

Felix Riehn (IGFAE, Universidade de Santiago de Compostela), R. Engel, A. Fedynitch

ISVHECRI 2024 11. 07. 2024, Puerto Vallarta, Mexico

Air shower development: two cascades

Air shower development: energy flow

Air shower development: observables

Shower profile & Xmax: EM cascade, first few hadronic interactions

 $E_n^{\rm EM} = (1 - 0.8^n) E_0$

muons: **Full** hadronic cascade muons produced at end

 $\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}$

Sibyll model

(PRD 80 (2009) 094003, PRD 102 (2020) 6, 063002)

Muon discrepancy in Sibyll 2.1

Muon production significantly underestimated

More muons: baryon, rho0 and strange production

Baryon number conservation !

p

n

p

particle production until Sub-relativistic ! $\pi^+ + p \rightarrow \text{leading} + X$ leading : $\pi(\text{spin} - 0)$ or $\rho(\text{spin} - 1)$ $\rho^0 \to \pi^\pm$ $\pi^0 \to 2\gamma$ π^+ π^+ π ho^0

Baryon production in SIBYLL

Sibyll 2.1 (from TeVatron times) Fixed rate of baryon (diq) production

Baryon production not universal?

(CLEO collab. R.Briere et al, Phys.Rev.D76,2007)

Pdiq depends on gluon density?

Decay of Y(9460) resonance

Compare with offresonance scattering

Baryon production constant in rapidity

Remnants

11

LHCf

(LHCf Adriani et al 2015)

Leading rho0

leading : π , ρ

Muons in Sibyll 2.3d

14

Muon discrepancy in Sibyll

30% enhancement in number of muons from 2.1 \rightarrow 2.3d

Achieved through:

- baryon production
- Forward Rho meson production

Data driven (LHC,NA22/NA61) !

NOT ENOUGH MUONS !

Is there more room within standard physics ?

```
→ Sibyll*
```


In addition, **ML** analyses require detailed simulations that are consistent with data

DNN for Xmax reconstruction

* Training DNN on simulations of surface detector signals to produce mass estimator Xmax * Cross check with hybrid measurements results in **30g/cm2** bias (p – Fe ~ 100g/cm2)

Sibyll*

We want:

- * test different scenarios
- * simple adjustable parameters

* physically consistent events (energy/momentum + Q,B,S conservation) Therefore leave Sibyll unmodified, but alter final state.

Post-processing

- 1) Replace *suitable* pairs/tripels of pions with desired hadrons at a **specific rate P** *Example: for rho-meson replace (pi0,any) with (rho0,any)*
- 2) Recalculate momenta

Energy- and phasespace dependent modifications

Start from Sibyll 2.3d and only change events **outside** of phasespace covered by accelerator experiments

Four variants

Kaon/strangeness enhancement

Sibyll* variants in proton-proton

Hadron energy fraction

Fraction of beam energy that is carried by all hadrons except *neutral pions* = energy available in EAS to produce muons

Sibyll* vs Auger inclined

Particle spectra in Sibyll*

Shower predictions

Summary

- * baryon production & rho production much improved in Sibyll2.3d
- * set of Sibyll variants with sufficient muon production (Auger inclined) \rightarrow best choice: **mixed** model (Sibyll*)
- * Muon puzzle is fine-tuning problem. Require precise measurement & modeling of data

Acknowledgments

UNIÓN EUROPEA

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101065027.

EAS predictions for protons

Looking good...

Enough for Auger data?

Fluctuations

Xmax in Sibyll 2.3d

- * p-p cross section reduced
- * p-air cross section reduced
- * p-air diffraction increased (coherent diffraction)
- \rightarrow 20 g/cm² deeper proton showers

Model performance

Interlude: hadron interactions in SIBYLL

soft scattering of * parton picture valence guarks * LO QCD jets → minijets * multiparticle interactions * diffraction dissociation * leading particles, associated production * Lund string fragmentation Model for: Additional hard & soft Pions, Kaons, Protons and scattering Nuclei up to 1 PeV CoM (PRD 80 (2009) 094003, PRD 102 (2020) 6, 063002)

Model performance

tuned to TeVatron