probability distribution in $z \in[0,1]$ parametrised by Fragmentation Function, $f\left(z, Q_{\mathrm{HAD}}^{2}\right)$

(Note on the Length of Strings)

In Spacetime:

String tension $\approx 1 \mathrm{GeV} / \mathrm{fm} \rightarrow$ a $50-\mathrm{GeV}$ quark can travel 50 fm before all its kinetic energy is transformed to potential energy in the string. Then it must start moving the other way. (\rightarrow "yo-yo" model of mesons. Note: string breaks \rightarrow several mesons)

The MC implementation is formulated in momentum space

Lightcone momenta $p_{ \pm}=E \pm p_{z}$ along string axis
\rightarrow Rapidity (along string axis) and p_{\perp} transverse to it

If the quark gives all its energy to a single pion traveling along the z axis

$$
y=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right)=\frac{1}{2} \ln \left(\frac{\left(E+p_{z}\right)^{2}}{E^{2}-p_{z}^{2}}\right) \quad \rightarrow \quad y_{\max } \sim \ln \left(\frac{2 E_{q}}{m_{\pi}}\right) \underset{\substack{\text { Increasing } E_{q} \rightarrow \text { logarithmic } \\ \text { growth in rapidity range }}}{\substack{\text { and }}}
$$

Particle Production:

Scaling in $z \Longrightarrow$ flat in rapidity (long. boost invariance)

"Lightcone scaling"

$$
\left\langle n_{\mathrm{ch}}\right\rangle \approx c_{0}+c_{1} \ln E_{\mathrm{cm}}, \sim \text { Poissonian multiplicity distribution }
$$

A Brief History of MPI (in PYTHIA)

1987 [Sjöstrand \& van Zijl, Phys.Rev.D 36 (1987) 2019]

Cast MPI as Sudakov-style evolution equation Analogous to $\sigma_{\mathrm{X}+\mathrm{jet}}\left(p_{\perp}\right) / \sigma_{\mathrm{X}}$ for parton showers
$\frac{d P_{\text {hardest }}}{d^{2} b d x_{T 1}}=p\left(x_{T 1}, b\right) \exp \left\{-\int_{x_{T 1}}^{1} p\left(x_{T}^{\prime}, b\right) d x_{T}^{\prime}\right\}$
$\mathrm{p} \propto \sigma_{2 \rightarrow 2}\left(x_{T}, b\right) / \sigma_{p p} \quad ; \quad x_{T}=2 \hat{p}_{\perp} / \sqrt{s}$
with Impact-parameter dependence

b
Crucial to describe "Underlying Event"
a.k.a. "Jet Pedestal": hard jets are accompanied by — and sit on top of - higher-than average particle densities
"Outside the [jet], a constant E_{T} plateau is observed, whose height is independent of the jet E_{T}. Its value is substantially higher than the one observed for minimum bias events." (compared with the average $=$ minimum-bias pp collision)

Interleaved Evolution in PYTHIA

Interleaved Evolution

2005
[Sjöstrand \& PS, Eur.Phys.J.C 39 (2005) 129] Interleave MPI \& ISR evolutions in one common sequence of p T
\rightarrow ISR \& MPI "compete" for the available x in the proton remnant.

2011 [Corke \& Sjöstrand. JHEP 03 (2011) 3 32] Also include FSR in interleaving

Example for pp collisions at 13 TeV — PYTHIA's default MPI model

*note: can be arbitrarily soft

Strings should push each other transversely

 Colour-electric fields \rightarrow Classical forceModel string radial shape \& shoving physics
\Longrightarrow force $f\left(d_{\perp}\right)=\frac{g \kappa d_{\perp}}{R^{2}} \exp \left(-\frac{d_{\perp}^{2}}{4 R^{2}}\right)$

g : fraction of energy in chromo-electric field (as opposed to in condensate or magnetic flux)
d_{\perp} : transverse distance (in string-string "shoving frame")
R : string radius
κ : string tension $\sim 1 \mathrm{GeV} / \mathrm{fm}$

What a strange world we live in, said Alice

We know ratios of strange hadrons to pions strongly increase with event activity Landmark measurement by ALICE (2017)

What could be driving this?

Confront with Measurements

LHC experiments report very large (factor-10) enhancements in heavy-

 flavour baryon-to-meson ratios at low p_{T} !

Confront with Measurements: Strangeness

What about Strange heavy-flavour baryons?

String Formation Beyond Leading Colour, Christiansen \& PZS, 1505.01681

New: String Junctions Revisited, Altmann \& PZS, 2404.12040

Also: baryon asymmetry diluted by extra baryon pairs

[^0]: Illustration by J. Altmann

