Highlights from GRAPES-3

ISVHECRI 2024 8th July 2024

M. Rameez for the GRAPES-3 Collaboration

GRAPES-3 Collaboration

- 1. Tata Institute of Fundamental Research, Mumbai
- 2. J.C. Bose Institute, Kolkata
- 3. Indian Institute of Science & Edu. Res., Pune
- 4. Aligarh Muslim University, Aligarh
- 5. Indian Institute of Technology, Kanpur
- 6. North Bengal University, Silguri
- 7. Vishwakarma Inst. Of Information Tech., Pune
- 8. Utkal University, Bhubaneswar
- 9. Dibrugarh University, Dibrugarh
- 10. Tezpur University, Tezpur
- 11. Indian Institute of Technology, Jodhpur
- 12. Indian Institute of Technology, Indore
- 13. Amity University, Noida
- 14. Institute of Physics, Bhubaneswar

- 1. Osaka City University, Osaka
- 2. Aichi Institute of Technology, Aichi
- 3. Chubu University, Kasugai, Aichi
- 4. Hiroshima City Univeristy, Hiroshima
- 5. Kochi University, Kochi
- 6. Nagoya University, Nagoya
- 7. ICRR, Tokyo University

Gamma Ray Astronomy at PeV EnergieS - 3

Observables

Shower Front Correction

Muon Telescope

- 16 muon modules
- 3712 PRCs
- Area: 560 m²
- Energy threshold: sec(θ) GeV
- 169 directions covering 2.3 sr
- 4° angular resolution
- 4 billion muons / day

Т

11.4° N, 76.7° E, 2200 m amsl

Physics Analyses

Atmospheric Acceleration

Muon Image of 1 Dec 2014

Cloud Movement

FIG. 7. Top eight panels show affected directions for successive 2 min exposures starting December 1, 2014 at 10:42 UT. Bottom eight panels show estimated potentials needed to reproduce ΔI_{μ} shown in the corresponding panel above for a 20 min duration (10:41–11:00 UT). Maximum potentials of 1.8, 1.4, 1, 1, 1.1, 1.2, 1.3, and 1.4 GV (mean = 1.3 GV) observed for panels labeled 1 through 8. Angular velocity of 6.2° min⁻¹ inferred for directions (i) **A** to **B**, and (ii) **C** to **D** in northern and southern FOVs, respectively, are shown in Fig. 1(d). Vertical bar in each bottom panel corresponds to $\pm 1\sigma$ error.

C.T.R. Wilson's prediction of 1 GV 90Y ago

Measurement of 0.13 GV

Mean V = 1.3 GV

B. Hariharan et al., PRL 122, 105101 (2019) (Focus article & Editors' suggestion)

Solar & Heliospheric physics

Transient Weakening of GMF

Transient Weakening of GMF

P.K. Mohanty et al., PRL 117, 171101 (2016) P.K. Mohanty et al., PRD 97, 082001 (2018)

B. Hariharan et al., JASTP 243 (2023) 106005

Cosmic Rays

E = 1 TeV - 10 PeV

The Moon Shadow

D. Pattanaik et al., PRD 106, 022009 (2022)

Cosmic Ray Anisotropy

M. Chakraborty et al., Astrophys.J. 961 (2024) 1, 87

 3.7×10^9 EAS events from 1st January 2013 to 31st December 2016 (1273.1 days)

Median Energy 16 TeV

Region B – 4.7 σ

Li & Ma

Cosmic Ray Anisotropy

Region A

M. Chakraborty et al., Astrophys.J. 961 (2024) 1, 87

Analysis using anti sidereal time

Not a spurious sidereal effect

Results with Muon cut

- Showers producing at least 2 tracks in the muon detector
- No of events: 1.9×10^9
- Change in strength of Region A : (6.5 \pm 1.3) \times 10 $^{-4}$ to (5.7 \pm 1.8) \times 10 $^{-4}$
- Change in strength of Region B : $(4.9 \pm 1.4) \times 10^{-4}$ to $(6.5 \pm 2.0) \times 10^{-4}$
- Change is within 1σ
- Hence, primary contribution to these structures is hadronic.

Proton spectrum measurements

F. Varsi et al., *Phys.Rev.Lett.* 132 (2024) 5, 051002

Starting with 1.75×10^9 EAS triggered events between 1st January 2014 and 26th October 2015

Core within Fiducial area $\theta < 17.8^{\circ}$ $N_e > 10^4$ (90% trigger efficiency) $0.02 \le s \le 1.98$ 7.81×10^6 EAS over 460 day livetime

Fiducial Area

Relative composition of proton primaries obtained using Gold's unfolding on the muon multiplicity distributions

P. Lipari and S. Vernetto, APP 120 (2020) 102441

Similar hardening seen by DAMPE at ~150 TeV Alemanno et al *Phys.Rev.D* 109 (2024)

Bonus: Tonga Volcano Eruption

Time (UT)

Figure 3: Percentage rate variation of (a) G3SD and (b) G3MT.

B. Hariharan et al., PoS(ICRC2023)530

15 January 2022

Future - New Muon Telescope under construction

<u>Summary</u>

- Gigavolt potential in thundercloud
- Detected a short muon burst triggered by transient weakening of geomagnetic field
- Dependence of CR parallel mean free path on rigidity & solar activity
- Shower front curvature correction
- Moon shadow
- Cosmic ray anisotropy at TeV energies
- Hardening in the proton spectrum at ~ 166 TeV
- Moving towards blinded analyses and Machine learning based reconstructions
- More in the pipeline
 - Spectrum and composition of heavier elements
 - Crab
 - Gamma ray transients
 - Joint CR anisotropy analyses with IceCube and HAWC

• New muon telescope + extended scintillator array ~ 10% Crab in 1 year

Backup

Kojima et. al. Phys.Rev.D 109 (2024) 6, 063011

Kojima et. al. Phys.Rev.D 109 (2024) 6, 063011

Bonus: Tonga Volcano Eruption

- Biggest after eruption of Krakatoa, Indonesia (1883)
- 5-200 megatons of TNT (~200 megatons of TNT)
- ~150 billion litres of water into stratosphere (~10%)
- Expelled ~10 km³ rock & ash (~4000 pyramids)
- Record height of >55 km
- Raise in global temperature
- May dissipate in decade
- Record-breaking shock wave (pressure wave)

AGNs, SNRs, GRBs...

black holes

Gamma rays

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

*

Neutrinos

p

They are weak, neutral particles that point to their sources and carry information from deep within their origins.

V

Earth

air shower

Cosmic rays

They are charged particles and are deflected by magnetic fields.

<u>Timeline</u>

Properties of the Cloud

- Mean V = 1.3 GV
- Lin. Vel. = 60 km hr⁻¹
- Ang. Vel. = 6.2° min⁻¹
- Height = 11.4 km amsl
- Radius ≥ 11 km
- Area \geq 380 km²
- $C \ge 0.85 \ \mu F$
- Q ≥ 1100 C
- E ≥ 720 GJ
- P ≥ 2 GW

- Comparable to biggest nuclear reactor / hydroelectric / thermal power plants
- Enough to power a big town

B. Hariharan et al., PRL 122, 105101 (2019) (Focus article & Editors' suggestion)

Gamma Ray Detection

Neutron Monitor Data

Shower Front Correction

V.B. Jhansi et al., JCAP07(2020)024

Advantages

Cosmic Ray Spectra of Various Experiments

Monte Carlo Simulation

Kojima et. al. Phys.Rev.D 109 (2024) 6, 063011