

Status of the Hyper-K Experiment, and Mexican contributions so far

Saul Cuen-Rochin (Tecnologico de Monterrey) In behalf of the Hyper-K collaboration and Mexican grou

on behalf of the Hyper-K collaboration and Mexican group

The International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI) 2024 Puerto Vallarta, Mexico 8 – 12 July 2024

Agenda

- Hyper-K project goals and status
- Work at local national institutions
 - Neutrino classification
 - Multi-PMT detector design and manufacturing

https://bio.site/Outreach_HK_MX

(Hyper-Kamiokand

Hyper-Kamiokande Project

- The Hyper-Kamiokande project includes a far detector, a neutrino beam, and a neutrino near detector complex
 - Construct the Hyper-Kamiokande detector at Kamioka
 - Upgrade the J-PARC neutrino beam
 - Construct the Intermediate Water Cherenkov Detector (IWCD) at Tokai

Three Generations of Water Cherenkov Detector in Kamioka

Kamiokande (1983 - 1996)

- Atmospheric and solar neutrino "anomaly"
- Supernova 1987A

Birth of neutrino astrophysics

Super-Kamiokande (1996 - ongoing)

- Proton decay: world best-limit
- Neutrino oscillation (atm/solar/LBL)
- All mixing angles and $\Delta m^2 s$ **Discovery of neutrino oscillations**

• Hyper-Kamiokande (2027 -)

- Extended search for proton decay
- Precision measurement of neutrino oscillation including CPV and MO
- Neutrino astrophysics

Explore new physics

Saul Cuen @ ISVHECRI 2024

Hyper-K Target sensitivity

Physics category	Parameters	Sensitivity
LBL	δ precision	7°-20°
(1.3MW×10years)	CPV coverage (3/5σ)	76%/58%
	$sin^2\theta_{23}$ error (for 0.5)	±0.017
ATM+LBL(10 years)	MO determination	>3.80
	Octant determination (3σ)	θ₂₃-45° >2°
Proton Decay (20 years)	τ for e+п ⁰ (3σ)	1×10 ³⁵ years
	τ for v₭ (3σ)	3×10 ³⁴ years
Solar (10 years)	Day/Night (from 0/from KL)	8σ/4σ
	Upturn	>3σ
Supernova	Burst (10kpc)	54k-90k
	Relic	70v's / 10 years

Saul Cuen @ ISVHECRI 2024 Katsuki Hiraide @ NNN23

Long-baseline program with the J-PARC neutrino beam

Experimental setup

- 2.5° off-axis v_{μ} and \bar{v}_{μ} beam peaked at 0.6 GeV (oscillation maximum at 295km)
 - Major interaction is QE: E_v determined from (p, θ) of charged lepton
- Measures CP violation in neutrinos by comparing $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

• A few % statistical uncertainties after 10 years operation with >1000 v_e and \bar{v}_e signals 8 Saul Cuen @ ISVHECRI 2024

CP violation sensitivity

• Sensitivity CP violation with 1:3 ν : $\bar{\nu}$ beam

- With systematics and known mass ordering (MO): 2-3 years for 5σ sensitivity to exclude CP conservation for true $\delta_C P = -\pi/2$.
- After 10 years of operation, 60% of δ CP values excluded at > 5 σ Saul Cuen @ ISVHECRI 2024 Katsuki Hiraide @ NNN23

Nucleon decay search

- Nucleon decay is evidence of Beyond Standard Model (BSM) and Grand Unified Theories (GUT)
- Examples of proton decay sensitivity in two modes:

[HK] arXiv:1805 04163[DUNE] arXiv:2002.03005[JUNO] arXiv:1508.07166

Neutrino astrophysics

- Hyper-K is designed to be sensitive to neutrinos with energies starting from a few MeV, including time, energy and direction information. Unique role in multi-messenger observation
- Solar neutrinos: up-turn at vacuum-MSW transition, Day/Night asymmetry, hep neutrino observation
- Supernova burst neutrinos: explosion mechanism, BH/NS formation, alert with ~1° pointing
- Supernova Relic Neutrinos (SRN): stellar collapse, nucleosynthesis and history of the universe

Saul Cuen @ ISVHECRI 2024

Hyper-Kamiokande Collaboration

- ~600 members located in 102 institutes from 22 countries
 - 25% Japanese / 75% non-Japanese
- Recently approved as a recognized experiment (RE45) at CERN
- <u>March 2023:</u>

our very 1st Collaboration meeting in person after COVID!

Hyper-K construction schedule

• The Hyper-K construction started in 2020 and will start operation in 2027.

Excavating the world's largest human-made cavern

Saul Cuen @ ISVHECRI 2024 Moriyama@ Neutrino 2024

Hyper-K main cavern excavation

- October 3, 2023: Excavation of the dome section completed.
 - 69m diameter,
 21m height
 - One of the largest human-made underground space
- Now, the excavation of the barrel section is ongoing.

Hyper-K detector configuration

- Inner Detector (ID)
 - 20,000 20" PMT
 - 64.8m diameter, 65.8m height
 - 50cm PMTs will be installed
 - 800 multi-PMT modules (19 3" PMT each) will be integrated as hybrid configuration

• Outer Detector (OD)

- 3,600 3" PMT
- 1m (barrel) or 2m (top/bottom) thick
- 3-inch PMT + WLS plate
- Walls are covered with high-reflectivity Tyvek sheets
- Under-water electronics
 - Mitigate disadvantage of long cables

Hyper-K 50cm PMT performance

(Performance in SK tank, 1.7e7 gain)

×2 better charge resolution

 $\times 2$ better timing resolution

Box&Line dynode

×2 better pressure tolerance \rightarrow enable deeper tank design, project cost reduction

Low dark rate (4kHz) and RI

Saul Cuen @ ISVHECRI 2024

Katsuki Hiraide @ NNN23

Photosensors and underwater electronics

Outer detector: PMT+WLS plate Pho

Multi-PMT module:

Photosensors/elec. mockup

PMT cover

Underwater Case design and **electronics:** feedthrough

Design finalization ongoing

Saul Cuen @ ISVHECRI 2024

Moriyama@ Neutrino 2024

Hyper-K Calibration

- Various programs to determine detector parameters and measure systematics
- Pre-calibration of photosensors
- Photogrammetry
- Light Injection
 - Diffusers and collimators •
 - mPMT system
 - **OD** injectors •
- Electron LINAC
 - 3-24 MeV electrons
- **Radioactive Sources**
 - DT Source 16N \bullet
 - AmBe + BGO tagged neutrons •
 - Ni/Cf 9 MeV gamma cascade •

Photosensor Test Facility

Photogrammetry testing

E_=14.2 MeV 16O(n,p)16N

DT

operation

Beam: status and plan of power increase

- Seeking beam loss with optics improvements
- More protons/pulse by upgrading RF system
- Further beam intensity increase will be done by 1.36 \rightarrow 1.16 sec cycle

Saul Cuen @ ISVHECRI 2024

Original power projection in MR Upgrade Plan

Moriyama@ Neutrino 2024

22

Neutrino detectors at J-PARC

Critical components to precisely understand J-PARC beam and neutrino interactions:

- On-axis detector: Measure beam direction and event rate
- Off-axis magnetized tracker: Measure primary (anti)neutrino interaction rates, spectrum, and properties. Charge separation to measure wrong-sign background
 > Upgrade by T2K experiment and intensive discussion for further upgrade in HK-era is ongoing.

Intermediate WC detector: H₂O target with off-axis angle spanning orientation.
 → Detector site investigation and conceptual facility design are ongoing.

Mexican funds awarded for Hyper-K

- CF-2023-G-643 "Construcción y comisionado de sensores de ciencia frontera para la detección de supernovas, materia oscura, y medición de la asimetría bariónica en el Universo, en experimentos de Neutrinos de nueva generación" (2023)
 - Grant holder: Eduardo de la Fuente Acosta (UdeG)
 - Institutions involved:
 - KAREN SALOME CABALLERO MORA (UNACH)
 - GIANNINA DALLE MESE ZAVALA (UAS)
 - ALEJANDRO KADSUMI TOMATANI SANCHEZ (TEC-GDL)
 - Saul Cuen Rochin (TEC-SIN)
- CBF2023-2024-427 "Deep Learning y Fabricación de Sensores de Ciencia de Frontera para Experimentos de Neutrinos de Próxima Generación" (2024)
 - Grant holder : Saul Cuen Rochin (TEC-SIN)
 - Institutions involved :
 - GIANNINA DALLE MESE ZAVALA (UAS)

MOU between Mexican Institutions and U.Tokyo/KEK should be ready by the end of 2024.

Mexican involvement in Hyper-K

Master thesis in progress (TEC):

• Neutrino Classification Through Deep Learning amid the Hyper-Kamiokande Project Development

Student: Maria Fernanda Romo Fuentes

Advisor: Luis Eduardo Falcon Morales

Doctoral thesis in progress (**UdeG**):

• Use of Machine Learning and Deep Learning in the reconstruction of high energy events for the Hyper Kamiokande

Student: Felipe Orozco Luna

Advisors: Eduardo de la Fuente, Luis Eduardo Falcon, Saul Cuen Thesis open position (UAS):

• Analysis for supernova detection Advisor: GIANNINA DALLE MESE ZAVALA

Thesis open position (**UNACH**):

• Analysis for supernova detection Advisors: KAREN SALOME CABALLERO MORA

Thesis open position:

• Neutrino Classification with Al Advisors: Saul Cuen, Rajesh Biswal, Rodrigo Gamboa (volunteers?)

Thesis open position:

• mPMT design and manufacturing for Hyper-K Advisors: Saul Cuen, Kadsumi Tomatani, (volunteers?)

Neutrino classification

mPMT prototype in Mexico

mPMT assembly and testing at TEC in collaboration with Professors Rodrigo Salmon, Kadsumi Tomatani, Raul Aranda, Christoper Falcon, Eduardo de la Fuente and Saul Cuen

- Mechanical metrology and assembly
- Setting un blackbox and optical testing for PMT check (student Roy Medina)

top & bottom mPMT support

Currently working on requirements from the integration group.

-1

mPMT mechanical stress test

Top/bottom configuration Barrel configuration Transportation studies, and box design

- Compression
- Temperate
- Vibrations

(Kadsumi Tomatani, Christoper Falcon, Saul Cuen)

- mPMT installed successfully procedure itself ok (possible change after talking to the inst. company)
- The main issue was the interference of the with the main frame due to
 - Enlarged gusset plate (cannot by modified)
 - Shifted front mounting holes (can/should be modified)

2

B. Roskovec - Charles University

31

Top Installation Overview

- mPMT lifted by ceiling crane (not the original and final installation procedure) successful
- Cause by the issues of lifting the 3-PMT module with middle space occupied

11

32

Conclusions

- Hyper-Kamiokande is 3rd generation water Cherenkov detector in Kamioka
- Important physics targets
 - Neutrino CP violation: Discovery with 5 σ for ~60% parameter regions
 - Nucleon Decay Search for testing GUT: $\tau > 10^{35}$ years for $p \rightarrow e^{\scriptscriptstyle +} \pi^0$
 - Neutrino Astrophysics: Supernova neutrinos
- Hyper-Kamiokande construction on schedule
 - World's largest underground facility: 260 kton water Cherenkov detector
 - Access tunnel and cavern construction on track
 - 50cm PMT production underway
 - Other detector component designs being finalized
 - Neutrino beam upgrade to 1.3 MW
 - Near detector upgrade and design of intermediate detector being finalized
- Hyper-Kamiokande will start operation in 2027.