Impact of the Magnetic Horizon on the Interpretation of the Pierre Auger Observatory Spectrum and Composition Data

Juan Manuel González for the Pierre Auger Collaboration

CONICET

 10^{31}

1026

SPECTRUM AT THE SOURCES

SPECTRUM AT EARTH

- To infer the properties of UHECR's sources a combined fit to spectrum and depth of shower **maxima** (X_{max}) was carried out (*JCAP 04(2017)038, JCAP 05(2023)024*)
- Two populations of sources required: one dominating below a few EeV (L), and another above (H)
- Very hard spectrum required for the high-energy component > incompatible with expectations from diffusive shock acceleration, which are $\tilde{Q} \propto {\sf E}^{-2}$
- Can we explain this as a consequence of the **magnetic horizon effect** (MHE)?
- MHE: Low energy particles do not reach Earth if the diffusion time from the closest sources is larger than the age of the sources

MAGNETIC HORIZON EFFECT

- Extragalactic magnetic fields (EGMF) between Earth and closest sources modelled as turbulent & isotropic with rms amplitude (B_{rms}) & coherence length (L_{cob})
- Critical energy E_{crit} such that: $r_L(E_{crit}) = L_{coh} \longrightarrow R_{crit} \equiv E_{crit}/Z = 0.9 \frac{B_{rms}}{nG} \frac{L_{coh}}{M_{DC}} EeV$
- Uniform source density, intersource distance d_s
- MHE suppresses the flux at low energies

Proton flux at Earth.

COMBINED FIT OF SPECTRUM AND COMPOSITION

1) Model of the sources $\dot{Q}(z,E) = \dot{Q}_0\xi(z)\sum_{A} f_A \left(\frac{E}{E_0}\right)^{-\gamma} f_{\rm cut} \left(\frac{E}{Z_A R_{\rm cut}}\right)$ Source evolution $\xi(z)$: no evolution (NE) or star formation rate (SFR) $f_{\rm cut}(E, Z_A, \mathbf{R}_{\rm cut}) = {\rm sech} \left[\left(\frac{{\rm E}}{{\rm Z}_{\rm A} {\rm R}_{\rm cut}} \right)^{\Delta} \right]$ Δ : steepness of the cutoff (1, 2, or 3) 5 elements (H, He, N, Si, Fe)

2) CRs propagated with SimProp (JCAP 11 (2017) 009): interactions with CMB & Gilmore EBL radiation backgrounds, TALYS photodisintegration

3) Account for EGMF multiplying by the suppression factor $G(E/E_{crit}, X_s)$

4) Air shower interactions modelledwith EPOS-LHC or Sibyll2.3d

Fit Procedure $L_J = \prod_i \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{(J_i^{mod} - J_i^{obs})^2}{2\sigma_i^2}\right)$

 X_{max} DISTRIBUTIONS (N_{data} = 329) > 0.24 > 0.30 19 < lg(E/eV) < 19.1 0.22 18.7 < lg(E/eV) < 18.8 0.20 0.25 0.18 0.16 0.20 0.14 0.12 0.15 0.10 0.08 0.10 0.06 0.05 0.04 0.02 0.00 0.00 650 700 750 800 850 600 700 800 900 1000 900 1100 $X_{max} [g cm^{-2}]$ $X_{max} [g cm^{-2}]$

A. Yushkov, for Auger, PoS ICRC2019 (2020) 482

$$L_{X_{max}} = \sum_{i} n_{i}^{obs}! \sum_{j} \frac{1}{k_{i,j}^{obs}!} (G_{i,j}^{mod})^{k_{i,j}^{obs}}$$

 $G_{i,i}^{mod}$: Gumbel + resolution & acceptance

Minimize the deviance

$$D = -2ln\left(\frac{L_J}{L_J^{sat}}\right) - 2ln\left(\frac{L_{X_{max}}}{L_{X_{max}}^{sat}}\right)$$

Fit parameters: $\gamma,\ R_{_{cut}}$ and elemental fractions for both components $X_{s} \& R_{crit}$ for the less dense HE component

RESULTS OBTAINED IN THE ABSENCE OF MAGNETIC FIELDS

	no examp, me-me												
			EPOS-	LHC		Sibyll 2.3d							
Δ	$\gamma_{ m H}$	$R_{\rm cut}^{\rm H}$	$\gamma_{ m L}$	$R_{\mathrm{cut}}^{\mathrm{L}}$	D	$\gamma_{ m H}$	$R_{\rm cut}^{\rm H}$	$\gamma_{ m L}$	$R_{\mathrm{cut}}^{\mathrm{L}}$	D			
		[EeV]		[EeV]	(N = 353)		$[\mathrm{EeV}]$		$[\mathrm{EeV}]$	(N = 353)			
1	-2.19	1.35	3.54	> 60	572	-1.67	1.42	3.36	2.21	660			
2	0.16	5.75	3.65	> 52	605	0.51	5.96	3.53	> 27	661			
3	0.56	7.41	3.75	> 41	651	0.81	7.49	3.64	> 29	699			

DO FOME NE NE

No B, Δ =1, EPOS, NE-NE

- Δ=1 cutoff leads to the smallest
 deviance, with the hardest HE spectrum
 (γ<-1.6)
- Steeper cutoffs, produce softer HE spectra (0<γ<1)
- Sibyll produces a softer HE spectrum with larger deviances
- Scenarios with no B result in HE spectra with γ<1

primaries + secondaries

FIT INCLUDING MHE AS A FUNCTION OF X_s

- Larger X results in softer spectra and smaller R rit
- When MHE is relevant ($X_s > 1$), best fit for $X_s R_{crit} \sim 10$ EeV
- Deviance is almost degenerate for $X_{c} \ge 2$

BEST FIT RESULTS

with EGMF, NE-NE

				EPOS-	LHC			Sibyll 2.3d							
Δ	$\gamma_{ m H}$	$R_{\rm cut}^{\rm H}$	$\gamma_{\rm L}$	$R_{\rm cut}^{\rm L}$	$X_{\rm s}$	$R_{\rm crit}$	D	$\gamma_{\rm H}$	$R_{\rm cut}^{\rm H}$	$\gamma_{\rm L}$	$R_{\rm cut}^{\rm L}$	$X_{\rm s}$	$R_{\rm crit}$	D	
		[EeV]		[EeV]		[EeV]	(N = 353)		[EeV]		[EeV]		[EeV]	(N = 353)	
1	-2.19	1.35	3.54	> 60	0	_	572	-1.67	1.42	3.37	2.21	0	_	660	
2	1.03	6.02	3.62	> 51	> 3.2	1.97	583	1.35	6.22	3.53	> 25	> 3.1	1.54	635	
3	1.43	7.50	3.69	> 61	2.8	2.79	614	2	7.50	3.62	> 31	2.6	3.77	640	
							SFR-NE								
1	-2.09	1.39	3.24	> 63	0	-	578	-1.64	1.44	3.03	2.89	0	-	665	
2	1.12	6.14	3.33	> 61	> 3.5	2.11	586	1.45	6.29	3.21	> 37	> 3.2	1.67	635	
3	1.49	7.52	3.41	> 57	2.7	3.15	617	2.07	7.49	3.31	> 33	2.8	3.52	637	

Δ=1 cutoff leads to **results close** to the case with **B=0**

20.5

- Steeper cutoffs, produce softer HE spectra (γ>1)
- Sibyll, Δ=3 produces a HE spectrum consistent with expectations from diffusive shock acceleration
- For a given scenario, SFR evolution of the LE component hardens its spectrum by about 0.3 units with a small effect in deviance

NE-NE	EPOS	-LHC	Sibyll 2	2.3d
Δ	1	3	1	3
$X_{ m s}$		$2.8^{+1.2}_{-0.7}$		$2.6^{+1.1}_{-0.5}$
$R_{\rm crit}[{\rm EeV}]$		2.8 ± 1.5		3.8 ± 1.4
High energy				
$\gamma_{ m H}$	-2.19 ± 0.10	$1.43^{+0.16}_{-0.22}$	-1.67 ± 0.13	$2.00^{+0.10}_{-0.11}$
$R_{ m cut}^{ m H}$ [EeV]	1.35 ± 0.04	7.50 ± 0.15	1.42 ± 0.05	$7.50\substack{+0.18\\-0.20}$
$f_{ m H}$	< 0.1	21 ± 11	$< 10^{-3}$	$< 10^{-2}$
$f_{ m He}$	$98.6^{+0.1}_{-0.2}$	10.1 ± 5.9	97.1 ± 0.6	5.0 ± 5.0
$f_{\rm N}$ [%]	$1.4\substack{+0.3\\-0.5}$	$61.9^{+8.8}_{-10.4}$	$2.8^{+0.7}_{-0.6}$	$75.4^{+9.1}_{-9.7}$
$f_{ m Si}$	$< 10^{-3}$	$5.0^{+2.7}_{-2.4}$	$< 10^{-2}$	$15.2^{+4.7}_{-5.4}$
$f_{ m Fe}$	$< 10^{-4}$	$1.5^{+0.9}_{-0.7}$	$< 10^{-3}$	$4.4^{+1.7}_{-1.9}$
$L_{44}^{ m H}$	5.0 ± 0.1	9.3 ± 2.6	4.9 ± 0.1	18.4 ± 2.9
Low energy				
$\gamma_{ m L}$	$3.54 {\pm} 0.03$	$3.69{\pm}0.04$	$3.37\substack{+0.04 \\ -0.05}$	$3.62 {\pm} 0.04$
$R_{ m cut}^{ m L}$ [EeV]	> 60	> 49	$2.21^{+0.55}_{-0.48}$	> 30
$f_{ m H}$	47.9 ± 2.6	51.7 ± 2.3	17.7 ± 2.5	21.9 ± 2.1
$f_{ m He}$	7.5 ± 4.1	4.8 ± 3.6	$43.5^{+3.6}_{-3.8}$	$38.1^{+3.4}_{-3.7}$
$f_{ m N}$ [%]	$44.6^{+2.2}_{-2.5}$	$43.4^{+1.7}_{-2.5}$	38.7 ± 2.0	39.9 ± 1.9
$f_{ m Si}$	$< 10^{-4}$	$< 10^{-2}$	$< 10^{-4}$	$< 10^{-7}$
$f_{ m Fe}$	$< 10^{-5}$	$< 10^{-2}$	$< 10^{-5}$	$< 10^{-4}$
$L_{44}^{ m L}$	11.0 ± 0.2	11.6 ± 0.2	10.8 ± 0.1	11.4 ± 0.4
$D\left(N=353\right)$	572	614	660	640

FIT PARAMETERS WITH STATISTICAL UNCERTAINTIES

• The MHE increases the required luminosity of the sources

• Since only a fraction of the low energy accelerated particles reach the Earth, a higher emission rate at the sources is needed

$$L_A^a \equiv \int_{E_{\rm th}}^{\infty} dE \, E \tilde{Q}_A^a(E, z = 0)$$
$$L_{44}^a \equiv \sum_A L_A^a / (10^{44} \, {\rm erg \, Mpc^{-3} \, yr^{-1}})$$

EFFECT OF SYSTEMATIC UNCERTAINTIES

- When including EGMF the fit generally improves for a positive shift in energy and a negative shift in X_{max}
- The smallest deviance is reached for Δ=3 cutoff, ΔE/E=+14% & ΔX_{max}=-σ

850

800

750 Deviance

650

600

550

850

800

750

700 Deviance

600

550

EFFECT OF SYSTEMATIC UNCERTAINTIES

- When including EGMF the fit generally improves for a positive shift in energy and a negative shift in X_{max}
- The **smallest deviance** is reached for **Δ=3 cutoff**, $\Delta E/E=+14\% \& \Delta X_{max}=-\sigma$

850

800

750 Deviance

650

600

850

800

750

700 Deviance

600

550

EFFECT OF SYSTEMATIC UNCERTAINTIES

$\Delta X_{\rm max}$	$\Delta E/E$		γ	$R_{ m cut}$	$X_{ m s}$	$R_{\rm crit}$	$f_{ m H}$	$f_{ m He}$	$f_{\rm N}$	$f_{ m Si}$	$f_{ m Fe}$	L_{44}	D
		_		[EeV]		[EeV]	[%]	[%]	[%]	[%]	[%]		N = 353
	1 4 07	LE	3.53	> 26			25.7	12.7	61.6	0	0	10.0	560
$-\sigma_{\rm sys}$	-1470	HE	1.89	7.11	3.34	1.72	0	0	83.9	11.8	4.3	8.7	509
	0	LE	3.51	2.8	_	_	26.6	4.0	59.6	9.8	0	11.7	552
	0	HE	1.85	7.88	> 3.8	1.30	0	0	70.5	24.8	4.7	9.5	
	1140%	LE	3.49	> 34			24.1	8.3	40.4	27.2	0	13.2	540
5-	T1470	HE	1.97	8.75	> 3.2	1.39	0	0	59.7	33.1	7.2	13.7	540
	1.407	LE	3.66	> 26			18.1	60.0	21.9	0	0	9.5	coc
0	-14%	HE	1.97	6.69	> 3.5	2.12	0	14.2	73.7	8.5	3.6	15.1	540 696 640 597
	0	LE	3.62	> 30	11 <u></u> 1	3 <u>—</u> 3	21.9	38.1	39.0	0	0	11.20	696 640 597
0	0	HE	2.00	7.50	2.6	3.77	0	4.89	75.4	15.3	4.4	18.4	
	1 1 4 07	LE	3.60	> 63	. .		27.4	16.8	55.8	0	0	13.0	507
	+1470	HE	2.01	8.17	2.1	5.10	0.9	0	69.6	24.2	5.3	22.6	097
-	1.407	LE	3.73	> 33			24.9	75.1	0	0	0	9.5	050
	-14%	HE	1.82	6.92	> 3.8	2.73	0	17.7	76.9	2.4	3.0	15.2	552 540 696 640 597 858 803 770
1 -	0	LE	3.72	> 39			18.7	70.8	10.5	0	0	10.9	000
$+\sigma_{\rm sys}$	0	HE	1.89	7.40	> 2.7	2.77	0	10.7	76.0	9.2	4.1	21.1	005
	1 1 4 07	LE	3.76	> 39	_		20.7	52.7	26.6	0	0	12.4	770
	T1470	HE	2.04	7.80	> 2.3	2.94	0	5.6	74.6	14.0	5.8	33.9	110

Sibyll 2.3d, $\Delta = 3$, NE-NE

- The best fit scenario has a large X_s value with a LE component dominated by protons, He and
 N and the HE one dominated by N, with a significant Si contribution
- $\gamma_{H} \approx 2$ in all cases, $X_{s} R_{crit} \approx 5$ EeV for best fit scenarios
- Positive shifts in X_{max} for Sibyll and Δ =3 are disfavoured by more than a 100 units

EFFECT OF SYSTEMATIC UNCERTAINTIES

$\Delta X_{\rm max}$	$\Delta E/E$		γ	$R_{ m cut}$	$X_{ m s}$	$R_{\rm crit}$	$f_{ m H}$	$f_{ m He}$	$f_{\rm N}$	$f_{ m Si}$	$f_{ m Fe}$	L_{44}	D
			ter in the second se	[EeV]		[EeV]	[%]	[%]	[%]	[%]	[%]		N = 353
$-\sigma_{\rm sys}$	-14%	LE	3.53	> 26	_		25.7	12.7	61.6	0	0	10.0	$D \\ N = 353 \\ 569 \\ 552 \\ 540 \\ 696 \\ 640 \\ 597 \\ 858 \\ 803 \\ 770 \\ 870 \\ 803 \\ 770 \\ 800 \\ 800 \\ 770 \\ 800 \\ 800 \\ 770 \\ 800 \\ 800 \\ 770 \\ 800 \\ 800 \\ 770 \\ 800 \\ 70$
	-14/0	HE	1.89	7.11	3.34	1.72	0	0	83.9	11.8	4.3	8.7	
	0	LE	3.51	2.8	-		26.6	4.0	59.6	9.8	0	11.7	552
	0	HE	1.85	7.88	> 3.8	1.30	0	0	70.5	24.8	4.7	9.5	
	1140%	LE	3.49	> 34			24.1	8.3	40.4	27.2	0	13.2	540
9	T1470	HE	1.97	8.75	> 3.2	1.39	0	0	59.7	33.1	7.2	13.7	040
0	1 4 07	LE	3.66	> 26			18.1	60.0	21.9	0	0	9.5	606
	-1470	HE	1.97	6.69	> 3.5	2.12	0	14.2	73.7	8.5	3.6	15.1	696 640 507
	0	LE	3.62	> 30		31 <u></u> 2	21.9	38.1	39.0	0	0	11.20	640
0	0	HE	2.00	7.50	2.6	3.77	0	4.89	75.4	15.3	4.4	18.4	
	1 1 4 07	LE	3.60	> 63			27.4	16.8	55.8	0	0	13.0	507
	+1470	HE	2.01	8.17	2.1	5.10	0.9	0	69.6	24.2	5.3	22.6	097
-	1.407	LE	3.73	> 33	-		24.9	75.1	0	0	0	9.5	050
	-14%	HE	1.82	6.92	> 3.8	2.73	0	17.7	76.9	2.4	3.0	15.2	000
1 -	0	LE	3.72	> 39	1	3 	18.7	70.8	10.5	0	0	10.9	002
$+\sigma_{\rm sys}$	0	HE	1.89	7.40	> 2.7	2.77	0	10.7	76.0	9.2	4.1	21.1	803
	1 1 4 07	LE	3.76	> 39	_		20.7	52.7	26.6	0	0	12.4	770
	+1470	HE	2.04	7.80	> 2.3	2.94	0	5.6	74.6	14.0	5.8	33.9	110

Sibyll 2.3d, $\Delta = 3$, NE-NE

- The best fit scenario has a large X_s value with a LE component dominated by protons, He and
 N and the HE one dominated by N, with a significant Si contribution
- $\gamma_{H} \approx 2$ in all cases, $X_{s} R_{crit} \approx 5$ EeV for best fit scenarios
- Positive shifts in X_{max} for Sibyll and Δ =3 are disfavoured by more than a 100 units

13

EFFECT OF SYSTEMATIC UNCERTAINTIES

Systematic uncertainties for $\Delta E/E=0\,,\pm14\%$ and the best fitting $\Delta X_{_{max}}$ for each case

- Large uncertainties in the Si and Fe flux for the LE component
- In most cases the instep is due to a He bump.
- In all cases the N contribution dominates the flux between the instep and the high energy suppression

CONCLUSIONS

- For $\Delta=2$ & 3 and $X_s \gtrsim 2$ we found scenarios where the magnetic horizon plays an important role with better deviance than for B=0, and with softer spectral index for the HE component ($\gamma \in [1,2]$)
- Sibyll2.3d leads to spectral indices for the HE component closer to 2
- EPOS-LHC leads to smaller deviances, but systematic shifts can change this
- Larger X_s results in smaller R_{crit} and a softer spectrum
- We find that $X_s R_{crit} \sim (5 10)$ EeV when the magnetic horizon effect is responsible for the hardness of the observed spectrum

- When the MHE effect plays an important role, the fit improves for a positive shift in energy and a negative shift in X_{max}
- The best fit results were obtained for the case with **Sibyll**, Δ =3 cutoff, Δ E/E=+14% & Δ X_{max}=- σ

CONCLUSIONS

• For $\Delta=2$ & 3 and $X_s \gtrsim 2$ we found scenarios where the magnetic horizon plays an important role with better deviance than for B=0, and with softer spectral index for the HE component ($\gamma \in [1,2]$)

Thank

you!

- Sibyll2.3d leads to spectral indices for the HE component closer to 2
- EPOS-LHC leads to smaller deviances, but systematic shifts can change this
- Larger X_s results in smaller R_{crit} and a softer spectrum
- We find that $X_s R_{crit} \sim (5 10)$ EeV when the magnetic horizon effect is responsible for the hardness of the observed spectrum

- When the MHE effect plays an important role, the fit improves for a positive shift in energy and a negative shift in X_{max}
- The best fit results were obtained for the case with **Sibyll**, Δ =3 cutoff, Δ E/E=+14% & Δ X_{max}=- σ

Backup slides

Effect of the cutoff shape on the injected spectra

Notice how the parameters combine to produce a similar shape at the energy at which each element is dominant

EXTRAGALACTIC MAGNETIC FIELDS EXPECTATIONS

Median magnetic field strength |B| as function of over-density $\rho / \langle \rho \rangle$ for a number of MHD models with identical dynamo physics, starting with different strengths of the primordial magnetic field B0, indicated by the label in μ G

Hackstein, Brüggen, Vazza & Rodrigues, MNRAS (2020) 498 4811

Required magnetic fields close to the maximum values

• Scenarios with magnetic horizon require strong magnetic fields within the Local Supercluster and large inter-source separation (low source density)