Cross-Sections

Particle Yields

Particle Yields

Proton and pion Air interactions at all energies

Cross-Section Reduced

- Probability for the particle to interact : directly related to X_{max}
- After TOTEM (CMS), new measurements by ALFA (ATLAS) with higher precision
 - p-p cross-section slightly too high in all models
 - Change by up to -10% at the highest energy

using most recent CR based measurements

Sensitivity to Hadronic Interactions

- Air shower development dominated by few parameters
 - mass and energy of primary CR
 - cross-sections (p-Air and (π-K)-Air)
 - (in)elasticity
 - multiplicity
 - <u>charge ratio</u> and baryon production
- Change of primary = change of hadronic interaction parameters
 - cross-section, elasticity, mult. ...

Theory AND data are important to constrain the hadronic model parameters. None of the two should be over-interpreted !

Pseudorapidity

- Angular distribution of newly produced particles
- New data at 13 TeV in p-p
 - Test extrapolation with different triggers
 - Sibyll has a clear difference with other models (and data) : too narrow !
- Detailed data at 5 TeV for p-Pb
 - Wrong multiplicity distributions in all models (before retune)

Improvements in EPOS LHC-R

10 ⁵

10

10 ³ .

10²

O+C

5

EPOS LHC

EPOS LHC-R

SIBYLL 2.3d

15

QGSJETII

10

ძთ/dA (mb)

- Number of limitations identified in EPOS LHC
- Problem with nuclear fragments
 - Double counting for single nucleons
 - Missing multifragment production
 - Now similar to other models
 - Significant impact on X_{max}
 fluctuations for nuclei

Simplified high mass diffraction and pion \circ exchange replaced by real emission (IP or π)

EPOS LHC-R interaction with Air (preliminary)

X max

+/- 20g/cm² is a realistic uncertainty band where is the center ?

- minimum given by QGSJETII-04 ((too) high multiplicity, low elasticity) ?
- maximum given by Sibyll 2.3d (low multiplicity, high elasticity) ?
- Taking into account new data, now EPOS shifted by +10g/cm² (~Sibyll)

Isospin Symmetry and Resonances

- Isospin symmetry used as an argument in models to justify 1:1:1 ratios in π or ρ mesons (or equal neutron/proton production)
 - But true only if u and d quarks have the same mass !
- Pions can be produced directly or via *ρ* resonance decay
 - Ratio $\pi^{0}/\pi^{+/-}$ very important for muon production

- More π° means less μ production

```
\blacksquare But \rho^{\circ} decay in \pi^{+/-}
```

- More ρ° means more μ production

• Mass asymmetry could lead to more ρ^{0} than $\rho^{+/-}$

→ Data not very constraining → use 20% asymmetry (high)

See TP ICRC 2023 contribution

Interactions in Air Showers

First simulations with up-to-date core-corona implementation:

- Simulations without core-corona but ρ asymmetry already have more muons

Ν

- Additional energy and mass dependent effect due to core-corona !
- First effect could be "tuned", less freedom for core-corona (from LHC)

First simulations with up-to-date core-corona implementation:

- Simulations without core-corona but ρ asymmetry already have more muons
 - Increase ~10 GeV muons
- Additional energy and mass dependent effect due to core-corona !
 - Parallel shift changing all muon energies
- First effect could be "tuned", less freedom for core-corona (from LHC)

Muon Puzzle Solved ?

EPOS LHC-R, first model producing a deeper X_{max} and more muons and being compatible with measured accelerator data (better at LHC) :

 \rightarrow Deeper X_{max} give larger <InA> reducing the gap with measured muon content

- Energy and mass dependent increase of muons due to core-corona further decrease the gap to reach Auger systematics
- What about low energy ? Less ρ° may be better not to have "too many" muons

Resonance Production

AND high resonance fraction is favored !

Resonance Production

 \rightarrow In proton-proton interactions, ratio 1:1:1 is not observed and high ρ ...

Isospin Breaking for Baryons

- NA49 data better reproduce with more neutrons than protons, but large uncertainties
- Large isospin breaking in EPOS LHC lead to additional baryons

→ But TOO large \rightarrow EPOS LHC-R corrected (5% assymmetry) !

Results for z-scale

