ALAN WA TRUE WALLAND

Probing Astroparticle and Particle Physics at the Pierre Auger Observatory: highlights and perspectives

> Antonella Castellina INAF, Osservatorio Astrofisico di Torino INFN, Sezione di Torino, Italy

The Pierre Auger Observatory

Pampa Amarilla (Malargüe, Argentina 17 Countries >400 members

✓ 1661 Water-Cherenkov stations

- ✓ SD1500 : 1600, 1.5 km grid;
- ✓ SD750: 61, 750 m grid

BRAZIL

KHAD .

✓ SD433: 19, 433 m grid

✓ 4 Fluorescence sites

- ✓ 24 telescopes, 1-30° FoV
- ✓ 3 High Elevation Telescopes, 30-60⁰ FoV

✓ Engineering arrays

- ✓ AERA: 153 radio antennas
- UMD: 24 underground muon detectors

Geolocalization: (-69.0° longitude, -35.4° latitude)

A.Castellina

AugerPrime: exploiting the richness of extensive air showers

Phase 1 : data taking from 2004 to end of 2021 ✓ Over 120, 000 km² sr yr for anisotropy studies ✓ Over 90, 000 km² sr yr for spectrum studies

...2022-2024 transition period (commissioning) to AugerPrime

Phase 2 - the AugerPrime upgrade Data taking from 2025 to >2035...

✓ + 40, 000 km² sr yr Multi-hybrid events : FD, SD, SSD, RD, UMD

More insight in the mass composition + increased statistics

Measure of the longitudinal development of the extensive air showers (EAS) while crossing the atmosphere Fluorescence telescopes

Discrimination between the electromagnetic and muonic components of the EAS -Water Cherenkov Stations and Scintillators Larger dynamic range to measure high particle densities cloxer to the core

Measure of the radio emission of EAS - Radio antennas

Direct measure of the muonic component Underground detectors

performing hybrid measurements and applying new analysis techniques

*	Event ID:	1726574472	00
	Date: Time:	23 Sep 2017 10:41:11	
	Reconstruction:	SD 51500	~
	Theta: Phi:	35.78° 238.31°	

The UHECR energy spectrum

Largest available exposure, >80,000 km² sr yr, >920,000 events A measure completely independent of any assumptions on the primary mass It provides constraints on source properties, injected masses, interactions/escape

ISVHECRI, July 8, 2024

Auger Coll., Phys.Rev.D102 (2020) 062005 Auger Coll., Phys.Rev.Lett. 125 (2020) 121106 Auger Coll., Eur. Phys. J. C 81 (2021) 966 V.Novotny, PoS(ICRC2021) 324 A.Brichetto, PoS(ICRC2023) 398

The UHECR mass composition

The $\langle X_{max} \rangle$ gets lighter up to $\sim 2 \ 10^{18} \text{ eV}$ and heavier above this energy The σ (X_{max}) at the highest energy — excludes a large fraction of protons (DNN and FD)

The radio measurement provides an independent confirmation

Interpretation in terms of A relies on LHC-tuned hadronic interaction models

Measurement from the

- Iongitudinal profile (FD, ~15% Duty Cycle)
- temporal and lateral distributions (SD, ~100% DC)
- radio footprint (RD, ~100% DC)

$$\langle X_{max} \rangle = \langle X_{max} \rangle_p + f_E \langle lnA \rangle$$

 $\sigma^2(X_{max}) = \langle \sigma_{sh}^2 \rangle + f_E \sigma^2(lnA)$

- excludes the GZK as the dominant cause of the spectral cutoff

E.Mayotte, PoS(ICRC2023) 365 and refs.therein

Changes in the elongation rate (SD+DNN)

Elongation rate in agreement with that found with FD Clear evidence of a structure in ER, best described with a three-break model: constant ER rejected at $4.4\sigma \longrightarrow incompatible with pure composition$

kinks resembling the spectrum features

in agreement with those predicted by a simplified astrophysical model

parameter	3-break model	energy spe
$\mathrm{val}\pm\sigma_{\mathrm{stat}}\pm\sigma_{\mathrm{sys}}$	val $\pm \sigma_{stat} \pm \sigma_{sys}$	val $\pm \sigma_{\rm stat}$
$b / g cm^{-2}$	$750.5 \pm 3 \pm 13$	
D_0 / g cm ⁻² decade ⁻¹	$12\pm5\pm6$	
E_1 / EeV	$6.5 \pm 0.6 \pm 1$	4.9 ± 0.1
D_1 / g cm ⁻² decade ⁻¹	$39\pm5\pm14$	
E_2 / EeV	$11\pm2\pm1$	14 ± 1
D_2 / g cm ⁻² decade ⁻¹	$16\pm3\pm6$	
E_3 / EeV	$31\pm5\pm3$	47 ± 3
D_3 / g cm ⁻² decade ⁻¹	$42\pm9\pm12$	

Auger Coll., arXiv:2406.06315, arXiv:2406.06319, subm.PRD+PRL

A.Castellina

Diffuse fluxes of neutrinos and photons

- No candidates found; best available limits across 4 decades of energy
- Closing the gap to lower energies

Auger Coll., JCAP 05 (2023) 021; arXiv:2406.07439 subm. to PRD; Auger Coll., ApJ 933 (2022) 125; PoS(ICRC2023) 444

A.Castellina

ISVHECRI, July 8, 2024

Aperture comparable to that of IceCube if source direction is favourable

Auger Coll., JCAP 10 (2019) 022 EPJ Web.Conf.283 (2023) 04003

Astrophysical interpretation (energy spectrum+mass composition)

Basic scenario:

- 2 populations of EG identical sources, uniformly distributed
- power law injected energy spectrum + rigidity cutoff
- propagation only (no in-source interactions considered)

Best fit evolution of sources: LE population m=3, HE population m=0

Luminosity density ~ 6 x 10⁴⁴ erg Mpc⁻³ yr⁻¹ by continuously emitting sources to supply UHECR above the ankle

A.Castellina

Best description of the observed energy spectrum and composition at Earth:

1/ a hard HE component with low rigidity cutoff 2/ a soft LE component with unconstrained rigidity cutoff 3/ a (possible) additional component

Ankle ~ 5 EeV:

Interplay between the two popolations

Instep ~ 10 EeV:

interplay between He and CNO primary masses

+ absence of cosmogenic ν and γ

+ low cutoff

Indication for a suppression mainly due to exhaustion of the sources

> Similar conclusion from more refined models (in-source+propagation)

Astrophysical interpretation - the magnetic horizon effect

EG magnetic fields between Earth and the closest sources can affect the observed spectrum, reducing the low-rigidity particle flux

Large scale anisotropy: interpretation

Complex interplay of

- Mass composition
- Source distributions
- Magnetic fields deflections

The observed anisotropy and its evolution with energy is well described as a signature of the local large scale distribution of matter

Not consistent with pure protons >8 EeV: require mixed composition (unless dipole not due to LSS)

C.Ding et al., ApJ 913 (2021) L13

Assuming equally luminous sources from 2MASS, two different source densities + model for HE component from our best fit of composition

— consistency with data

- some tension with small quadrupole amplitudes Auger Coll., subm.ApJ

The UHE sky from Auger

1/ all sky search for overdensities: scan in energy and in top-hat radius Centaurus region: 4.0 σ significance at E_{thr}=38 EeV at ψ =27⁰ (165000±15000) km² sr yr would allow us to reach 5 σ

2/ catalog-based search

Analysis: unbinned maximum-likelihood analysis vs isotropy Sky model: $[\alpha \times \text{sources} + (1-\alpha) \times \text{isotropic}] \otimes \text{Fisher}(\theta)$

Catalog	$E_{\rm th}$ [EeV]	Ψ[°]	α [%]	TS	Post-trial <i>p</i> -value
All galaxies (IR)	38	24^{+15}_{-8}	14^{+8}_{-6}	18.5	$6.3 \times 10^{-4} \rightarrow 3.2c$
Starbursts (radio)	38	25_{-7}^{+13}	9^{+7}_{-4}	23.4	6.6 × 10 ^{−5} → 3.8 0
All AGNs (X-rays)	38	25^{+12}_{-7}	7^{+4}_{-3}	20.5	$2.5 \times 10^{-4} \rightarrow 3.5c$
Jetted AGNs (γ -rays)	38	23^{+8}_{-7}	6^{+3}_{-3}	19.2	$4.6 \times 10^{-4} \rightarrow 3.3c$

All models capture an overdensity in Centaurus region (CenA, NGC4945, M83)

The SBG model points to a milder excess close to NGC253

Astrophysical interpretation

(energy spectrum+mass composition+arrival directions)

- Data well described by a model with f ~ 20% from SBGs and δ ~20⁰ at 40 EeV, N-dominated hard injection spectrum
- Significance of SBG model ~4.5 σ , contribution of Centaurus A dominant (~80%)
- **X-AGN sources disfavoured** (not possible when considering only energy and mass composition)

	Cen A	A, $m = 0.0$	Cen A	m, m = 3.4	$\mathbf{SBG},$	m = 3.4	$\gamma \mathrm{AGN}_{\mathrm{s}}$	m = 5.0
		+ syst		+ syst		+ syst		+ syst
	22.8	17.3	22.2	19.1	27.6	25.6	23.9, <mark>ª</mark>	9.8, <mark>ª</mark>
	-0.1	-1.4	-0.4	-1.1	-5.2	-4.5	26.8	3.9
x	1.9	0.2	1.8	1.0	6.2	2.0	-0.8	6.4
	20.9	18.7	20.8	19.0	26.6	27.1	-2.1	-3.0

Auger Coll., JCAP 01 (2024) 022

Differences between Northern and Sourthern sky?

 \Box confirmation of the Centaurus region as most significant excess (4.0 σ post-trial), extended to lower energies (20 EeV) In the second dependence of the UHECR energy spectrum is due to the presence of excesses in particular regions of the Northern sky

Testing the predictions of hadronic models

A.Castellina

Energy/EeV	$\theta/^{\circ}$	Epos-LHC	QGSJet-II-04	SIBYLL
~ 3 to 50	0 to 80		X	(2.
$3 \text{ to } 10 \sim 10$	0 to 60 ~ 67	×	×	(2. X
0.2 to 2	0 to 45	×	×	
4 to 40 20 to 70	~67 ~60	x		
~10	0 to 60	X	×	

Observable	Δ models	Δ (p-Fe)
<x<sub>max></x<sub>	~30 g cm ⁻²	~100 g cm ⁻²
σ(X _{max})	~5 g cm ⁻²	~40 g cm ⁻²
S(1000)	~3 VEM	~6 VEM

The muon puzzle

The muon puzzle

Inclined events (>65⁰)

The muon deficit in simulations is confirmed

Most likely scenario: accumulation of small deviations along the generations

A.Castellina

Auger Coll., PRD91 (2015) 032003+059901 Auger Coll., PRL 126 (2021) 152002

On the contrary, post-LHC models describe well the fluctuations of energy partition in the first interaction up to UHE

(~70% of which are due to the first interaction)

$$\left(\frac{\sigma(N_{\mu})}{N_{\mu}}\right)^{2} \simeq \left(\frac{\sigma(\alpha_{1})}{\alpha_{1}}\right)^{2} + \left(\frac{\sigma(\alpha_{2})}{\alpha_{2}}\right)^{2} + \ldots + \left(\frac{\sigma(\alpha_{c})}{\alpha_{c}}\right)^{2}$$

ISVHECRI, July 8, 2024

 $\mathbf{2}$

Testing the predictions of hadronic models

Global fit of the observed $[X_{max}, S_{1000}]$ distributions with templates of free mass composition and different hadronic interaction models

Combined fit of the $[X_{max}, S_{1000}]$ distributions without any adjustments

Combined fit of the $[X_{max}, S_{1000}]$ distributions with angular dependent muon rescaling $R_{had}(\vartheta)$

largest improvement

Combined fit of the $[X_{max}, S_{1000}]$ distributions with angular dependent muon rescaling $R_{had}(\vartheta)$ and shift of X_{max}

further improvement -> heavier composition

A.Castellina

ad-hoc adjustments

 $X_{max} \rightarrow X_{max} + \Delta X_{max}$ $S_{Had}(\theta) \rightarrow S_{Had}(\theta) \cdot R_{Had}(\theta)$

Best description of data if models modified such that : X_{max} deeper by 20-50 g cm⁻² S_{had} increased by 15-25%

Auger Coll., Phys.Rev.D109 (2024) 102001

AugerPrime: 2025 --- 2035.....

WCD/SSD/RD can collect multi-hybrid events with a 100% duty cycle

Separation of shower components can be obtained

- by WCD/SSD for events up to $\sim 60^{\circ}$
- by WCD/RD for inclined events >60°

A.Castellina

All Auger Open Data have a DOI that you are required to cite in any applications or publications. These files are part of the main dataset whose DOI is 10.5281/zenodo.4487612 and always points to the current version.

Backup

A.Castellina

Auger data - Phase I

A.Castellina

T5 events/hexagons/day

- ~135,000 km² sr yr for the search of anisotropies

Differences between Northern and Sourthern sky?

Difference at higher energy :

— no declination dependence found in Auger

— TA claim of a declination dependence (3.5 σ):

 $\log_{10}E_{break} = 19.64 \pm 0.04$ for lower δ

 $log_{10}E_{break}=19.84\pm0.02$ for higher δ

Compatibility of spectra from Auger and TA up to $10^{19.5}$ eV within few % when TA uses

- the same fluorescence yield (previously off by ~ -14%)
- the invisible energy (data-driven) correction of Auger (previously off by ~ +7%)

Auger-TA comparison : the mass composition

No direct comparison of X_{max} distributions is possible: Auger measurement unbiased, TA one folded with detector effects Auger best fit composition as input to the TA simulations; the resulting distributions are compared to the TA X_{max} results

TA data consistent with proton and also with Auger-mix at least up to 10^{19.5} eV Auger data on the contrary are incompatible with pure composition (4.4 σ exclusion of constant ER)

A.Yushkov, Joint Auger+TA WG PoS(ICRC2023) 249

The UHECR mass composition

The fractions of elements can be derived from model dependent fits of the X_{max} distributions

Provide model dependent information on the mass evolution

 \rightarrow in line with E_{max} ~a few EeV x (Z or A)

The UHECR mass composition

Impressive agreement between FD and SD derived measurements

QGSJetII-04 not suitable to describe the data

A.Castellina

$$\langle \ln A \rangle = \frac{\langle X_{\max} \rangle - \langle X_{\max} \rangle_p}{f_E}$$
$$\sigma_{\ln A}^2 = \frac{\sigma^2 (X_{\max}) - \sigma_{\rm sh}^2 (\langle \ln A \rangle_p)}{b \sigma_p^2 + f_E^2}$$

f_(E), a, b depend on hadronic interactions

Heavy or light? An independent measurement

The highest energy event

A.Castellina

		Event ID:
Energy	166±13 EeV	Date: Time:
θ	58.6°	Reconstru Theta:
φ	224.4°	Phi: Energy:
β	-2.0	Gala
t _{1/2} (1000)	98±3 ns	-
δ	-52.0°	Longitude Latitude:
α	128.9°	N of Stati
Multiplicity	34	ID T 1227
		1208 1205 861 1207 1779 1191 1228 1198 1198 1190 1188 1189 1185 1195 1229 1187 1194 1201
		1264 1203 1204 1231 1199 1197 1090 1200 1196 1093 1418 1287
		1303 1096 1277

A.Castellina

Date	2019-
Energy	166±1
θ	58.
φ	224
β	-2.
t _{1/2} (1000)	98±3
δ	-52
α	128
Multiplicity	34

PIERRE AUGER The highest energy hybrid event

FD site	Energy [EeV]	X _{max} [g cm ⁻²]	θ [deg]	φ [d
1	86.0 ± 8.1	767.1 ± 31.9	53.7 ± 0.7	100.4
2	79.9 ± 6.9	768.7 ± 21.0	53.9 ± 0.5	101.0 :
3	91.5 ± 9.0	753.4 ± 12.5	52.3 ± 0.3	100.6
4	87.7 ± 8.1	771.1 ± 13.5	52.8 ± 0.3	101.1 :

Hybrid rec

SD rec

Energy	82±7 EeV
θ	53.8°
φ	100.6°
β	-2.1
t _{1/2} (1000)	127±5 ns
δ	17.8°
α	324.5°
Multiplicity	22

A.Castellina

53.8°
100.6°
-2.1
127±5 ns
17.8°
324.5°
22

Inclined event in radio

RD	SD
156.99±0.01	157±0.
84.7±0.01	84.7±0
36.23 ± 3.34	38.55 ± 2
-19.8	-17.40±0
-8.73	-9.78±0.
	RD 156.99 ± 0.01 84.7 ± 0.01 36.23 ± 3.34 -19.8 -8.73

Large scale anisotropy: Auger+TA full sky

Flux

A.Castellina

- scatter plots of arrival directions immediately interpretable
- equal sensitivity anywhere in the sky
- upper limits uniform over the sky
- no need for methods to re-weight individual exposures

Confirm the presence of a dipole pointing away from the GC

The UHE sky from Auger+TA

2004-2022 Auger, 2008-2022 TA: 3340 events for $E_{Auger}^{TA} \ge_{32~EeV}^{40.2~EeV}$

Exposure 135,000 km² sr yr for Auger, 17,500 km² sr yr for TA

E _{Auger} threshold	E _{TA} threshold	Θ	f	TS	post-trial significan
38 [40]	48.2 [51]	18.7 [29]	24.8 [41]	14.7 [14.3]	2.8σ [2.7σ]
38 [38]	48.2 [49]	15.4 [15.1]	11.7 [12.1]	30.5 [31.1]	4.6σ [4.7σ]

36

In the transition region

A Galactic origin of protons above EeV energies is disfavoured by Auger results

ISVHECRI, July 8, 2024

protons excluded by

bounds on the dipolar component

■isotropy below 8 10¹⁸ eV

heavy nuclei excluded by Emeasured light composition

Auger Coll., ApJ.Lett.762 (2013) L13

•	-				+				-
•	1			1		1	•		-
									1
									1
									1
									1
									-
									1
									1
									1
									1
			 				 	 	_

Search for Lorenz invariance violation

$$E_i^2 - p_i^2 = m_i^2 + \sum_{n=0}^N \delta_i^{(n)} E_i^{2+n} = m_i^2 + \eta_i^{(n)} \frac{E_i^{2+n}}{M_{Pl}^n}$$

Effects suppressed for low energy and short travel distances : UHECRs !!!

Modification of CR interactions during propagation: E EM : pp cross section modified —> increased mean free path —> less interactions —> more photons expected ■ hadronic sector: number of interactions reduced — > if LIV lighter nuclear species needed at source to

reproduce the composition

Air shower physics

• for $\eta^{(n)} < 0$, decay of π^0 can become forbidden if

$$m_{\pi}^2 + \eta_{\pi}^{(n)} \frac{p_{\pi}^{n+2}}{M_{Pl}^n} < 0$$

• EM component decreasing, hadronic one increasing

Auger Coll., JCAP01 (2022) 023 C.Trimarelli (Auger Coll.), UHECR2022

A.Castellina

Dimensional					$\log_{10}(\delta$	/eV ⁻ⁿ)
Dimensional	-66	-64	-62	-60	-58	-50
$\delta^{(n)} = \frac{\eta^{(n)}}{\eta^{(n)}}$	-38	-36	-34	-32	-30	-28
$M_{\rm Pl}^n$						
	10^{-11} 10^{-10} 10^{-9}	⁹ 10 ⁻⁸ 10	10^{-7} 10^{-6} 10	0 ⁻⁵ 10 ⁻⁴	10 ⁻³ 10 ⁻² 10 log	g_{10}^{-1} 1 g_{10}(-\eta)

10³

^{רוא} / א^{רו}

 $\nabla_{\mu}^{\langle N \rangle}$

ISVF

Constraints to neutrino models

Blue line: fluxes obtained with approx. analytical approach (Yoshida et al.)

Constraints on models assuming proton composition: independent confirmation of result from composition analysis EXClusion of a significant part of the (z,m) parameter space from non observation of neutrinos

Follow-up of GW170817 in neutrinos

- Source in the field of view of ES neutrino search
- No UHE neutrino candidates found in either coincidence windows $(\pm 500 \text{ se around the GW or in the 14 days period after it})$
- Limits on the total emitted energy in the range 10¹⁷-2.5 10¹⁹ eV
 - <u>+</u>500 s : < 6.9 10⁻⁴ M_{\odot} +14 days : < 2.3 10⁻² M_{\odot}
- Lack of detection consistent with expectation from a short GRB viewed at off-axis angle $>20^{\circ}$

LVC, ANTARES, IceCube, Auger, ApJL 850 (2023) L35

Search for SHDM

Flux of secondaries from SHDM decay ($i = \gamma, v, \overline{v}, N, N$):

Multi-hybrid events : intermediate scale anisotropy

Composition information can improve this prediction

