A combined analysis from the WHISP working group on the muon data from ten extensive air shower experiments

J.C. Arteaga-Velázquez for the WHISP working group Universidad Michoacana, Morelia, Mexico

Content

- 1. Introduction
- 2. Experimental conditions
- 3. Muon phase space
- 4. Combined analysis
- 5. Summary

J.C. Arteaga-WHISP's combined analysis of μ data

1) Introduction

- different experiments.
- The Working group on Hadronic Interactions and Shower Physics (WHISP): ► EAS-MSU, IceCube, KASCADE-Grande, NEVOD-DECOR, Pierre Auger, SUGAR,
 - Telescope Array and Yakutsk EAS Array
 - experiments.
 - Combined analysis of the data.
 - Common parameter for the comparisons with the models (z-scale).
 - Correction for differences in the primary energy scale among the instruments. [H.P. Dembinski et al., EPJ Web Conf. 210 (2019) 02004]

J.C. Arteaga-WHISP's combined analysis of μ data

Discrepancies between muon lateral density data and predictions of high-energy hadronic interaction models between 100 PeV and 10 EeV have been observed in

Compilation of muon density measurements in air showers from 11 cosmic-ray

[D. Soldin et al., PoS (ICRC2021) 349]

2

1) Introduction

- Progress report:
 - Updated results from Yakutsk and SUGAR.
 - Data from Haverah Park [L. Cazon et al., PoS(ICRC2023) 431].
 - [J.C. Arteaga-Velázquez et al., PoS(ICRC2023) 376].
 - Review of the detector characteristics.
 - Summary of the properties of the collected data.

J.C. Arteaga-WHISP's combined analysis of μ data

Estimations from KASCADE-Grande data using the energy scale of the Pierre Auger Observatory

1) Introduction

Telescope array USA

Muon data for WHISP analysis

Haverah Park UK (1968-1987)

HiRes-MIA USA (1999-2005)

Credit images: PAO, TA, ICECUBE, Yakutsk, NEVOD-DECOR, SUGAR, KASCADE-Grande, EAS-MSU, AGASA, HiRes, Haverah Park.

KASCADE-Grande Germany (1996-2012)

Yakutsk, Russia

AGASA Japan (1990-2004)

NEVOD-DECOR Russia

SUGAR Australia (1968-1979)

Credit map: NASA.

2) Experimental conditions

Experiment	Muon detection
IceCube/IceTop	Ice Cherenkov stations
TA	Plastic scintillator array
Pierre Auger	Surface water Cherenkov array + Underground scintillator modules
HiRes-MIA	Underground scintillator counters
EAS-MSU	Underground Geiger-Mueller count
SUGAR	Underground liquid-scintillator tar
Yakutsk	Underground scintillation detector
Haverah Park	Shielded liquid scintillator detecto
AGASA	Shielded scintillator array
KASCADE-Grande	Shielded scintillation detectors
NEVOD-DECOR	Tracking detector + Water Cherenkov Calorimeter

J.C. Arteaga-WHISP's combined analysis of μ data

Vertical atmospheric depth

ISVHECRI 2024, Puerto Vallarta, Mx

2) Experimental conditions

Experiment	E	Muon contribution	Full detection	Vertical atm.
	estimation	in E estimator	simulation	depth (g/cm ²)
EAS-MSU	SD	(10%, 50%)	\checkmark	990
HiRes-MIA	FD	(-10%, 0%)	\checkmark	870
Pierre Auger				
FD+SD	FD	(-10%, 0%)	\checkmark	880
UMD+SD	FD/SD	(-10%, 0%)/< 10%	\checkmark	880
SUGAR	Flux		×	1015
KASCADE-Grande	Flux		\checkmark	1022
Telescope Array	FD	(-10%, 0%)	\checkmark	880
NEVOD-DECOR	Flux		×	1014
Haverah Park	SD	> 50%	×	1016
IceCube/IceTop	SD	< 10%	\checkmark	690
Yakutsk EAS array	SD	(10%, 50%)	\checkmark	1020
AGASA	SD	(10%, 50%)	×	920

SD: Surface detector FD: Fluorescence detector SD/FD: Internal calibration between SD and FD Flux: Comparison of total spectrum with a spectrum of reference

J.C. Arteaga-WHISP's combined analysis of μ data

ISVHECRI 2024

[J.C. Arteaga-Velázquez et al., PoS(ICRC2023) 466]

6

3) Muon phase space

J.C. Arteaga-WHISP's combined analysis of μ data

ISVHECRI 2024

Muon energy threshold at production site vs effective atmospheric depth

 $E_{\mu,\text{prod}} = E_{\mu,\text{min}} \sec(\theta) + \frac{dE_{\mu}}{dX} \left[X \sec(\theta) - 400 \text{ g/cm}^2\right]$

ISVHECRI 2024, Puerto Vallarta, Mx

3) Muon phase space

J.C. Arteaga-WHISP's combined analysis of μ data

Lateral distance vs primary energy

- detector response and analysis chain.
- Use z-scale for comparison with models

 $z = \frac{\ln\langle N|}{\ln\langle N|}$

- $\langle N_{\mu}^{\rm det} \rangle$ Measured value $\langle N_{\mu,p}^{\text{det}} \rangle (\langle N_{\mu,Fe}^{\text{det}} \rangle)$ MC simulations for proton (iron nuclei)
- Eliminates energy dependence of data and cancel possible linear biases.

J.C. Arteaga-WHISP's combined analysis of μ data

Data is compared with MC simulations (protons/iron) of air shower development,

$$\frac{N_{\mu}^{\text{det}}\rangle - \ln\langle N_{\mu,p}^{\text{det}}\rangle}{N_{\mu,Fe}^{\text{det}}\rangle - \ln\langle N_{\mu,p}^{\text{det}}\rangle}$$

9

J.C. Arteaga-WHISP's combined analysis of μ data

- Correct measurements for differences simulations.
- Since

$$N_{\mu} \,=\, A^{1-\beta}\,\cdot\,(E/\xi_C)^{\beta}$$

then 20% offset in energy scale (E) => 18%

Apply energy adjustment to match energy a is located between spectra from Pierre Aug

Correct measurements for differences in the energy scale between data and MC

[J. N	latthews, Astrop. Phys. 22,	(2005) 3
$\beta = 0.9; \xi_0$	c = 100 GeV; A = Ate	omic M
shift in muon content (N_{μ})	Experiment	E _{data} /
n, EPJ Web of 283, 02003 (2023)	EAS-MSU HiRes-MIA Pierre Auger FD+SD UMD+SD SUGAR KASCADE-Grande Telescope Array NEVOD-DECOR Haverah Park IceCube/IceTop Yakutsk EAS array	

ISVHECRI 2024, Puerto Vallarta, Mx

4) Combined analysis

The z-scale after applying the energy shifts for common energy calibration.

J.C. Arteaga-WHISP's combined analysis of μ data

Preliminary

4) Combined analysis

• Muon deficit in MC is observed for $E > 10^{17}$ eV in Auger, TA, NEVOD-DECOR, SUGAR and AGASA.

J.C. Arteaga-WHISP's combined analysis of μ data

Preliminary

4) Combined analysis

▶ No deficit in MC is seen for Haverah Park, Yakutsk and KASCADE-Grande. Preliminary

J.C. Arteaga-WHISP's combined analysis of μ data

expectations and a tendency to lie between the GSF predictions or below them.

J.C. Arteaga-WHISP's combined analysis of μ data

Remove mass dependence on z-scale: Substract zmass, predicted by the Global-Spline-Fit (GSF) model of cosmic rays [H. Dembinski et al., arxiv: 1711.11432astro-ph.He], from the z values.

► Above 10¹⁷ eV, we observe two trends in the data: an excess in measurements over GSF

ISVHECRI 2024, Puerto Vallarta, Mx

Classification according to the muon contamination in the estimated primary energy.

J.C. Arteaga-WHISP's combined analysis of μ data

ISVHECRI 2024, Puerto Vallarta, Mx

Classification according to the muon contamination in the estimated primary energy.

J.C. Arteaga-WHISP's combined analysis of μ data

Classification according to the muon contamination in the estimated primary energy.

J.C. Arteaga-WHISP's combined analysis of μ data

Classification according to the muon contamination in the estimated primary energy.

J.C. Arteaga-WHISP's combined analysis of μ data

ISVHECRI 2024, Puerto Vallarta, Mx

5) Summary

- 1 PeV and 10 EeV.
- calibrated with the Auger energy scale.
- models, etc. must be studied.

J.C. Arteaga-WHISP's combined analysis of μ data

A progress report on the WHISP meta-analysis of different shower muon measurements with several air-shower experiments was presented for energies between

In the ultra-high energy regime, Pierre Auger Observatory, Telescope Array, SUGAR, AGASA and NEVOD-DECOR show an excess of muons in the data with regard to **MC predictions** with post-LHC hadronic interaction models for p and Fe primaries.

The discrepancy is not observed by Yakutsk, Haverah Park and KASCADE-Grande

▶ To understand these differences the experimental conditions, simulation characteristics, detection methods, energy calibrations techniques, low-energy hadronic interaction

Acknowledgements

- Working Group for the elaboration of this work.
- Consejo de la Investigación Científica de la Universidad Michoacana.

J.C. Arteaga-WHISP's combined analysis of μ data

The WHISP working group thanks the support, comments, suggestions, data and plots provided by the EAS-MSU, IceCube, KASCADE-Grande, NEVOD-DECOR, Pierre Auger, SUGAR, Telescope Array and Yakutsk EAS Array Collaborations and the Haverah Park

J.C.A.V. wants to thank the partial support from CONACYT (grant A1-S-46288) and the

ISVHECRI 2024, Puerto Vallarta, Mx

Global-Spline-Fit (GSF) model

J.C. Arteaga-WHISP's combined analysis of μ data

[H. Dembinski et al., arxiv: 1711.11432astro-ph.He]

