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“An ignorance of a law is not a justification for violating the law”

This applies equally to the laws of physics
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t ∝ 1/p4
t ⇒ explodes at small pt

⇒ low pt cutoff (Q0) required (technical parameter?)

choice of Q0 impacts strongly the predictions (e.g. σtot/inel
pp )

What kind of physics is behind this cutoff?

for Q0 ∼ few GeV, soft physics irrelevant

⇒ a perturbative mechanism missing

are MC predictions trustworthy, without such a mechanism?
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Promising: coherent multiple scattering on ’soft’ gluons in γ∗A/pA
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(⇒ multiparton correlators)

Extrapolation to hadron-proton & light nuclei
[SO & Bleicher, Universe 5 (2019) 106; SO, arXiv: 2401.06202]



Dynamical higher twist effects in hadronic scattering

NB: only moderate HT corrections allowed by HERA data
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HT corrections important at low Q2

⇒ too strong corrections at tension with Q2-evolution of F2

known fact: Q2-evolution of F2 is well-described by DGLAP

⇒ little space for HT or/and saturation effects



Dynamical higher twist effects in hadronic scattering

Small effect on σtot/el
pp but taming the low-pt rise of (mini)jet rates
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⇒ the mechanism does its principal job

NB: this is NOT parton saturation! [see also backup slides]

rather resembles LPM effect in QED



Technical improvement: π-exchange [SO, Phys.At.Nucl. 44 (2021) 1017]

π- over ρ-exchange dominance ⇒ ∼ 20% increase of Nµ

why so?!
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π-exchange process in π+A: only ρ+ and ρ0 produced forward

⇒ 〈Eπ±〉 : 〈Eπ0〉 = 3 : 1
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π-exchange process in π+A: only ρ+ and ρ0 produced forward

⇒ 〈Eπ±〉 : 〈Eπ0〉 = 3 : 1

⇒ less energy channeled
into e/m cascades!
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π-exchange process in π+A: only ρ+ and ρ0 produced forward

⇒ 〈Eπ±〉 : 〈Eπ0〉 = 3 : 1
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Energy-dependence: driven by absorptive corrections to the process

high x production of ρ in π±p (π±A)
or of neutrons in pp: only without
additional inelastic rescatterings

now can be tested in pp→ nX
thanks to LHCf data [backup slides]
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Results for extensive air showers

Rather small changes for Xmax and Nµ (wrt QGSJET-II-04)
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What is the reason for the stability of the predictions?

the model sufficiently constrained by LHC data?

or a mere consequence of a particular model approach?



UHECR puzzles

’Muon puzzle’: UHECRs are dust grains?

[Pierre Auger Collab., PRL 117 (2016) 192001]
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UHECR puzzles

More serious: tension between Xmax & σ(Xmax)

[Pierre Auger Collab., JCAP 04 (2017) 038]

energy dependence of Xmax & σ(Xmax):
both indicate a change towards a heavier composition

but: σ(Xmax) implies a faster change

σ(Xmax) – theoretically robust [Berezinsky et al., PRD 77 (2008) 025007]

higher elongation rate (deeper Xmax)?

by how much?!
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Xmax of QGSJET-II should be larger by 48±2+9

−12
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to be compatible with PAO data,
Xmax of QGSJET-II should be larger by 48±2+9

−12

is it feasible, in view of available LHC data?

what kind of physics changes are required?
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Model uncertainties for EAS predictions?

How to define ’model uncertainties’?

violating energy conservation:
any desirable (though meaningless) result

isospin symmetry breaking ⇒ equally meaningless results

e.g., producing preferably π±, at an expance of π0:
any desirable enhancement of Nµ

3 ’pillars’ of the current study

restrict oneself with the standard physics (no BSM effects!)

make changes at the microscopic level

check consequences regarding a (dis)agreement with
accelerator & CR data



Model uncertainties for predicted Nµ [SO & Sigl, arXiv: 2404.02085]

Kinematic range for hadron production, relevant for Nµ predictions

let us restrict ourselves with pion production only:
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p(E0) ≃
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Kinematic range for hadron production, relevant for Nµ predictions

let us restrict ourselves with pion production only:

Nµ
p(E0) ≃
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dx
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p−air(E0,x)

dx Nµ
π±(xE0)

abundant production at x→ 0: dNπ±

p−air(E0,x)/dx ∝ x−1−∆

large Nµ yields at x→ 1: Nµ
π±(xE0) ∝ (xE0)
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Accounting for all ’stable’ hadrons (π±, kaons, (anti)nucleons)

relevant quantity for EAS muon content:

∑h=stable〈(x
h
E)αµ〉 = ∑h=stable

R

dxE x
αµ

E
dNh

π±air
(E0,xE)

dxE

can be well approximated by ∑h=stable〈x
h
E〉 (αµ → 1)

⇒ Nµ is governed by the total energy fraction taken by all
’stable’ hadrons (not by the multiplicity)
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driven by the energy-rise of (mini)jet production
⇒ by the gluon density of the pion
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How to increase ∑h=stable〈x
h
E〉?

change the energy dependence of the multiplicity for π±air

driven by the energy-rise of (mini)jet production
⇒ by the gluon density of the pion

change the energy dependence of the pion exchange process
⇒ larger forward yield of ρ-mesons

change the model calibration (e.g. based on NA61 data):
more kaons, (anti)nucleons & ρ-mesons

Reducing 〈xqv〉 by factor 2 and enhancing 〈xg〉 & 〈xqsea〉
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enhanced glue change of Nµ: . 1%
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Neglecting absorptive corrections to the π-exchange process
⇒ higher yield of forward-produced ρ-mesons
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Enhancing kaon production in πA collisions by 40%

10
-2

10
-1

1 10 10
2

 p  (GeV/c)

 p
 d

n/
dp

  π- + C → K+  (158 GeV/c)  

10
-2

10
-1

1 10 10
2

 p  (GeV/c)

 p
 d

n/
dp

  π- + C → K+  (350 GeV/c)  

10
-2

10
-1

1 10 10
2

 p  (GeV/c)

 p
 d

n/
dp

  π- + C → K-  (158 GeV/c)  

10
-2

10
-1

1 10 10
2

 p  (GeV/c)

 p
 d

n/
dp

  π- + C → K-  (350 GeV/c)  



Model uncertainties for predicted Nµ [SO & Sigl, arXiv: 2404.02085]

Enhancing (anti)nucleon production in πA collisions by 60%
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NB: no kaon & (anti)nucleon ’deficit’ observed in pp & πp
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Enhancing ρ-meson production in πA collisions by 50%
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Relative changes of the calculated Nµ: . 10%
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Relative changes of the calculated Nµ: . 10%
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than ∼ 10%, without
contradicting accelerator data!
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3 main ’switches’ for changing Xmax predictions

inelastic proton-air cross section (σinel
p−air)

inelastic diffraction rate (σdiffr
p−air/σinel

p−air)

inelasticity of non-diffractive interactions (K inel
p−air)

Inelastic cross section: well constrained by LHC data

< 3% difference for σinel
pp

between ATLAS & TOTEM
(79.5±1.80 & 77.41±2.92 mb)

even smaller difference for pA:
σinel

pp ∝ R2
p, σinel

pA ∝ (Rp +RA)2

NB: 1% change of σinel
p−air ⇒

∆Xmax≃ 1 g/cm2 at 1019 eV

R   = 2 Rpp p

pA p AR   =  R  + R  

Diffraction uncertainties: ∆Xmax. 5 g/cm2 [SO, PRD89 (2014) 074009]



Model uncertainties for Xmax calculations

The only freedom left: inelasticity for p−air

higher energy ⇒ higher multiple scattering ⇒ higher K inel
p−air



Model uncertainties for Xmax calculations

The only freedom left: inelasticity for p−air

higher energy ⇒ higher multiple scattering ⇒ higher K inel
p−air

⇒ one needs softer spectra for secondary hadrons (π,K...)

ideally: Feynman scaling for forward spectra



Model uncertainties for Xmax calculations

The only freedom left: inelasticity for p−air

higher energy ⇒ higher multiple scattering ⇒ higher K inel
p−air

⇒ one needs softer spectra for secondary hadrons (π,K...)

ideally: Feynman scaling for forward spectra

How to give less energy away to secondary hadrons?
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constrained by data

main ’switch’: constituent parton
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The only freedom left: inelasticity for p−air

higher energy ⇒ higher multiple scattering ⇒ higher K inel
p−air

⇒ one needs softer spectra for secondary hadrons (π,K...)

ideally: Feynman scaling for forward spectra

How to give less energy away to secondary hadrons?

hadronization (string fragmentation)
procedure is a ’holy cow’ (universal)

central rapidity density of secondaries:
constrained by data

main ’switch’: constituent parton
(string end) momentum distribution
(x−αq) [SO, J.Phys. G29 (2003) 831]

h

y

dN  /dy

αq → 1: approximate Feynman scaling for forward spectra

NB: may not work for semihard scattering (minijet production)
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Vary the string end distributions, x−αq: with αq = 0.65,0.8,0.9
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Check with more forward data from CMS & TOTEM
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the trend towards larger αq

not supported

but can not yet be disproved

NB: higher discrimination power expected from combined
studies with central & forward detectors (e.g. LHCf & ATLAS)
[SO, Bleicher, Pierog & Werner, PRD94 (2016) 114026]
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p−air
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Choice of string end distribution (x−αq): impact on Xmax
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why a moderate effect on
particle production & Xmax?

’warranted’ scaling violation due
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(energy fraction taken by
perturbatively generated partons
⇒ lower bound on K inel
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Exotic: modification of the hadronization by ’collective effects’
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standard treatment: strings of color field
stretched between constituent partons
and/or all perturbatively produced partons

⇒ production of partons (& hadrons)
covers the full rapidity range
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Exotic: modification of the hadronization by ’collective effects’

q
q
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assuming this is modified by ’collective
effects’ & neglecting parton cascades:
strings are formed between constituent
partons & highest pt partons

αq → 1 limit: short strings concentrated at
central rapidities in c.m. frame

⇒ small impact on K inel
p−air

rather nonphysical: collective effects may
be strong in central (small b) collisions only

⇒ should not have large impact on the
average parton production pattern
(dominated by peripheral collisions)
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Impact of string end distribution on K inel
p−air (no parton cascades)
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Impact of string end distribution on Xmax (no parton cascades)
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Impact of string end distribution on Xmax (no parton cascades)
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The limit αq → 1: disfavored by LHCf data on forward neutrons
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⇒ energy loss of leading nucleons is underestimated
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More important constraints: from PAO measurements of Xµ
max
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αq → 1: up to ∼ 30 g/cm2

larger Xµ
max

⇒ strong tension with PAO
measurements of Xµ

max



Outlook

Major development in QGSJET-III: phenomenological
treatment of HT corrections to hard scattering processes

tames the low pt rise of (mini)jet rates

reduces the model dependence on the low pt cutoff Q0

Technical improvement: treatment of π-exchange process

energy-dependence: due to absorptive corrections
(probability not to have additional inelastic rescattering)

Rather small changes for EAS characteristics (wrt QGSJET-II)

up to ≃ 10 g/cm2 shift of Xmax and up to ≃ 5% change of Nµ

Model uncertainties for Nµ: only up to ∼ 10% enhancement

Model uncertainties for Xmax: only up to ∼ 10 g/cm2 shift
(using the standard interaction treatment)

more exotic: ’collective effects’ ⇒ ∆Xmax up to ≃ 25 g/cm2

(disfavored by LHCf data & by PAO measurements of Xµ
max)
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Extra slides follow
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(1) Few comments on the parton saturation mechanism

Usually a picture of a crowded bus in mind

the ’unitarity’ argument: not too
many partons in a small volume

incorrect: those are virtual
(⇒ unobservable) partons

Observable are consequences of (hard) interactions of partons

but: one may have arbitrary many
virtual boxers at the ring, if they don’t
fight (no problem with unitarity)

above-discussed: mechanism preventing
partons from ’fighting each other’



(2) Technical improvement: π-exchange process

Starting with NA49 data at 158 GeV/c
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(2) Technical improvement: π-exchange process

And moving over 6 energy decades to 13 TeV c.m.
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high energies ⇒ quick rise of (mini)jet production

small αs(p2
t ) - compensated by infrared and collinear logs

(arising from parton cascading): ln(xi/xi+1), ln(p2
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Why (mini)jet production is important for EAS predictions?

hadron jets: typically produced in
central region (y∼ 0) in c.m.s.

small impact on forward spectra

but: hardest scattering preceeded by
parton cascade (smaller pt, higher x)

⇒ most important are first
(’softest’) partons in the cascade

the cascade starts at Q2
0-scale with

’soft’ gluons?
(fg(x,Q2

0) ∝ x−1−∆g, ∆g ≃ 0.2)

no: x-distribution of those gluons is
weighted with the hard scattering!

tlower p , higher x

higher p , lower xt



(3) Hard scattering: importance of the parton cascade

high energies ⇒ quick rise of (mini)jet production

small αs(p2
t ) - compensated by infrared and collinear logs

(arising from parton cascading): ln(xi/xi+1), ln(p2
ti+1

/p2
ti )

Virtual gluons emitted by protons are indeed soft: ∝ x−1−∆g

but the probability for hard scattering: convolution with σhard
gg

whard(s) ∝
Z
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0) ∝ ŝ∆hard – contribution of the DGLAP ’ladder’
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high energies ⇒ quick rise of (mini)jet production

small αs(p2
t ) - compensated by infrared and collinear logs

(arising from parton cascading): ln(xi/xi+1), ln(p2
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/p2
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Virtual gluons emitted by protons are indeed soft: ∝ x−1−∆g

but the probability for hard scattering: convolution with σhard
gg

whard(s) ∝
Z

dx+dx− fg(x
+,Q2

0) fg(x
−,Q2

0) σhard
gg (x+x−s,Q2

0)

σhard
gg (ŝ,Q2

0) ∝ ŝ∆hard – contribution of the DGLAP ’ladder’

⇒ gluons which succeed to interact have large x: ∝ x∆hard−∆g−1

(iff ∆hard≃ 0.3 > ∆g)

i.e., first partons in a perturbative cascade are ’valence-like’
(independently on our assumptions for string end distribution)



(4) PAO data: what kind of interaction physics is required?

Extreme case - Feynman scaling: same σ(Xmax), much deeper Xmax
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p−air, σinel

A−air, σinel
π−air - all kept unchanged (wrt QGSJET-II-04)

nonlinear effects & hard scattering switched off
(K-factor=0, GPPP = 0, KHT = 0)

production spectra - frosen at 100 GeV lab.



(4) Scaling model is dead since > 50 years

Since it misses the observed rise of the ’rapidity plato’ dNch
pp/dη
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 scaling dNch

pp/dη at small η: of weak
importance for EAS (small xF)



(4) Scaling model is dead since > 50 years

More important: LHCf data on forward neutrons - measure of K inel
pp
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scaling: energy loss of leading nucleons is underestimated
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max

any change of the primary interaction (σinel
p−air, σdiffr

p−air, K inel
p−air)

impacts only the initial stage of EAS development

⇒ parallel up/down shift of the
cascade profile (same shape)

⇒ same effect on Xmax & Xµ
max

additionally: the corresponding
change of physics impacts π-air
interactions at all the steps of the
cascade development

⇒ cumulative effect on Xµ
max



(4) Most general warning regarding large Xmax predictions

Changing Xmax implies equal or larger changes for Xµ
max
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e.g. using Feynman scaling:
UHECRs are transuraniums


