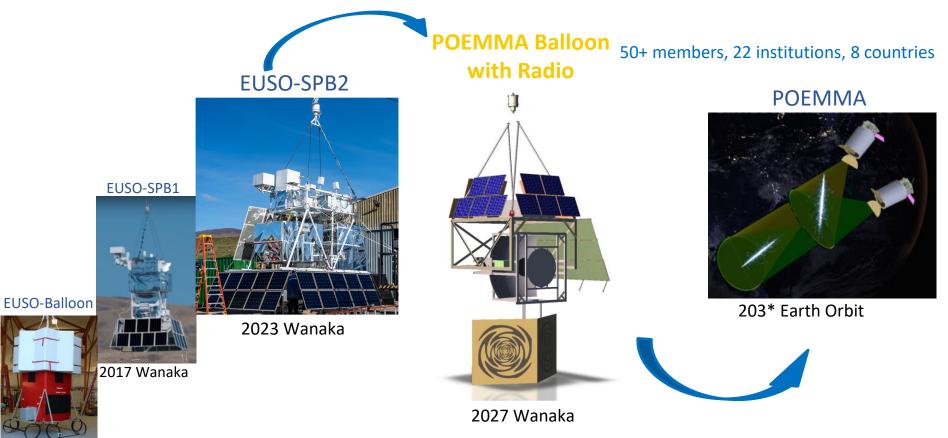
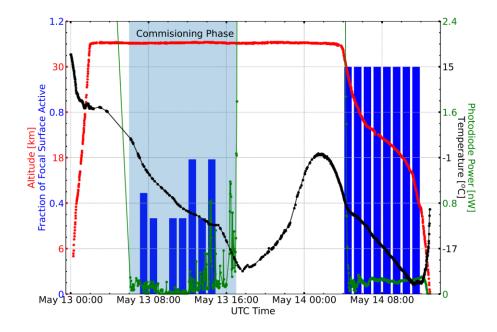

POEMMA-Balloon with Radio: a balloon-borne Multi-Messenger Observatory

Valentina Scotti for the JEM-EUSO Collaboration

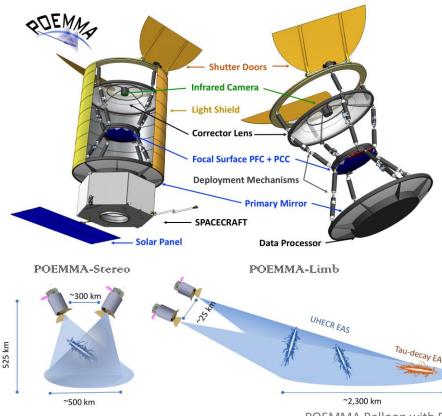

Università degli Studi di Napoli Federico II & INFN - Sezione di Napoli scottiv@na.infn.it

Goals

Timeline and developments

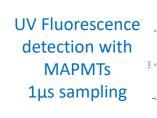

2014 Timmins

Scientific instruments:


- Two 1m-diameter telescopes (fluorescence and Cherenkov)
- Infrared camera

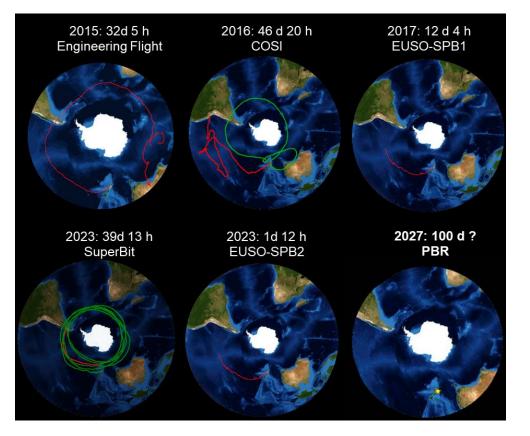
EUSO-SPB2

- Flight terminated after 1.5 days due to a leak in the balloon
- Instruments worked as expected, but not enough time to accomplish main science goals

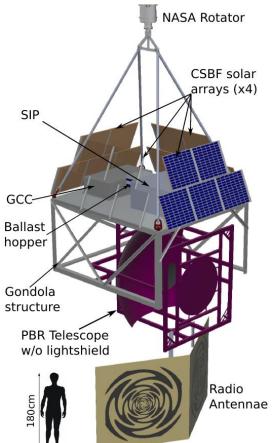


POEMMA: Probe Of Extreme Multi-Messenger Astrophysics

Conceptual design for a NASA Astrophysics Probeclass mission 1


- 2 satellites flying in formation in Low Earth Orbit
- Large FoV (45° × 45°), 4 meter Schmidt optics, hybrid focal surface for fluorescence and Cherenkov observations

Cherenkov detection with SiPMs 10 ns sampling


- 2 observation modes:
 - Stereo optimized for UHECRs
 - Limb optimized for astrophysical v_{τ}

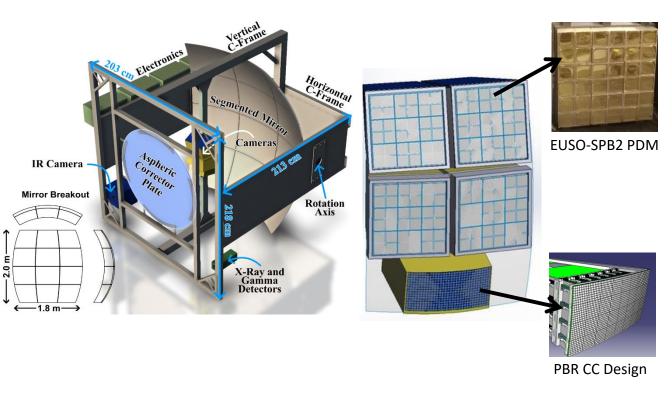
The PBR mission

- Planned launch for spring 2027 from Wanaka, NZ on a Super Pressure Balloon
- Floating altitude 33 km
- Mid-latitude flights with dark periods of observations and sunlight for battery charging
- Up to 100-day flight
- 500 hours of operation (~20% duty cycle)
- Min 14 days (70 h)
 - 1500 kg of scientific payload

The payload: a multi-detector approach

Scientific payload:

- > 1.1m-diameter Schmidt optic telescope with hybrid focal surface
- Low frequency Radio Instrument
- X-ray/Gamma/Particle detectors
- InfraRed Camera to measure cloud coverage within the telescope's FoV


Pointing:

- 360 deg in azimuth via NASA rotator
- From -90° (nadir) to +13° above horizon in zenith

Long Duration Balloon equipment:

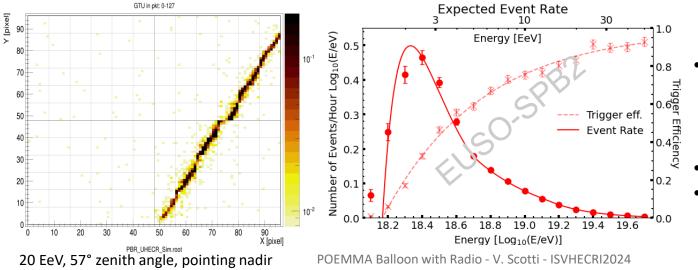
- Telemetry (including StarLink)
- Solar power system

The hybrid telescope

Fluorescence Camera (FC) 4 Photo Detection Modules (R11265 MAPMT): **9216** px

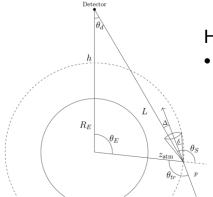
- 24° × 24° FoV
- 290 ÷ 430 nm detection window (BG3 filter)
- Integration time of 1 μs

Cherenkov Camera (CC)


4 rows of SiPM matrices (S13361-3050NE-08): **2048** px

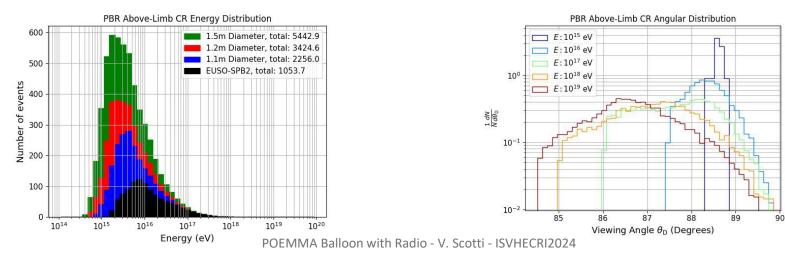
- 12° × 6° FoV
- Bi-focal for bg reduction
- 320 ÷ 900 nm detection window
- Integration time of 10 ns

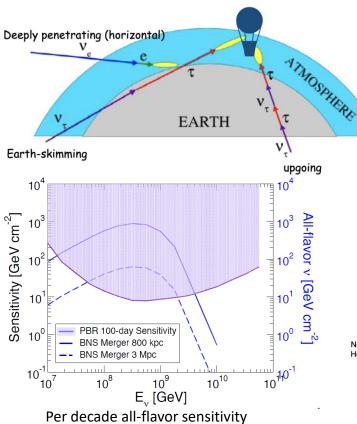
URIECR DOWNWART EAS


The Fluorescence Camera

- Observe UHECRs via fluorescence from above Tilting the telescope:
- Observe High Altitude Horizontal Air showers that are not visible from ground
- Measure the evolution of UV airglow with zenith angle
- Star observation for calibration

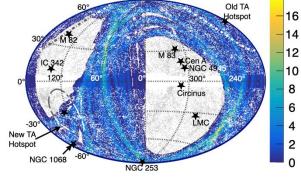
- Increase in FoV by 25% and 16% more light collection compared to EUSO-SPB2
- Threshold \gtrsim EeV
- Peak sensitivity of 4 EeV


The Cherenkov Camera: above limb


HAHA guaranteed signal with significant statistics (similar signature to v event)

10

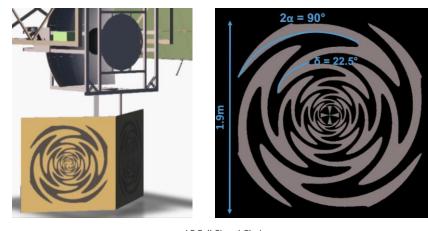
- Simulation study using EASCherSim*
 - ~60+ events/h
 - Energy threshold ≈ 400 TeV
 - Maximum sensitivity ≈ 2 PeV
 - Energy-dependent angular acceptance: geometric energy filter

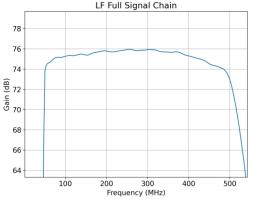

The Cherenkov Camera: below the limb

PBR has very limited sensitivity to diffuse neutrino flux, but can observe transients by pointing

Number of $v_{\tau}s$

- Target of Opportunity: galactic SN, BNS/BH/NS merger, flaring Blazar/AGN, GRB...
- Steady sources (e.g. TA hotspots)

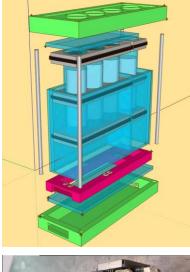



ToO: Acceptance Sky Map (100-day Flight)

 Models are fluences (integrated over time)

 Accounting for Sun/Moon effect and balloon trajectory

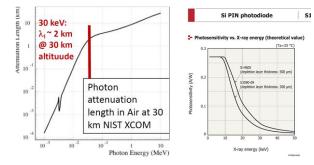
The Radio Instrument



Two 2×2 m dual-polarize sinuous antennas canted at 120° from each other

- Based on PUEO Low Frequency instrument design
- 50 ÷ 500 MHz frequency range
- $60^{\circ} \times 120^{\circ}$ FoV overlapping with the CC
- Expected energy threshold $E > 10^{18} eV$
- Self-triggering during the day
- Triggers from the CC during the night
- Radio spectrum contains information about distance from the shower axis
- Combining with CC measurements leads to a better constraint on the shower energy and direction (azimuth)

X, gamma and charged particle detectors



25.4B25.4/SIP-E3-Cs-T-X

CsI(TI) scintillation detector with SIPM readout and built-in preamplifier / bias generator and temperature sensor

X-ray (10 ÷ 300 keV): there is significant geometry factor for the PBR instruments to be within the EAS cascade development: unique shower measurements

- 2 gamma detectors (0,1 ÷ 4 MeV): TLEs, ToO, GRBs...
- Charged particles: particle correlation for CC and FC (part of EAS, ToO), charged count (Galactic, SPEs), bkg

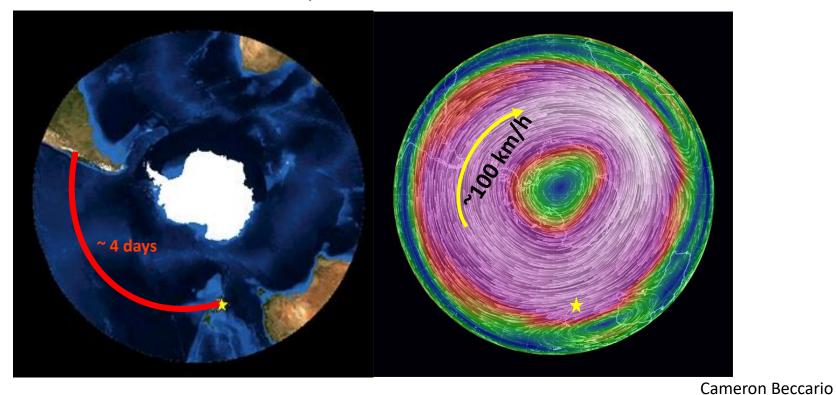
Current status and schedule

- APRA proposal accepted and funded
- Design well underway
- Procurement of components and prototyping has begun
- 2027 flight application submitted

Project Year Quarter		1										1	2											3											4		
		1		2			3			4		1			2		3			4		1				2		3		20	4			1			
Month	S	0	N	D	J	F	N	1 /	۱M	IJ	J	A	S	0	Ν	D	J	F	м	А	М	J	J	А	s	0	Ν	D	J	F	м	А	М	J	J	А	s
Flight hardware production																																					
Radio Noise Testing																																					
Thermal Vacuum Testing																															5.00		5				
Shipping for Integration													332																		533		5				
Mechanics					-						1		100		1																						
Flight software																																					
Full Integration																																					
Field Tests	Г	Γ	Γ	Γ		Г		Γ		Γ											Ob	DS.															
Full Radio Test	Г																																				
Hang Test	Γ																																				
Shipping Launch Site	Γ																																				
NZ campaign	Г			Γ		Γ				Γ																					20		Fili	ght			
	Pr	0	рс	S	e	d	sc	h	ec	lu	le	t	0	be	eg	ir	۱S	se	pt	te	m	be	er	2	0	24	1										

Summary and outlook

POEMMA Balloon with Radio is the **successor** of the EUSO-SPB2 mission and an advanced **precursor** of the dual satellite mission **POEMMA**


Preparation has started for a launch from Wanaka, NZ in Spring of 2027

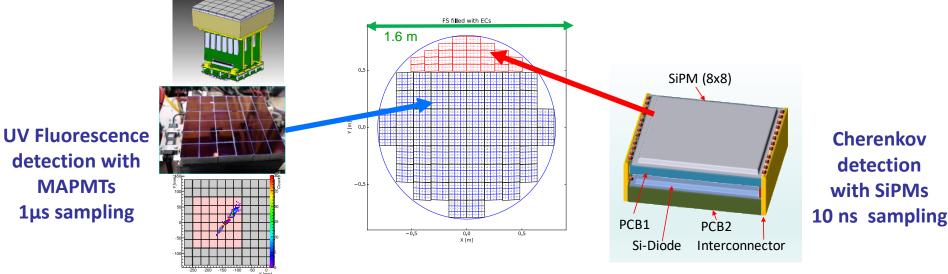
Goals:

- UHECR observation from above
- Observation of High-Altitude Horizontal Air-shower (HAHAs)
- Neutrino search from Target of Opportunity
- First combined observation of optical Cherenkov and radio signal
- Raise TRL for POEMMA (first hybrid focal surface)

Why New Zealand?

Wanaka, New Zealand

air flow at ~30 km June 9th 2017


https://earth.nullschool.net/#current/wind/isobaric/10hPa/orthographic=180,-90,300

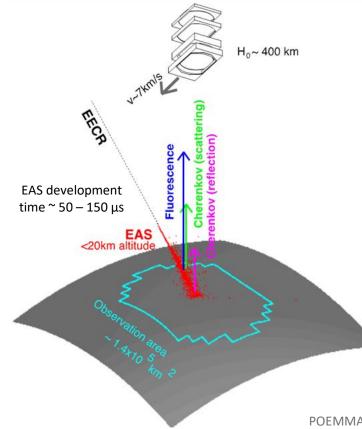
The POEMMA instrument

Two **4 meter** F/0.64 Schmidt telescopes with **45°FoV**

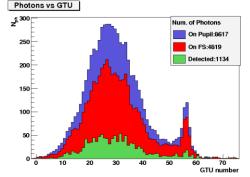
3 mm linear pixel size: 0.084° FoV

~ 150k pixels

60 Photo Detector Modules (PDMs) = 138,240 pixels 28 SiPM Focal Surface Units (FSUs) =14,336 pixels


64 channels Multi-Anode PMT with BG3 filters

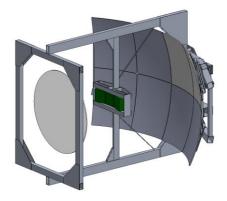
1 PDM = 36 MAPMTs = 2,304 pixels


POEMMA Balloon with Radio - V. Scotti - ISVHECRI2024

 $1 \text{ FSU} = 32 \times 4 \times 4 = 512 \text{ pixels}$

JEM-EUSO observational strategy

Observe from space fluorescence and Cherenkov UV photons generated by Extensive Air Showers created by EECR



Main advantages:

- 1. The target volume is far greater than possible from the ground
- 2. Full sky coverage

First idea: J. Linsley, late '70s

EUSO-SPB2 Fluorescence Telescope

Modified Schmidt optics

FoV: 3×(12°×12°) ~36 km² on ground Common focus mirror Corrector Plate: 1 m² Pixel size: ~3 × 3 mm²

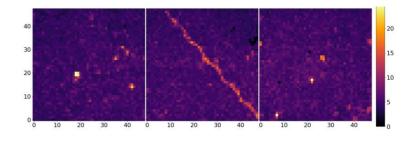
Energy Threshold	~ 5 × 10 ¹⁸ eV
Wavelength Sensitivity	UV 300 - 420 nm (BG3 filter)
Pointing (zenith angle)	Down (nadir)
Number of Pixels	3 × 2304 = 6912 (3 PDM)
Payload Mass (kg)	545

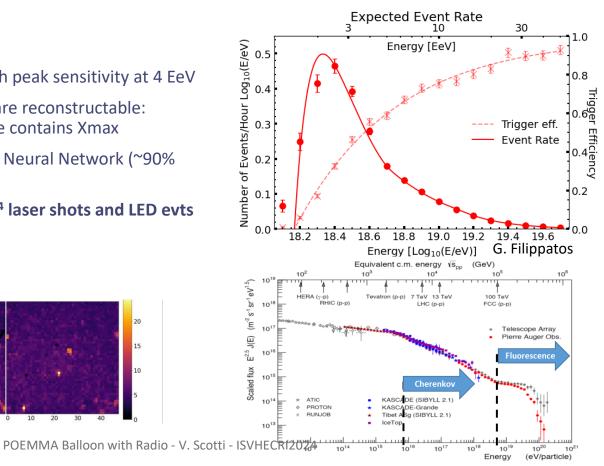
Camera

MAPMT w/ single photoelectron counting 1 µs time bins, 1 "video clip" = 128 time bins ~15 watts

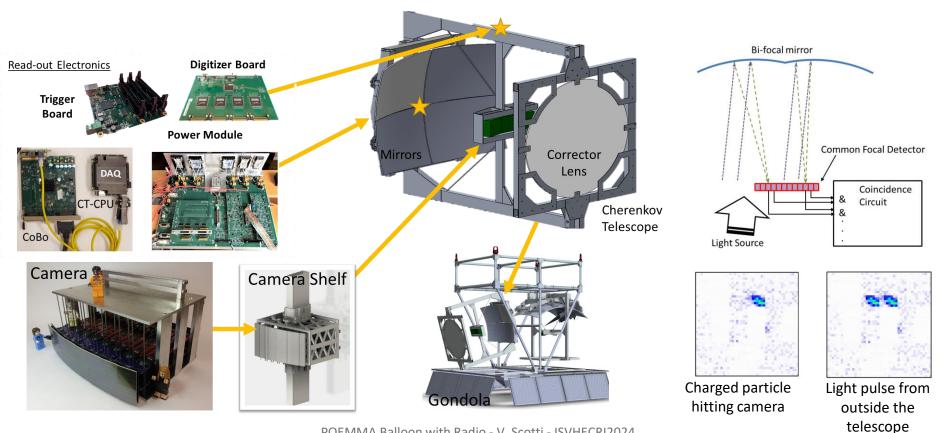
Data Processor

Readout performed by one ASIC per MAPMT + multiple trigger levels to filter out noise and identify events of interest


EUSO-SPB2 FT performance

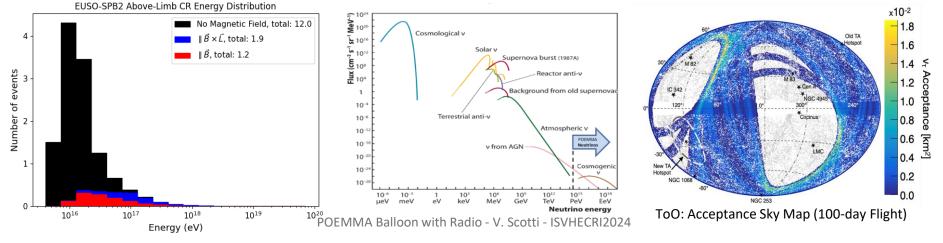

Extensive simulation study

- Energy threshold: ~2 EeV with peak sensitivity at 4 EeV
- **0.12 events per hour,** <10% are reconstructable: geometry, longitudinal profile contains Xmax
- On board pre-selection using Neural Network (~90% accuracy)


Field tested in Aug 2022 with 10⁴ laser shots and LED evts

- Full end-to-end calibration
- Hours of CR observation

EUSO-SPB2 Cherenkov telescope


EUSO-SPB2 CT performance

Above the limb

- Simulation study using EASCherSim
- Low energy threshold of 10 PeV
- Angular acceptance is energy dependent
 - Geometric energy filter

Below the limb


- Not sensitive to the diffuse neutrino flux, but can observe transients by pointing
 - Galactic and extragalactic supernovae
 - BNS/BH-NS merger, nearby TDE
 - Flaring Blazar/AGN
 - GRBs
 - Steady sources (e.g. TA hotspot)

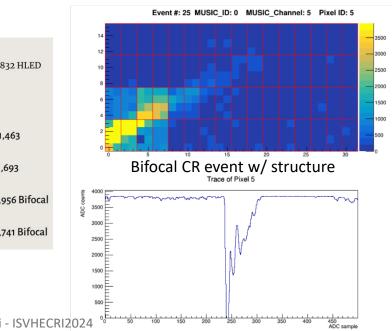
EUSO-SPB2 data collected & example events (FT)

Operated for 2 nights :

- May 13th: 7 hours commissioning
- May 14°: learned of bad leak in balloon 5 hours (downloaded data)
- More than 120000 triggers recorded and downloaded (thanks to StarLink)

G O G focal surface L0 events

Event #11877 - #11887 ; UTC Time 14 May 2023 06:20:05


FT performed well but no UHECR found

EUSO-SPB2 data collected & example events (CT)

Operated for 2 nights (first night mainly commissioning):

No ToO follow up due to time

- Several upward-going EAS caused by PeV Cosmic Rays recorded + Night Sky Background observations
- Event #: 18 MUSIC ID: 4 MUSIC Channel: 5 Pixel ID: 37 2000 1800 10GB of Raw data 1600 Raw/CoBo files: 31,269 Bifocal, 832 HLED 1400 1200 1000 800 Processed Files: 02 600 400 Gold Plated, Bifocal Events: 1,463 a 200 20 15 **Bifocal CR event** b Gold Plated, HLED Events: 11,693 Trace of Pixel 37 Vanilla Events: 534 HLED, 21,956 Bifocal mmmmm C Ŭ 4 3500 Everything Else: 91 HLED, 32,741 Bifocal 3000 2500 2000 1500 POEMMA Balloon with Radio - V. Scotti - ISVHECRI2024 450 ADC sample

25

Collaboration

	Institution	Science Team members
US	Columbia	A. Olinto (PI)
	UChicago	S.Meyer, J.Eser (PM), G. Filippatos
	Mines	E. Mayotte, L. Wiencke, F. Sarazin, S. Mayotte , T. Heibges, J. Burton, J. Caraca-Valente
	Ulowa	M. Reno, Y. Onel, D. Garg, L. Kupari
	UAH	M. Reno, Y. Onel, D. Garg, L. Kupari P. Reardon, J. Adam, P. Alldredge T. Venters, J. Krizmanic S. Wissel, A. Cummings A. Meli
	GSFC	T. Venters, J. Krizmanic
	PennState	S. Wissel, A. Cummings
	NC A&T	A. Meli
	CUNY	T. Paul
	Delaware	F.Schroeder, Alexander Novikov
CZ	Olomouc	C Kerny, M. Pech
FR	APC	E. Parizot, M. Battisti, A. Creusot, D. Trofimov
GER	KIT	A.Haungs, M. Venugopal
IT	Naples	G. Osteria (Co-PI), V. Scotti, B. Panico, F. Perfetto, M. Mese
	Turin	M. Bertaina, H. Miamoto,
	Bari	F. Cafagna
	LNF	M.Ricci
	Catania	R. Caruso
	Roma 2	M. Casolino, L. Marcelli, Z. Plebaniak
JA	RIKEN	M. Casolino, Y. Takizawa
POL	Warsaw?	J. Szabelski
	Warsaw	L. Piotrowski
SK	SAS	S. Mackovjak

51 members, 22 institutions, 8 countries