

EXPLORING THE COSMIC FRONTIERS: ICECUBE'S UPDATE ON NEUTRINOS AND COSMIC RAYS

Dr. Matthias Plum South Dakota School of Mines and Technology July 8, 2024

> ISVHECRI 2024 Puerto Vallarta, Mexico

SOUTH DAKOTA MINES®

OUTLINE

- IceCube Neutrino Observatory
- Recent results on cosmic rays
- Recent results on neutrinos
- Outlook to IceCube-Gen2

C U R I O U S S M A R T T E N A C I O U S

CURIOUS SMART TENACIOUS

ICECUBE NEUTRINO OBSERVATORY

Unique astroparticle detector at the South Pole for high-energy particles

IceTop

Mostly electromagnetic particles and low-energy muons

IceCube

- High-energy air shower muons
- Neutrinos (indirect)

\mathbf{n} SOUTH DAKOTA MINES

ICETOP + SURFACE ENHANCEMENT ARRAY

- IceTop is a 1 km² ice-Cherenkov tank air shower array under the snow surface
- Scintillator panels and radio antennas are planned to mitigate increasing snow coverage and add composition sensitivity
- Scintillator triggers similarly to IceTop. Radio is passively read out in case of a surface trigger

Prototype station is running since 2020

Scintillator panel

Radio antenna

COSMIC RAY AIR SHOWER RECONSTRUCTION

IceTop

- Fit to IceTop signals
 - Lateral distribution function (charge)
 - Shower front (time)

- \rightarrow Direction & core position
- \rightarrow Shower size S_{125} : proxy for primary energy
- In-Ice
 - Energy loss reconstruction
 - Along the reconstructed IceTop track
- Combined Reconstruction Surface Detector+Radio and deep In-Ice
 - Direction & core position
 - Shower size and energy loss reconstruction

• With Radio X_{max}

C U R I O U S S M A R T T E N A C I O U S

SURFACE SCINTILLATOR+RADIO ENHANCEMENT

Radio:

• Direct X_{max} measurement for inclined high-energy shower

CURIOUS SMART TENACIOUS https://arxiv.org/abs/2205.05845

IMAGING AIR CHERENKOV TELESCOPES SOUTH ICEACT DAKOTA Air showe MINES

Low energy (10 TeV - 200 TeV) air shower particles barely reach the ground making 'classic' surface reconstruction challenging

IceAct

- measure the el.-mag. shower component inside the atmosphere from TeV to PeV
- combine with particle footprint on ground level and in-ice muon reconstruction:
 - calibration of geometry and energy
 - hybrid composition studies
 - possible veto capability
- Since 2019 two R&D telescopes have been deployed at the South Pole and are taking data, a third telescope is currently being deployed

The telescopes can only operate during the Antarctic night (roughly 4.5 months) stop) and good atmospheric conditions

Duty cycle ~ 20%

CURIOUS TENACIOUS

- 50 cm Fresnel lens
- 50 cm focal length
- 61 hexagonal pixel

\mathbf{m} SOUTH DAKOTA MINES

IMAGING AIR CHERENKOV TELESCOPES ICEACT

• Simultaneously determines: • Air shower geometry

- Energy
- X_{max} for vertical low-energy air shower

CURIOUS TENACIOUS A first approach of single telescope Graph Neural Network reconstruction

C U R I O U S S M A R T T E N A C I O U S

CR ENERGY RANGE OF ICECUBE/ICETOP

ICETOP-ICECUBE SOUTH MINES

SYSTEMATIC UNCERTAINTY

 Update of analysis published in 2016 (Paper under collaboration review)

////////

- Improved statistics:
 - Eleven years of data (~700 billion events)
- Improved simulation:
 - Newer, dataset-specific, increased statistics
- Improved systematics:
 - Shift from detector to calendar years, stable detector configuration

CURIOUS

TENACIOUS

SMART

https://arxiv.org/abs/2308.02331

DIPOLE PHASE & AMPLITUDE

- New simulation and statistics only slightly change energy maps
- Transition still occurs around 100 TeV
- Structure at highest energy now consistent with other PeV measurements
- Phase and amplitude of best-fit dipole consistent with other experiments

TENACIOUS

https://arxiv.org/abs/2308.02331

SURFACE MUON DENSITY

3500

3000

2500

1500

1000

500

-1.0

-0.5

NSLC NSLC

- Tank signal includes:
 - muons
 - electromagnetic component
 - background
- Due to EM contamination, the density of muons is evaluated at 600 and 800 m from the shower axis
- Mostly low-energy (~GeV) muons

For TeV-muon multiplicity studies with the deep inice IceCube, see Stef Verpoest's talk tomorrow

C U R I O U S S M A R T T E N A C I O U S

https://doi.org/10.1103/PhysRevD.106.032010

Muon densities compared to hadronic model predictions

 Comparison of measured data to different flux model predictions

NEUTRINO EVENT RECONSTRUCTION

C U R I O U S S M A R T T E N A C I O U S Properties are inferred from observed light pattern in detector

- Event reconstruction:
- Neutrino events are characterized by their energy and direction

\mathbf{m} SOUTH DAKOTA MINES

ACIOUS

RECENT NEUTRINO RECONSTRUCTION IMPROVEMENTS

https://doi.org/10.22323/1.395.1065

The equivalent of 75 years of detector lifetime and > \$500 million ₁₇

//////

(11)SOUTH DAKOTA MINES

GALACTIC NEUTRINO SEARCHES

- Evidence for neutrino emission from the galactic plane
 - Global significance: 4.5σ
 - 3σ significance from stacking catalogs
- Data-driven background estimation

URIOUS ENACIOUS

GALACTIC PLANE NEUTRINO EMISSION

https://doi.org/10.1126/science.adc9818

C U R I O U S S M A R T T E N A C I O U S

NEUTRINO FLUX MEASUREMENTS

 \mathbf{m}

SOUTH

prediction

- Measurement of the neutrino flux Measurement of the prompt muon production Measurement of seasonal variation in the neutrino flux

Comparison of measured atmospheric neutrino flux to model

https://arxiv.org/abs/2307.14724

ACIOUS

NEXT STEP IN DETECTOR EVOLUTION

IceCube Upgrade (scheduled deployment 2025/26)

- Denser optical array by 7 additional strings
- 1 GeV min. energy for neutrinos

R&D for IceCube-Gen2

- Improve calibration to decrease detector systematics
- **Oscillation physics**

Multi-PMT DOMs

D-Eggs

\mathbf{m} SOUTH DAKOTA MINES

CURIOUS SMART TENACIOUS

ICECUBE-GEN2

- Increase effective volume
- Increase upper energy threshold
- Measure flux of high-energetic
- Improve sensitivity to astrophysical

ICECUBE-GEN2 SURFACE-ARRAY

- Radio antennas will be sensitive starting at 30 PeV, and will set energy scale and provide X_{max} measurements
- About 25% of detected air showers will have associated in-ice signals to study the high-energy air shower content
- High statistics for more anisotropy measurements

CURIOUS SMART TENACIOUS

IceCube-Gen2 TDR

ICECUBE-GEN2 NUMBERS

IceCube-Gen2 (IceCube) numbers

- Area: ~6.5km² (0.9)
- Instrumented depth: 1.26 km (1.0)
- Instrumented volume: 8 km³ (1.0)
- 9600 optical sensors (5160)
- 120 strings (86)

Surface array number:

ceTop tanks

ceAct telescopes

scintillators

antennas

- 274 scintillator panels
- 102 radio antennas
- 4 IceAct station in Fly's eye configuration

C U R I O U S S M A R T T E N A C I O U S

CR ENERGY RANGE OF ICECUBE/ICETOP

SUMMARY

 IceCube Observatory is a versatile neutrino/cosmic ray observatory

- The combination of surface and deep in-ice detector allows unique studies of air shower physics from TeV to EeV
- In cosmic rays and air shower physics, we are measuring
 - Energy spectrum and mass composition
 - Anisotropy
 - Testing hadronic interaction models
- The first evidence of neutrino emission from the galactic plane was measured with 4.5σ
- IceCube Upgrade and IceCube-Gen2 will enhance the physics capabilities even further

THE ICECUBE COLLABORATION

BACKUP

C U R I O U S S M A R T T E N A C I O U S

C U R I O U S S M A R T T E N A C I O U S

NEUTRINO SIGNALS AND BACKGROUNDS

Dominant signal:

- Downgoing muons from cosmic rays interacting in the atmosphere
- •~2600/sec (~10¹¹/year)
- Neutrino discriminators:
 - Upgoing (through Earth) or starting inside the array
 - •~12/hour (~10⁵/year)
- Astrophysical discriminators:
 - Energy: Crossover ~ 100TeV
 - Muon veto (starting events)
 - Spatial: Clusters/Catalogs
 - Time: Bunches/Multimessenger
 - 10s per month (~100s/year)

\mathbf{m} SOUTH DAKOTA MINES

DIGITAL OPTICAL MODULE

Each Digital Optical Module (DOM) operates independently

- collects light signal
- digitizes
- time stamp with 2 nanoseconds precision
- Send results to a computer on the surface for further reconstruction

CURIOUS ART TENACIOUS

ICETOP-ICECUBE MASSCOMPOSITION

- Data 2011-2013
- $Log(E/GeV) = 6.5 \dots 9.0$
- Primary elementary groups
 - H, He, CNO, Fe
- Input variables
 - IceTop
 - S125 (Energy estimator)
 - Zenith
 - IceCube

CURIOUS

TENACIOUS

SMART

- dEdx at 1500m slant depth
- Number of HE stochastic losses

TENACIOUS

https://arxiv.org/abs/1906.04317

CR ENERGY SPECTRUM

C U R I O U S S M A R T T E N A C I O U S

SEARCHING FOR NEUTRINO SOURCES

Need good reconstruction of directions and energies and model of how they differ between signal and background We improved in both areas!

direction

\mathbf{n} SOUTH DAKOTA

CONVOLUTIONAL NEURAL NETWORK IN ICECUBE

RECONSTRUCTING EVENT PROPERTIES

C U R I O U S S M A R T T E N A C I O U S

Hybrid reconstruction method:

- Combines maximum-likelihood estimation with deep learning
- Modeling of high-dimensional PDFs via neural networks
- Exploits available information and symmetries

CONVOLUTIONAL NEURAL NETWORK IN ICECUBE

Achievements of CNNs in IceCube

- Versatile tool for event reconstruction
- Improved reconstruction accuracy at high energies
- Reduced per-event runtime by 3 orders of magnitude
- Allows 'Online' event reconstruction with the limited hardware at the South Pole

 $10^{-1} - 10^{-1} - 10^{-2} - 10^{-3} - 10^{-3} - 10^{-4} - 10^{-4} - 10^{-5} - 10^{$

10

C U R I O U S S M A R T T E N A C I O U S

https://doi.org/10.22323/1.395.1065

THE MULTIWAVELENGTH MILKY WAY

C U R I O U S S M A R T T E N A C I O U S

CURIOUS SMART TENACIOUS

ICECUBE IDENTIFIES NGC 1068 AS LIKELY NEUTRINO SOURCE

- Search for significant clustering of events versus isotropic null hypothesis
- Brightest point in sky correlates with Seyfert galaxy NGC 1068
- NGC 1068 rejects isotropic hypothesis at 4.2 sigma after trials correction

https://doi.org/10.1126/science.abg3395

SOUTH DAKOTA

RIOUS

SMARI

June 29thN 20230 U S

Data-Driven Search Method

- Backgrounds are modeled in data-driven approach
- Randomization in time removes accumulation along Galactic plane due to Earth's rotation

• Chance probability calculated via randomized pseudo-experiments

SOUTH DAKOTA

SMART

June 29thN 20230 U S

Data-Driven Search Method

- Backgrounds are modeled in data-driven approach
- Randomization in time removes accumulation along Galactic plane due to Earth's rotation

• Chance probability calculated via randomized pseudo-experiments

C U R I O U S S M A R T T E N A C I O U S

ENERGY ESTIMATION ANISOTROPY

C U R I O U S S M A R T T E N A C I O U S

https://arxiv.org/abs/2308.02331

