Highlights from GRAPES-3

GRAPES-3 Collaboration

1. Tata Institute of Fundamental Research, Mumbai
2. J.C. Bose Institute, Kolkata
3. Indian Institute of Science \& Edu. Res., Pune
4. Aligarh Muslim University, Aligarh
5. Indian Institute of Technology, Kanpur
6. North Bengal University, Silguri
7. Vishwakarma Inst. Of Information Tech., Pune
8. Utkal University, Bhubaneswar
9. Dibrugarh University, Dibrugarh
10. Tezpur University, Tezpur
11. Indian Institute of Technology, Jodhpur
12. Indian Institute of Technology, Indore
13. Amity University, Noida
14. Institute of Physics, Bhubaneswar

15. Osaka City University, Osaka
16. Aichi Institute of Technology, Aichi
17. Chubu University, Kasugai, Aichi
18. Hiroshima City Univeristy, Hiroshima
19. Kochi University, Kochi
20. Nagoya University, Nagoya
21. ICRR, Tokyo University

Gamma Ray Astronomy at PeV EnergieS - 3

Observables

Shower Front Correction

Traditional (Plane fit) Improved (Cone fit)

Curvature correction with shower age and size

Muon Telescope

- 16 muon modules
- 3712 PRCs
- Area: $560 \mathrm{~m}^{2}$
- Energy threshold: sec($\theta) \mathrm{GeV}$
- 169 directions covefing 2.3 sr
- 4° angular resolution

Observables

$11.4^{\circ} \mathrm{N}, 76.7^{\circ} \mathrm{E}, 2200 \mathrm{~m}$ amsl

Physics Analyses

Solar \& Heliospheric

$10^{9} \quad 10^{10} \quad 10^{11} \quad 10^{12} \quad 10^{13} 10^{14} \quad 10^{15} \quad 10^{16}(\mathrm{eV})$

Atmospheric Acceleration

1 Dec 2014-18 minutes long

Muon Image of 1 Dec 2014

Cloud Movement

FIG. 7. Top eight panels show affected directions for successive 2 min exposures starting December 1, 2014 at 10:42 UT. Bottom eight panels show estimated potentials needed to reproduce ΔI_{μ} shown in the corresponding panel above for a 20 min duration (10:41-11:00 UT). Maximum potentials of $1.8,1.4,1,1,1.1,1.2,1.3$, and 1.4 GV (mean $=1.3 \mathrm{GV}$) observed for panels labeled 1 through 8. Angular velocity of $6.2^{\circ} \mathrm{min}^{-1}$ inferred for directions (i) A to \mathbf{B}, and (ii) \mathbf{C} to \mathbf{D} in northern and southern FOVs, respectively, are shown in Fig. 1(d). Vertical bar in each bottom panel corresponds to $\pm 1 \sigma$ error.

C.T.R. Wilson's prediction of 1 GV 90Y ago

Measurement of 0.13 GV

Mean V $=1.3$ GV
B. Hariharan et al., PRL 122, 105101 (2019)
(Focus article \& Editors‘ suggestion)

Solar \& Heliospheric physics

Transient Weakening of GMF

P.K. Mohanty et al., PRL 117, 171101 (2016)
P.K. Mohanty et al., PRD 97, 082001 (2018)

Transient Weakening of GMF

P.K. Mohanty et al., PRL 117, 171101 (2016)
P.K. Mohanty et al., PRD 97, 082001 (2018)

Detection also by Scintillator Detector

B. Hariharan et al., JASTP 243 (2023) 106005

Cosmic Rays

$$
\mathrm{E}=1 \mathrm{TeV}-10 \mathrm{PeV}
$$

The Moon Shadow

Cosmic Ray Anisotropy

M. Chakraborty et al., Astrophys.J. 961 (2024) 1, 87
3.7×10^{9} EAS events from $1^{\text {st }}$ January 2013 to $31^{\text {st }}$ December 2016 (1273.1 days)

Median Energy 16 TeV

Region A-6.8 σ
Region B-4.7 σ
Li \& Ma

Cosmic Ray Anisotropy

	Region A $\left(\times 10^{-4}\right)$	Region $\mathrm{B}\left(\times 10^{-4}\right)$
ARGO-YBJ	10.0	5.0
HAWC	$(8.5 \pm 0.6 \pm 0.8)$	$(5.2 \pm 0.6 \pm 0.7)$
GRAPES-3	$(8.9 \pm 2.1 \pm 0.3)$	$(5.6 \pm 1.8 \pm 0.1)$

Region A

Region B

M. Chakraborty et al., Astrophys.J. 961 (2024) 1, 87

Not a spurious sidereal effect

Analysis using anti sidereal time

Results with Muon cut

- Showers producing at least 2

- No of events: 1.9×10^{9}
- Change in strength of Region

$$
\begin{aligned}
& A:(6.5 \pm 1.3) \times 10^{-4} \text { to } \\
& (5.7 \pm 1.8) \times 10^{-4}
\end{aligned}
$$

- Change in strength of Region $B:(4.9 \pm 1.4) \times 10^{-4}$ to $(6.5 \pm 2.0) \times 10^{-4}$
- Change is within 1σ
- Hence, primary contribution to these structures is hadronic.

Proton spectrum measurements

F. Varsi et al., Phys.Rev.Lett. 132 (2024) 5, 051002

Starting with 1.75×10^{9} EAS triggered events between $1^{\text {st }}$ January 2014 and $26^{\text {th }}$ October 2015

Core within Fiducial area $\theta<17.8^{\circ}$
$N_{e}>10^{4}$ (90\% trigger efficiency) $0.02 \leq s \leq 1.98$ 7.81×10^{6} EAS over 460 day livetime

Fiducial Area

Relative composition of proton primaries obtained using Gold's unfolding on the muon multiplicity distributions

P. Lipari and S. Vernetto, APP 120 (2020) 102441

Similar hardening seen by DAMPE at ${ }^{\sim} 150 \mathrm{TeV}$ Alemanno et al Phys.Rev.D 109 (2024)

Bonus: Tonga Volcano Eruption

15 January 2022

Figure 3: Percentage rate variation of (a) G3SD and (b) G3MT.
B. Hariharan et al., PoS(ICRC2023)530

Future - New Muon Telescope under construction

Summary

- Gigavolt potential in thundercloud
- Detected a short muon burst triggered by transient weakening of geomagnetic field
- Dependence of CR parallel mean free path on rigidity \& solar activity
- Shower front curvature correction
- Moon shadow
- Cosmic ray anisotropy at TeV energies
- Hardening in the proton spectrum at $\sim 166 \mathrm{TeV}$
- Moving towards blinded analyses and Machine learning based reconstructions
- More in the pipeline
- Spectrum and composition of heavier elements
- Crab
- Gamma ray transients
- Joint CR anisotropy analyses with IceCube and HAWC
- New muon telescope + extended scintillator array ~ 10% Crab in 1 year

Backup

C.R. Parallel mean free path dependence on rigidity and solar activity

Kojima et. al. Phys.Rev.D 109 (2024) 6, 063011

Kojima et. al. Phys.Rev.D 109 (2024) 6, 063011

Bonus: Tonga Volcano Eruption

- Biggest after eruption of Krakatoa, Indonesia (1883)
- 5-200 megatons of TNT (~200 megatons of TNT)
- ~ 150 billion litres of water into stratosphere ($\sim 10 \%$)
- Expelled $\sim 10 \mathrm{~km}^{3}$ rock \& ash (~ 4000 pyramids)
- Record height of $>55 \mathrm{~km}$
- Raise in global temperature
- May dissipate in decade
- Record-breaking shock wave (pressure wave)

Muon Intensity Variation

Timeline

Properties of the Cloud

- Mean V=1.3 GV
- Lin. Vel. $=60 \mathrm{~km} \mathrm{hr}^{1}$
- Ang. Vel. $=6.2^{\circ} \mathrm{min}^{-1}$
- Height $=11.4 \mathrm{~km}$ ams
- Radius $\geq 11 \mathrm{~km}$
- Area $\geq 380 \mathrm{~km}^{2}$
- $C \geq 0.85 \mu \mathrm{~F}$
- $Q \geq 1100 \mathrm{C}$
- $\mathrm{E} \geq 720 \mathrm{GJ}$
- $\mathrm{P} \geq 2 \mathrm{GW}$
- Comparable to biggest nuclear reactor / hydroelectric / thermal power plants
- Enough to power a big town
B. Hariharan et al., PRL 122, 105101 (2019) (Focus article \& Editors' suggestion)

Gamma Ray Detection

Neutron Monitor Data

Shower Front Correction

Advantages

Cosmic Ray Spectra of Various Experiments

Monte Carlo Simulation

Electric Potential (GV)

- $\Delta I_{\mu(\text { Peak })}$
$=(-2.0 \pm 0.2) \%$
- $V_{\text {Peak }}$

Kojima et. al. Phys.Rev.D 109 (2024) 6, 063011

