High-energy Hadronic Interaction Models: Insights from the Pierre Auger Observatory

on behalf of the Pierre Auger Observatory

Ruben Conceição

ISVHECRI 2024, Puerto Vallarta, Mexico, July 9th 2024

component

component

Ruben Conceição

UHECR & Air Shower Physics

Pierre Auger Observatory

- 4 Fluorescence Detectors (FD)
- 6 x 4 Fluorescence Telescopes

Area: 3000 km²

Located in the Pampa Amarilla, Mendoza, Argentina Altitude: 1400 m a.s.l.

- 1600 Surface Detectors (SD) Stations
- SD stations spaced by 1.5 km
- Covering an area of 3000 km²

WCD + Fluorescence Detector

Pierre Auger Observatory (Low energy extensions)

\diamond **HEAT**

♦ 3 additional FD telescopes with a high elevation FoV 30° - 60°, $E > 10^{17} \, {\rm eV}$

- ♦ Infill Denser array
 - ♦ 433 m grid with 19 stations
 - \Rightarrow 750 m grid with 61 stations
- AMIGA Buried scintillators (muon detectors)
 - ♦ 19 (61) stations in 433 (750) m array, $10^{16.5} < E/eV < 10^{19}$
 - \Rightarrow 30 (60) m² scintillator modules
 - ♦ 2.3 m below ground

Auger Engineering Radio Array (AREA)

♦ 153 antennas in 17 km², $E > 4 \times 10^{18} \text{ eV}$

Ultra High Energy Cosmic Rays

A hybrid Observatory

Fluorescence Detector

Quasi-calorimetric energy measurement

♦ ~ 15% duty cycle

Surface Detector

Sensitive to both e.m. and muonic shower components

Hadronic Interaction Models

What is our current understanding of air showers?

The EAS muon puzzle @ Auger

Eur.Phys.J.C 80 (2020) 8, 751

Phys.Rev.Lett. 126 (2021) 15, 152002

Auger

800

data

Analysis of the (X_{max}, S_{1000}) distribution

Explore hybrid FD-SD events and **fit the measured two-dimensional** (X_{max} , S_{1000}) distributions using templates for simulated air showers produced with hadronic interaction models

Phys.Rev.D 109 (2024) 10, 102001

Analysis of the (X_{max}, S_{1000}) distribution

None of the post-LHC hadronic interaction models can describe the Auger (X_{max} , S_{1000}) data, even considering the systematic uncertainties

Systematic uncertainties

Ruben Conceição

Phys.Rev.D 109 (2024) 10, 102001

Muon puzzle

Phys.Rev.D 109 (2024) 10, 102001

Allow for a change in the rescaling of the **signal on** the ground produced by the hadronic shower component at 1000 m with a factor, R_{had}

 $R_{\rm had} > 1$ for all tested hadronic interaction models -EAS muon puzzle

In accordance with previous Auger results Phys.Rev.Lett. 117 (2016) 19, 192001

Poor agreement between data and simulations

Phys.Rev.D 109 (2024) 10, 102001

Allow simultaneously for an ad-hoc **shift on the** X_{max} scale and a change in the rescaling of the **signal on** the ground produced by the hadronic shower component at 1000 m with a factor, R_{had}

Muon puzzle + Shift in X_{max} scale

Extract the X_{max} **from SD-only events**

Accepted in PRL + PRD (2024)

Extract the X_{max} **from SD-only events**

Exploit the SD traces using a Deep Neural Network

Accepted in PRL + PRD (2024)

Accepted in PRL + PRD (2024)

Accepted in PRL + PRD (2024)

EAS muon fluctuations

Phys.Rev.Lett. 126 (2021) 15, 152002

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X_{max} data

EAS muon fluctuations

Phys.Rev.Lett. 126 (2021) 15, 152002

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X_{max} data L. Cazon, RC, F. Riehn, PLB 784 (2018) 68-76

 α_1 is the fraction of energy going into the hadronic sector in the first interaction

$$\sigma(\alpha_1) \rightarrow 70 \% \sigma(N_\mu)$$

EAS muon fluctuations

Phys.Rev.Lett. 126 (2021) 15, 152002

The muon relative fluctuations are in agreement with the mass composition expectations derived from the analysis of X_{max} data

L. Cazon, RC, F. Riehn, PLB 784 (2018) 68-76

 α_1 is the fraction of energy going into the hadronic sector in the first interaction

$$\sigma(\alpha_1) \rightarrow 70 \% \sigma(N_\mu)$$

Suggestion that muon deficit might be related with description of low energy interactions

Many other EAS measurements...

Phys.Rev.Lett. 109 (2012) 062002

JCAP 1903 (2019) no.03, 018

Measurement of the proton-air crosssection at E~10¹⁸ eV Measurement of average e.m. longitudinal profile shape Phys.Rev.D 96 (2017) 12, 122003

PoS (ICRC2023) 339

Measurement of time profiles of the signals recorded with the water-Cherenkov detectors

The number of muons measured in hybrid events

Pierre Auger Observatory The future of the observatory

Auger Prime

New electronics (UUB) and Scintillators(SSD)

Underground Muon Detector (UMD)

Auger Phase I data taking from 2004 on (from 2008 with the full array) to 2021 Auger Phase II data taking from 2022 to 2035

Ruben Conceição

(see A. Castellina presentation, tomorrow!)

High dynamic range PMTs

(A plethora of measurements to fully understand the shower)

Multi-hybrid shower events

Acknowledgements

Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

REPÚBLICA PORTUGUESA

