

Stef Verpoest for the IceCube collaboration

ISVHECRI 2024, July 9, Puerto Vallarta, Mexico

IceCube Neutrino Observatory

IceTop

- ~1 km² air-shower array
- 162 ice-Cherenkov tanks

IceCube

- ~1 km³ Cherenkov detector
- ~5000 Digital Optical Modules

Combined: unique EAS detector!

- Primary energy PeV EeV
- Electromagnetic component
- ~GeV muons
- ~TeV muons

Analysis goal & motivation

Muons in air showers

- Mass composition
- Tracers of hadronic cascade

The Muon Puzzle

- Disagreement in muon simulation/measurements
 - Muon deficit in MC at UHECR energies *
- Mainly ~GeV muon measurements

Unique input from IceCube:

- Observe muons in different kinematic regimes
- This work: average number of muons > 500 GeV in vertical showers

Event selection & initial reconstruction

Reconstruction

- IceTop air shower reconstruction
 - Core position *
 - Direction (θ, ϕ) *
 - Shower size S_{125} *
- In-Ice energy-loss reconstruction
 - Muon bundle energy loss in 20 m segments *

Cuts

- Core contained in IceTop
- Coincident muon bundle
- Succesful reconstructions
- $\cos \theta > 0.95 \quad (\theta \leq 18^\circ)$

Neural network

- Neural network
 - Inputs:
 - IceTop: S_{125} , θ *
 - In-Ice: energy loss vector *
 - Output
 - Primary energy E*
 - # muons > 500 GeV in the shower N_{μ} *

Correction factor

• Derive $\langle N_{\mu} \rangle$ in E_0 bins

Resulting biases in MC

- Reconstructed in bins of reconstructed
- Ratio versus true values

Correction factors

- Fit with parabola
- Depend on primary!

Iterative correction

Correction factor is function of InA

Interpolate correction factors for p & Fe lacksquare

$$\mathscr{C}(\ln A) = \mathscr{C}_{p} + \frac{\mathscr{C}_{Fe} - \mathscr{C}_{p}}{\ln 56} \ln A$$

Composition estimate from muon measurement

$$\frac{\ln\langle N_{\mu}\rangle - \ln\langle N_{\mu}\rangle_{p}}{\ln\langle N_{\mu}\rangle_{Fe} - \ln\langle N_{\mu}\rangle_{p}} \approx \frac{\langle \ln A \rangle}{\ln A_{Fe}}$$

- Iterative procedure
 - $\langle N_{\mu} \rangle$ estimate $\rightarrow \mathscr{C} \rightarrow$ updated $\langle N_{\mu} \rangle \rightarrow ... \rightarrow$ convergence

MC tests

Method reproduces true muon multiplicity regardless of mass composition

(remaining differences included as systematic uncertainty)

Application to data

Results obtained using:

- 1 year of data
 - * May 2012 May 2013
- Sibyll 2.1 MC

Systematic uncertainties

- IceTop snow
- IceTop VEM definition
- In-ice light yield: ice model & DOM efficiency

Correction factors: hadronic models

- Correction factors can be obtained from MC based on other hadronic models
 - QGSJet-II.04
 - **EPOS-LHC**

Results

$\blacktriangleright \langle N_{\mu} \rangle$ (> 500 GeV) in near-vertical EAS

- CR energy 2.5 PeV 100 PeV •
- Depends on hadronic model
- Shaded area: systematic uncertainty \bullet

11

GeV vs TeV muons

- IceTop muon density analysis [Phys. Rev. D 106 (2022)]

GeV vs TeV muons

- Comparison of two analyses

 - Near-vertical air showers

Summary & Outlook

TeV muon multiplicity analysis

- Mean number of muons > 500 GeV in near-vertical showers
- In line with expectations from simulations
- Comparison to GeV muon measurement from IceTop*
 - Best agreement with Sibyll 2.1 *
 - Tension in QGSJet-II.04 and EPOS-LHC *

 \rightarrow too many low-energy muons in post-LHC models?

Outlook

- Paper in preparation
- Efforts ongoing to improve IceCube constraints on hadronic models
 - Improved systematics & muon analyses; Surface Enhancement; ... *

Muon measurements

Differences in muon energy spectrum in EAS

[F. Riehn et al., Phys. Rev. D 102 (2020)]

17

Self-consistency of hadronic models

- Compare observables in data to p/Fe simulation
 - IceTop LDF slope
 - IceTop GeV muon density
 - High-energy muon bundle energy loss

Inconsistencies in all models tested

PoS ICRC2021 (2021) 357

Density of GeV muons in IceTop (1) [Phys. Rev. D 106 (2022)]

Statistical analysis based on "muon thumb" in charge-distance histograms

Density of GeV muons in IceTop (2)

[Phys. Rev. D 106 (2022)]

Energy loss vector

Inlce RNN input

Millipede output written as vector of length 57 (20 m segments)

21

Neural network reconstruction

Energy loss

- Neural network
 - Inputs:
 - * IceTop: S_{125} , heta
 - In-Ice: energy loss vector
 - Output
 - * Primary energy E
 - * # muons > 500 GeV in the shower N_{μ}

Training

- Sibyll 2.1
- p, He, O, Fe

Correction factor mass dependence

• Constructing correction factor from p & Fe for $\langle N_{\mu} \rangle$ in He & O MC

Comparison of individual results

Check: separate neural networks (1)

Nominal result:

IceTop input + IceCube input --> neural net --> E, N

Separate NNs:

- IceTop input --> neural net --> E
- IceCube input --> neural net --> N

Check: separate neural networks (2)

Nominal result:

IceTop input + IceCube input --> neural net --> E, N

Separate NNs:

- IceTop input --> neural net --> E
- IceCube input --> neural net --> N

Consistent results

Check: energy reconstruction

Performed different checks related to energy reconstruction

- Separate neural network from N_{μ} reconstruction
- Energy reconstruction based on S125, as used in GeV muon density analysis
- Neural network based on EPOS-LHC

 \rightarrow all agree with the nominal result!

Plots will be included in paper.

Combined muon data analysis by Working group on Hadronic Interacions and Shower Physics (WHISP)

Before energy cross calibration

Combined muon data analysis After cross-calibration of energy scales

After energy cross calibration

