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Motivations

➢ Quantify the discrepancy between data and 
hadronic models predictions in the context 
of the muon puzzle.
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Muon deficit in simulations

*Update this afternoon by Juan Carlos Arteaga
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Motivations

slope = 1 - 
𝛽

For a given primary energy

➢ Represents the slope of the change in the muon 
content of EAS as a function of the primary mass.

➢ Can help constrain the amount of energy carried away 
by the hadronic component.

➢ Determines the mass discrimination power of muons.

➢ Quantify the discrepancy between data and 
hadronic models predictions in the context 
of the muon puzzle.
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Measuring Extensive Air Showers
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➢ EM component formed by the 
decay of π0

○ calorimetric energy
○ depth of maximum 

development Xmax

Measuring Extensive Air Showers

  

➢ EM and muonic components 
formed by the decay of π+/- 
and K+/-.
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➢ EM component formed by the 
decay of π0

○ calorimetric energy
○ depth of maximum 

development Xmax

Measuring Extensive Air Showers

  

➢ EM and muonic components 
formed by the decay of π+/- 
and K+/-.
○ lateral distribution
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The Top-Down Method

For an observed shower of a given energy and arrival direction
➢ Find a simulated shower that has a similar longitudinal profile in order to 

constrain the electromagnetic component.
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The Top-Down Method

For an observed shower of a given energy and arrival direction
➢ Find a simulated shower that has a similar longitudinal profile in order to 

constrain the electromagnetic component.

➢ Compare the observed signal at ground with the simulated one → any 
discrepancy is caused by the muons.
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The Top-Down Method

For an observed shower of a given energy and arrival direction
➢ Find a simulated shower that has a similar longitudinal profile in order to 

constrain the electromagnetic component.

➢ Compare the observed signal at ground with the simulated one → any 
discrepancy is caused by the muons.
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Simulation and single Offline FD 
reconstruction of CONEX showers

Objective: find a simulated shower 
with the best longitudinal profile 
match. 

CORSIKA
Full MC simulation of the best 

CONEX shower and hybrid 
reconstruction 

Objective: obtain the ground 
signal.
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The Sibyll* mockup dataset

➢ Mock-up data: Sibyll* hadronic model→ 
modification of Sibyll 2.3d to artificially 
increase the number of muons.

(Talk by F. Riehn on Thursday morning.)
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The Sibyll* mockup dataset

● Primary particles: proton & iron

● Energy range: 18.8 < lg(E/eV) < 19.2

● Zenith angle: 𝜃 < 60 deg

● Quality cuts applied to obtain events with 
well-measured longitudinal profiles.

● Number of showers: 800 proton & 800 
iron.

➢ Mock-up data: Sibyll* hadronic model→ 
modification of Sibyll 2.3d to artificially 
increase the number of muons.

(Talk by F. Riehn on Thursday morning.)
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CONEX simulations

● We select the Sibyll 2.3d model to try and match the Sibyll* mockup dataset.

● Same CORSIKA, low-energy hadronic model and detector reconstruction software 
versions as the one used to produce the Sibyll* mockup dataset are chosen. 

● Simulation input specifying energy & direction of the shower to be matched.

● Single FD reconstruction of CONEX showers.

Finding a simulated shower whose longitudinal profile matches the one of the input shower.
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CONEX simulations

● We select the Sibyll 2.3d model to try and match the Sibyll* mockup dataset.

● Same CORSIKA, low-energy hadronic model and detector reconstruction software 
versions as the one used to produce the Sibyll* mockup dataset are chosen. 

● Simulation input specifying energy & direction of the shower to be matched.

● Single FD reconstruction of CONEX showers.

Finding a simulated shower whose longitudinal profile matches the one of the input shower.

Best CONEX selection

● Run and reconstruct thousands of CONEX showers.

● Select the CONEX shower producing the best fit with the longitudinal profile of the input 
shower and whose reconstructed Xmax  , Ecal  , dE/dXmax are within uncertainties of the 
input shower.
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● Test → 800 proton showers from mockup dataset and matched with CONEX showers 
simulated with proton primaries.

      

CONEX simulations
Finding a simulated shower whose longitudinal profile matches the one of the input shower.
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● Test → 800 proton showers from mockup dataset and matched with CONEX showers 
simulated with proton primaries.

      

CONEX simulations
Finding a simulated shower whose longitudinal profile matches the one of the input shower.
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CORSIKA simulations

● Input card similar to the CONEX one - same SEEDS.

● Full Monte Carlo simulation with information on the ground distribution of particles 
retrieved.

● Multiple hybrid reconstructions (SD +FD).

● The best reconstruction is selected using the same method as the one used to 
find the best CONEX.

NOTE: the transition from CONEX to full Monte Carlo simulations preserve the 
simulated longitudinal profile.

Full Monte Carlo simulation and Offline reconstructions of the best CONEX shower.
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CORSIKA simulations
Full Monte Carlo simulation and Offline reconstructions of the best CONEX shower.

Distribution of the signal at a 1000 m from the shower core
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CORSIKA simulations
Full Monte Carlo simulation and Offline reconstructions of the best CONEX shower.

Distribution of the signal at a 1000 m from the shower core

Universal muon 
parametrization
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CORSIKA simulations
Full Monte Carlo simulation and Offline reconstructions of the best CONEX shower.

Distribution of the signal at a 1000 m from the shower core

Universal muon 
parametrization

Application to the final 
Sibyll* proton input dataset
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Results 

<S1000 > [VEM] <S𝜇 > [VEM]

Sibyll 2.3d (TD) 30.72 ± 0.41 21.81 ± 0.25

Sibyll* (mockup) 40.82 ± 0.52 31.99 ± 0.36

Summary and rescaling factors
protons
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Results 
Summary and rescaling factors

➢ The true muon signal ratio is 1.47 ± 0.02.

➢ In reality, this quantity is not accessible when dealing with real hybrid events since we 
do not know the composition on an event-by-event basis.

protons

Sibyll 2.3d 

Sibyll*

<S1000 > [VEM] <S𝜇 > [VEM]

Sibyll 2.3d (TD) 30.72 ± 0.41 21.81 ± 0.25

Sibyll* (mockup) 40.82 ± 0.52 31.99 ± 0.36

➢ BUT, the Top-Down paradigm and 
the matching of the longitudinal 
profile allows us to write the 
rescaling factor:

which gives us a ratio of  1.46 ± 0.03. (derivation in back-up)
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Results 
Summary and rescaling factors

iron

<S1000 > [VEM] <S𝜇 > [VEM]

Sibyll 2.3d (TD) 35.32 ± 0.46 28.58 ± 0.31

Sibyll* (mockup) 48.68 ± 0.61 41.42 ± 0.45
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Results 
Summary and rescaling factors

➢ The true muon signal ratio is 1.45 ± 0.02.

➢ Rescaling factor:

which gives us a ratio of  1.47 ± 0.03.

iron

Sibyll 2.3d 

Sibyll*

<S1000 > [VEM] <S𝜇 > [VEM]

Sibyll 2.3d (TD) 35.32 ± 0.46 28.58 ± 0.31

Sibyll* (mockup) 48.68 ± 0.61 41.42 ± 0.45
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Results 
Heitler-Matthews coefficient

➢ The Heitler-Matthews 𝛽 coefficient represents the slope of the change in the muon content 
as a function of the primary mass.
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Results 
Heitler-Matthews coefficient

➢ The Heitler-Matthews 𝛽 coefficient represents the slope of the change in the muon content 
as a function of the primary mass.

➢ We apply the rescaling factor and
obtain the rescaled model trend.
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Results 
Heitler-Matthews coefficient

➢ The Heitler-Matthews 𝛽 coefficient represents the slope of the change in the muon content 
as a function of the primary mass.

➢ We apply the rescaling factor and
obtain the rescaled model trend.

➢ We can compare to the true trend from
our mockup dataset.

Very good agreement between 
the true and the rescaled model 
trends!
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Summary

● Application of the Top-Down method to the muon-rich 
Sibyll* hadronic model, using Sibyll 2.3d simulations.

● The average muon signals of Sibyll*proton and iron 
primaries are well recovered with the rescaled Sibyll 2.3d.

● The calculated 𝛽 coefficient of the rescaled Sibyll 2.3d is 
well within the uncertainties of the true 𝛽 coefficient of 
Sibyll*.
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Summary & Outlook

● Application of the Top-Down method to the muon-rich 
Sibyll* hadronic model, using Sibyll 2.3d simulations.

● The average muon signals of Sibyll*proton and iron 
primaries are well recovered with the rescaled Sibyll 2.3d.

● The calculated 𝛽 coefficient of the rescaled Sibyll 2.3d is 
well within the uncertainties of the true 𝛽 coefficient of 
Sibyll*.
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● Extend the input dataset to include intermediate mass primaries.

● For a dataset of unknown event-by-event composition: implement the probability of an observed 
shower to have a given primary mass based on its Xmax and on composition fraction 
measurements.

● Apply the method to real hybrid events.
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Back-up
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The Sibyll* mockup dataset
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Results

➢ We define:

Input dataset TD simulations
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Results
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Rescaling factor

{
→

Matching the longitudinal profiles gives:

Rescaling MC to get the 
input signal gives:

Hence:

The total signal is the sum 
of the EM and muonic 
component:
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➢ For an input event n, the rescaling factor for 
a simulated primary i must be weighted by 
its probability of having the mass i:

where

is “the prior on the probability that an event n 
with Xmax,n has mass i, given the mass fractions fi in 
the interval 1019 eV”.

and

The new way to calculate the rescaling factors

● We want to take into account the probability of a given event to be an proton or an iron 
primary based on its Xmax value → Use Gumbel functions to estimate these probabilities.

Pi = Gumbel PDF
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