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“An ignorance of a law is not a justification for violating the law”

This applies equally to the laws of physics



Main motivation for QGSJET-III

Jet production in MC generators: collinear factorization of pQCD
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Main motivation for QGSJET-III

Jet production in MC generators: collinear factorization of pQCD

W a2y R

@ hard scattering involves one projectile & one target parton

o problem: doZ2/dp¢ 0 1/pf = explodes at small p

@ = low py cutoff (Qo) required (technical parameter?)

o choice of Qo impacts strongly the predictions (e.g. oy ™)

What kind of physics is behind this cutoff?

@ for Qg ~ few GeV, soft physics irrelevant

@ = a perturbative mechanism missing

@ are MC predictions trustworthy, without such a mechanism?
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Promising: coherent multiple scattering on 'soft’ gluons in y*A/pA
[Qiu & Vitev, PRL93 (2004) 262301; PLB632 (2006) 507]

@ scattering involves any number of 'soft’ gluon pairs
(= multiparton correlators)




Dynamical higher twist effects in hadronic scattering

Hint: collinear factorization of pQCD valid at leading twist level
@ perhaps higher twist effects do the job?

s come into play at relatively small p; [suppressed as 1/pf]

Promising: coherent multiple scattering on 'soft’ gluons in y*A/pA
[Qiu & Vitev, PRL93 (2004) 262301; PLB632 (2006) 507]

@ scattering involves any number of 'soft’ gluon pairs
(= multiparton correlators)

Extrapolation to hadron-proton & light nuclei
[SO & Bleicher, Universe 5 (2019) 106; SO, arXiv: 2401.06202]




NB: only moderate HT corrections allowed by HERA data
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@ HT corrections important at low Q?
@ = too strong corrections at tension with Q%evolution of F»
@ known fact: Q?-evolution of F» is well-described by DGLAP
s = little space for HT or/and saturation effects
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Dynamical higher twist effects in hadronic scattering
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Dynamical higher twist effects in hadronic scattering
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@ = the mechanism does its principal job

NB: this is NOT parton saturation! [see also backup slides]

@ rather resembles LPM effect in QED




Technical improvement: Teexchange [so, Phys At Nucl. 44 (2021) 1017]

TE over p-exchange dominance = ~ 20% increase of Ny
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Te over p-exchange dominance = ~ 20% increase of N,

® why so?!
@ isospin symmetry: pt:p :p0=1:1:1

@ = (Ep):(Ejp)=2:1in central
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Technical improvement: Teexchange [so, Phys At Nucl. 44 (2021) 1017]

Te over p-exchange dominance = ~ 20% increase of N,

p-induced EAS

N, (>10 GeV)

® why so?!

N, (>100 GeV)

Nu (QGSJET-II-04/QGSJET-I1-03)

@ isospin symmetry: pt:p :p0=1:1:1

o = (Ep):(Ep)=2:1in central
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[SO, talk at ISVHECRI-2012]

Ttexchange process in TTTA: only pJr and p0 produced forward
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Te over p-exchange dominance = ~ 20% increase of N,

p-induced EAS
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@ isospin symmetry: pt:p :p0=1:1:1
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[SO, talk at ISVHECRI-2012]

Ttexchange process in TTTA: only pJr and p0 produced forward
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Technical improvement: Teexchange [so, Phys At Nucl. 44 (2021) 1017]

Ttexchange process in TTTA: only pJr and p0 produced forward

+ _U 0
o = (Bt {En) = T “T- =
@ = less energy channeled d ’: d a ’F
T[+

into e/m cascades!

Energy-dependence: driven by absorptive corrections to the process

n .,

o high X production of p in Te5p (TtFA) O B
or of neutrons in pp: only without ™ iﬂ+
additional inelastic rescatterings i

@ now can be tested in pp— nX :P
thanks to LHCf data [backup slides] p i




Results for extensive air showers

Rather small changes for Xmax and Ny (wrt QGSJET-11-04)
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Results for extensive air showers

Rather small changes for Xmax and N, (wrt QGSJET-11-04)
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o up to ~ 10 g/cm? shift of Xmax wrt QGSJET-11-04
@ up to =~ 5% change of Ny

- -

What is the reason for the stability of the predictions?

@ the model sufficiently constrained by LHC data?

@ or a mere consequence of a particular model approach?



UHECR puzzles

'Muon puzzle': UHECRs are dust grains?
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UHECR puzzles

More serious: tension between Xmax & 0(Xmax)
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@ energy dependence of Xmax & 0(Xmax):
both indicate a change towards a heavier composition
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@ but: 0(Xmax) implies a faster change




UHECR puzzles
More serious: tension between Xmax & 0(Xmax)
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@ energy dependence of Xmax & 0(Xmax):
both indicate a change towards a heavier composition

@ but: 0(Xmax) implies a faster change
0(Xmax) — theoretically robust [Berezinsky et al., PRD 77 (2008) 025007]

@ higher elongation rate (deeper Xmax)?
¢ by how much?!




UHECR puzzles
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Maximum and Signals at Ground Level using Hybrid
Events of the Pierre Auger Observatory

Jakub Vrchga”-* on behalf of the Pierre Auger” Cullabora_llon

@ to be compatible with PAO data,
Xmax of QGSJET-II should be larger by 48+2"3,
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Adjustments to Model Predictions of Depth of Shower
Maximum and Signals at Ground Level using Hybrid
Events of the Pierre Auger Observatory

Jakub Vrchga”-* on behalf of the Pierre Auger” Cullabora_llon

@ to be compatible with PAO data,
Xmax of QGSJET-II should be larger by 48+2"3,

@ is it feasible, in view of available LHC data?
o what kind of physics changes are required?
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How to define 'model uncertainties’?

@ violating energy conservation:
any desirable (though meaningless) result
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Model uncertainties for EAS predictions?

How to define 'model uncertainties’?

@ violating energy conservation:
any desirable (though meaningless) result

@ isospin symmetry breaking = equally meaningless results

o e.g., producing preferably T, at an expance of TO:
any desirable enhancement of Ny

3 'pillars’ of the current study
@ restrict oneself with the standard physics (no BSM effects!)

@ make changes at the microscopic level

@ check consequences regarding a (dis)agreement with
accelerator & CR data




Model uncertainties for predicted Ny /50 & sigi, arxiv: 2404.02085]

Kinematic range for hadron production, relevant for N, predictions

@ let us restrict ourselves with pion production only:

NE(Eg) o b B0 i
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Kinematic range for hadron production, relevant for N, predictions
@ let us restrict ourselves with pion production only:
d air Eo,x
NE(Eo) = Jax st . (i

@ abundant production at X — 0: dNI*__. (Ep,X)/dx 0 x~1-4

p— a|r(




Model uncertainties for predicted Ny 50 & sigi, arxiv: 2404.02085]

Kinematic range for hadron production, relevant for N, predictions

@ let us restrict ourselves with pion production only:
d

NE(Eo) Nfdxw NE, (X Eo)

@ abundant production at X — O: de air(E0,X) /dx O x4

o large Ny yields at x — 1: Nk, (xEp) O (xEp)“
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Kinematic range for hadron production, relevant for N, predictions

@ let us restrict ourselves with pion production only:
d air EOX
NE(Eo) o ax M5 N, ()
@ abundant production at X — O: de air(Eo0,X)/dx O x~ 174
o large Ny yields at x — 1: Nk, (xEp) O (xEp)“

Using an ansatz: ngfair(Eo,X)/dXD x 1A (1-x)P
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Kinematic range for hadron production, relevant for N, predictions

@ let us restrict ourselves with pion production only:

NE(Eo) =~ j’dxw N, (X Ep)

@ abundant production at X — O: de air(Eo0,X)/dx O x~ 174

o large Ny yields at x — 1: Nk, (xEp) O (xEp)“

Using an ansatz: ngfair(Eo,X)/dXD x 1A (1-x)P
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Kinematic range for hadron production, relevant for N, predictions

@ let us restrict ourselves with pion production only:
d air EOX
NE(Eo) o ax M5 N, ()
@ abundant production at X — O: de air(Eo0,X)/dx O x~ 174
o large Ny yields at x — 1: Nk, (xEp) O (xEp)“

Using an ansatz: ngfair(Eo,X)/dXD x 1A (1-x)P

p+¥N o

Xe dn/dx.
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Kinematic range for hadron production, relevant for N, predictions
@ let us restrict ourselves with pion production only:

NE(Eo) ~ fx P8er® i ()

@ abundant production at X — O: de air(E0,X)/dx O x4

o large Ny yields at x — 1: Nk, (xEp) O (xEp)

Accounting for all 'stable’ hadrons (T, kaons, (anti)nucleons)

@ relevant quantity for EAS muon content:
(Eox)
Zh:stable<(xg)a“> = Y h—stable OIXe x L




Model uncertainties for predicted Ny 50 & sigi, arxiv: 2404.02085]

Kinematic range for hadron production, relevant for N, predictions
@ let us restrict ourselves with pion production only:

NE(Eo) ~ fx P8er® i ()

@ abundant production at X — O: de air(E0,X)/dx O x4

o large Ny yields at x — 1: Nk, (xEp) O (xEp)

Accounting for all 'stable’ hadrons (T, kaons, (anti)nucleons)

@ relevant quantity for EAS muon content
(Eo.xg)
Zh:stable<(xg)a“> = Y h—stable OIXe x L

@ can be well approximated by 3 h_stapiX2) (0 — 1)




Model uncertainties for predicted Ny 50 & sigi, arxiv: 2404.02085]

Kinematic range for hadron production, relevant for N, predictions
@ let us restrict ourselves with pion production only:

NE(Eo) ~ fx P8er® i ()

@ abundant production at X — O: de air(E0,X)/dx O x4

o large Ny yields at x — 1: Nk, (xEp) O (xEp)

Accounting for all 'stable’ hadrons (T, kaons, (anti)nucleons)

@ relevant quantity for EAS muon content
1T all'(EO XE)
Zh:stable<(xg)a“> = Zh:stablef dxe X ii
o can be well approximated by S _stapieX2) (aty — 1)

@ = NHis governed by the total energy fraction taken by all
'stable’ hadrons (not by the multiplicity)
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How to increase zh:stame(XE)?

@ change the energy dependence of the multiplicity for T air

@ driven by the energy-rise of (mini)jet production
= by the gluon density of the pion
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How to increase zh:stame(XE)?

@ change the energy dependence of the multiplicity for T air
@ driven by the energy-rise of (mini)jet production
= by the gluon density of the pion
@ change the energy dependence of the pion exchange process
= larger forward yield of p-mesons

@ change the model calibration (e.g. based on NA61 data):
more kaons, (anti)nucleons & p-mesons
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How to increase thstab|e(xg>?

@ change the energy dependence of the multiplicity for T air
s driven by the energy-rise of (mini)jet production
= by the gluon density of the pion

@ change the energy dependence of the pion exchange process
= larger forward yield of p-mesons

@ change the model calibration (e.g. based on NA61 data):
more kaons, (anti)nucleons & p-mesons

Gn(X,0?) - mostly constrained by the momentum sum rule

@ q%(x,0?) - well constrained by
Drell-Yan process studies

o uncertainties for (Xg) and (Xgees)

@ Gp(X,0%) - constrained by direct
photon & J/y production studies
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How to increase thstab|e(xg>?

@ change the energy dependence of the multiplicity for T air
s driven by the energy-rise of (mini)jet production
= by the gluon density of the pion

@ change the energy dependence of the pion exchange process
= larger forward yield of p-mesons

@ change the model calibration (e.g. based on NA61 data):
more kaons, (anti)nucleons & p-mesons

Gn(X,0?) - mostly constrained by the momentum sum rule

o q%(x,0?) - well constrained by
Drell-Yan process studies

o uncertainties for (Xg) and (Xgees)

@ Gp(X,g%) - constrained by direct
photon & J/W production studies
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How to increase thstab|e(xg>?

@ change the energy dependence of the multiplicity for T air
s driven by the energy-rise of (mini)jet production

= by the gluon density of the pion

@ change the energy dependence of the pion exchange process

= larger forward yield of p-mesons

@ change the model calibration (e.g. based on NA61 data):

more kaons, (anti)nucleons & p-mesons

XG(x@)

by factor 2 and enhancing (Xg) & (

@ change of Ny <1%

@ sizable impact on Trair collisions at
highest energies only (top of EAS)
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Neglecting absorptive corrections to the TFexchange process
= higher yield of forward-produced p-mesons
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Neglecting absorptive corrections to the TFexchange process
= higher yield of forward-produced p-mesons

g WE s w107
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of pion elastic scattering

N ~ TIT el 1 ~tot
9 On_air — 20m_air at Eo —

@ = scarce hadron production!




Model uncertainties for predicted Ny 50 & sigi, arxiv: 2404.02085]

Neglecting absorptive corrections to the TFexchange process
= higher yield of forward-produced p-mesons
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In such a case: large contribution of pion elastic scattering
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Model uncertainties for predicted Ny 50 & sigi, arxiv: 2404.02085]

Enhancing kaon production in TA collisions by 40%
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Model uncertainties for predicted Ny 50 & sigi, arxiv: 2404.02085]

Enhancing (anti)nucleon production in TIA collisions by 60%
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Model uncertainties for predicted Ny 50 & sigi, arxiv: 2404.02085]

NB: no kaon & (anti)nucleon 'deficit’ observed in pp & T
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Model uncertainties for predicted Ny 50 & sigi, arxiv: 2404.02085]

Enhancing p-meson production in TA collisions by 50%
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Model uncertainties for predicted Ny 50 & sigi, arxiv: 2404.02085]

Relative changes of the calculated N: < 10%
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Model uncertainties for predicted Ny 50 & sigi, arxiv: 2404.02085]

Relative changes of the calculated N: < 10%

20.15
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0.1 |- +60% (anti)nucleons
[ +40% kaons ___.......- @ small impact of the the considered
0.05 enhancements on S _sapielXL)
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Model uncertainties for Xmax calculations

3 main 'switches' for changing Xmax predictions

@ inelastic proton-air cross section (Gg‘fgir
o inelastic diffraction rate (Ogﬂir/cgfgir)

@ inelasticity of non-diffractive interactions (Kéﬁlair)




Model uncertainties for Xmax calculations

3 main 'switches' for changing Xmax predictions

|
air

@ inelastic proton-air cross section (0"‘e

diffr inel
o inelastic diffraction rate (05" /07 %;)

@ inelasticity of non-diffractive interactions (Kb”e(,'ilr)

Inelastic cross section: well constrained by LHC data

o < 3% difference for Og}‘f'
between ATLAS & TOTEM

® s -
(79.5+1.80 & 77.41+2.92 mb) o 5”3_ 2R,
@ even smaller difference for pA
0|Fr)1pel 0 Rg, |neI (Rp+ RA) . _

‘ Roa= Ro+ R




Model uncertainties for Xmax calculations

3 main 'switches' for changing Xmax predictions

inel
@ inelastic proton-air cross section (07'%;)
diffr inel
o inelastic diffraction rate (05" /07 %;)

@ inelasticity of non-diffractive interactions (Kb”e(,'ilr)

Inelastic cross section: well constrained by LHC data

@ < 3% difference for og‘pe'
between ATLAS & TOTEM

® -
(79.5+1.80 & 77.41+2.92 mb) o 5"3_ 2R,
@ even smaller difference for pA

of ORS o' O (Rp+Ra)? g

o NB: 1% change of O'F?fgir = Roa= Ro + R
AXmax~ 1 g/cm? at 10° eV




Model uncertainties for Xmax calculations

3 main 'switches' for changing Xmax predictions

@ inelastic proton-air cross section (0'“92‘”

diffr inel
o inelastic diffraction rate (05" /07 %;)

@ inelasticity of non-diffractive interactions (Kb”e(,'ilr)

Inelastic cross section: well constrained by LHC data

o < 3% difference for Oi;g'
between ATLAS & TOTEM 7
(79.5:i: 1.80 & 77.41+292 mb) @ s R b= 2 Rj

@ even smaller difference for pA

ops! RS, opR! O (Ry+ Ra)? ° _

@ NB: 1% change of Olp?—egir = Rx= R +R
AXmax~ 1 g/cm? at 10'° eV

Diffraction uncertainties: AXmax S 5 g/cm2 [SO, PRD89 (2014) 074009]




Model uncertainties for Xmax calculations

The only freedom left: inelasticity for p— air

inel

@ higher energy = higher multiple scattering = higher Kp—air
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The only freedom left: inelasticity for p— air

inel
p—air

@ = one needs softer spectra for secondary hadrons (T, K...)

@ higher energy = higher multiple scattering = higher K

o ideally: Feynman scaling for forward spectra




Model uncertainties for Xmax calculations

The only freedom left: inelasticity for p— air

@ higher energy = higher multiple scattering = higher Kgf;ir

@ = one needs softer spectra for secondary hadrons (T,K...)

o ideally: Feynman scaling for forward spectra
. o

How to give less energy away to secondary hadrons?

@ hadronization (string fragmentation) N, /dy
procedure is a 'holy cow’ (universal)

@ central rapidity density of secondaries: RN

constrained by data ‘ N

@ main 'switch’: constituent parton
- B B S \
(string end) momentum distribution /’ \

(x~94) [SO, J.Phys. G29 (2003) 831] y




Model uncertainties for Xmax calculations

The only freedom left: inelasticity for p— air

@ higher energy = higher multiple scattering = higher Kgf;ir

@ = one needs softer spectra for secondary hadrons (T,K...)

o ideally: Feynman scaling for forward spectra
. o

How to give less energy away to secondary hadrons?

@ hadronization (string fragmentation) dN, dy
procedure is a 'holy cow’ (universal)
@ central rapidity density of secondaries: RN
. 4 .
constrained by data ‘ N
4 \
@ main 'switch’: constituent parton - -
- S - 5 \
(string end) momentum distribution /' \
(x~%a) [S0O, J.Phys. G29 (2003) 831] y

® Oq — 1: approximate Feynman scaling for forward spectra




Model uncertainties for Xmax calculations

The only freedom left: inelasticity for p— air

@ higher energy = higher multiple scattering = higher Kgf;ir

@ = one needs softer spectra for secondary hadrons (T,K...)

o ideally: Feynman scaling for forward spectra
. o

How to give less energy away to secondary hadrons?

@ hadronization (string fragmentation) dN, dy
procedure is a 'holy cow’ (universal)
@ central rapidity density of secondaries: RN
. 4 .
constrained by data ‘ N
4 \
@ main 'switch’: constituent parton - -
- S - 5 \
(string end) momentum distribution /' \
(x~%a) [S0O, J.Phys. G29 (2003) 831] y

® Oq — 1: approximate Feynman scaling for forward spectra

@ NB: may not work for semihard scattering (minijet production)



Model uncertainties for Xmax calculations

Vary the string end distributions, x~%a: with aq = 0.65,0.8,0.9

§ 9T
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[anee e | @ perform the same model

i ey tuning:
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1 I I i @ and to central production
2 1 0 1 2 at LHC
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Model uncertainties for Xmax calculations

Check with more forward data from CMS & TOTEM

8 - p+p-h" (8Tevem.)

dn,,/dn

4
’—QG{‘JS;ET"”(’&'O'“) @ the trend towards larger 0g
| amma X -0.
| i not supported
q
2 T L L _
0 2 4 6 @ but can not yet be disproved




Model uncertainties for Xmax calculations

Check with more forward data from CMS & TOTEM

8 - p+p-h" (8Tevem.)

dn,,/dn

[ GBS o) @ the trend towards larger agq

| mmmm X-08
| i not supported
q
2 L L. L )
0 2 4 6 @ but can not yet be disproved

n

@ NB: higher discrimination power expected from combined
studies with central & forward detectors (e.g. LHCf & ATLAS)
[SO, Bleicher, Pierog & Werner, PRD94 (2016) 114026]




Model uncertainties for Xmax calculations

inel
p—air

Choice of string end distribution (x~%): impact on K

[ = QGSJET-Ill X il
05 [.....x08 @ up to = 6% reduction of K%,
N xq-O.Q
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Model uncertainties for Xmax calculations

Choice of string end distribution (X~ %): impact on Xmax

— r . L
5 gs0 [ pinduced EAS @ up to ~ 10 g/cm* shift of Xmax
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Model uncertainties for Xmax calculations

Choice of string end distribution (X~ %): impact on Xmax

- N o L.
§ gso [ Prinduced EAS @ up to =~ 10 g/cm? shift of Xmax
e [ 0.9
I @ why a moderate effect on
X L q . .
800 |- —— QGSJETN particle production & Xmax?
750 |-
700
L L \\HH‘ L L \\\\H‘ L L1 lll
10" 10" 10" 10%°
E (eV)




Model uncertainties for Xmax calculations

Choice of string end distribution (X~ %): impact on Xmax

€ ggo [ prinduced EAS @ up to ~ 10 g/cm? shift of Xmax
R i“zz @ why a moderate effect on
X L q . .
800 |- —— QGSJET-II particle production & Xmnax?
@ 'warranted’ scaling violation due
70 - to semihard scattering
i (energy fraction taken by
700 perturbatively generated partons
1017\ L HHI‘Olg‘ L \\H]\-glg\ L \\\\]\.\020 : |0Wer bound on K;)r]f!alr)
E, (eV)




Model uncertainties for Xmax calculations

Exotic: modification of the hadronization by 'collective effects’

@ standard treatment: strings of color field
stretched between constituent partons
and/or all perturbatively produced partons

HLRRRRR0R,

00|

o = production of partons (& hadrons)
covers the full rapidity range




Model uncertainties for Xmax calculations

Exotic: modification of the hadronization by 'collective effects’

@ assuming this is modified by 'collective
effects’ & neglecting parton cascades:
strings are formed between constituent

q partons & highest p; partons
— q
3
3
©
3
<
3
Secececsce
3
L
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= q
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Model uncertainties for Xmax calculations

Exotic: modification of the hadronization by 'collective effects’

@ assuming this is modified by 'collective
effects’ & neglecting parton cascades:
strings are formed between constituent

q partons & highest p; partons

LIS Og — 1 limit: short strings concentrated at
central rapidities in c.m. frame

inel

e = small impact on Kpfai,

E

‘00‘00‘.DIDOIDDEDOIQOIDOII)J

0.0
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Exotic: modification of the hadronization by 'collective effects’

@ assuming this is modified by 'collective
effects’ & neglecting parton cascades:
strings are formed between constituent

q partons & highest p; partons

LIS Og — 1 limit: short strings concentrated at
central rapidities in c.m. frame

inel

e = small impact on Kpfai,

@ rather nonphysical: collective effects may
be strong in central (small b) collisions only

‘00‘00‘.DIDOIDDEDOIQOIDOII)J

0.0



Model uncertainties for Xmax calculations

Exotic: modification of the hadronization by 'collective effects’

@ assuming this is modified by 'collective
effects’ & neglecting parton cascades:
strings are formed between constituent

q partons & highest p; partons

LIS Og — 1 limit: short strings concentrated at
central rapidities in c.m. frame

@ = small impact on Kgﬂm
@ rather nonphysical: collective effects may

be strong in central (small b) collisions only

@ = should not have large impact on the
_ average parton production pattern
g (dominated by peripheral collisions)

‘00‘00‘.DIDOIDDEDOIQOIDOII)J

-



Model uncertainties for Xmax calculations

Impact of string end distribution on Kip“_e;ir (no parton cascades)
S :
oa = @ energy-dependence of Kb”f;ir
g reduced drastically
07 | :
N G e 0g=009: K")”_e;ir doesn't
06 [ e depend on energy above 1 PeV

— QGSJET-IlI
..... Xy 08(no ISR)
Xy 09 (no ISR)
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Model uncertainties for Xmax calculations

Impact of string end distribution on Kip“_e;ir (no parton cascades)
S :
08 | @ energy-dependence of Kg‘f;ir
r reduced drastically
07 | :
N G e 0g=009: K")”_e;ir doesn't
06 |l depend on energy above 1 PeV

_SGUSEJ(EL'S"R) @ = (mini)jet production has no
q

X;09 (N0 ISR) impact on the inelasticity in the
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Model uncertainties for Xmax calculations

Impact of string end distribution on Xmax (no parton cascades)

p-induced EAS 1

508 (no ISR)
xq—0»8 (no ISR) .
—— QGSJET-II <°

@ up to ~ 25 g/cm? shift of Xmax

800 [
750 |-

4

17\ L \\\\\\‘18\ L \\H\\‘lg\ Lol Ll 20
10 10 10 10
E, (eV)




Model uncertainties for Xmax calculations

Impact of string end distribution on Xmax (no parton cascades)

‘\%\ [ p-induced EAS o
E’% 850 [ xq—0»9(no ISR) y
><E [ ----xq—0»8(no ISR)
= QGSJET-IIl 0
800 Q @ up to ~ 25 g/cm? shift of Xmax
750 |- i
: @ can be refuted/constrained by
b LHC data?
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Model uncertainties for Xmax calculations

The limit oq — 1: disfavored by LHCf data on forward neutrons
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Model uncertainties for Xmax calculations

The limit oq — 1: disfavored by LHCf data on forward neutrons
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Model uncertainties for Xmax calculations

More important constraints: from PAO measurements of Xhax
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Model uncertainties for Xmax calculations

More important constraints: from PAO measurements of Xhax

__ 650
“Eo - p-induced EAS
2 L e
= é S
X600 - ot et _
I @ any change of Xmax = similar
[ (or even larger) shift of Xhax
= - [see backup slides]
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, —— QGSJET-I larger Xhax
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@ Major development in QGSJET-III: phenomenological
treatment of HT corrections to hard scattering processes

@ tames the low px rise of (mini)jet rates
@ reduces the model dependence on the low p; cutoff Qg
@ Technical improvement: treatment of Teexchange process

@ energy-dependence: due to absorptive corrections
(probability not to have additional inelastic rescattering)

@ Rather small changes for EAS characteristics (wrt QGSJET-II)
o up to ~ 10 g/cm? shift of Xmax and up to ~ 5% change of Ny

@ Model uncertainties for Ny: only up to ~ 10% enhancement

@ Model uncertainties for Xmax: only up to ~ 10 g/cm2 shift
(using the standard interaction treatment)

@ more exotic: 'collective effects’ = AXmax up to ~ 25 g/cm2
(disfavored by LHCf data & by PAO measurements of X#]ax)
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@ Major development in QGSJET-III: phenomenological
treatment of HT corrections to hard scattering processes

@ tames the low px rise of (mini)jet rates
@ reduces the model dependence on the low p; cutoff Qg
@ Technical improvement: treatment of Teexchange process

@ energy-dependence: due to absorptive corrections
(probability not to have additional inelastic rescattering)

@ Rather small changes for EAS characteristics (wrt QGSJET-II)
o up to ~ 10 g/cm? shift of Xmax and up to ~ 5% change of Ny

@ Model uncertainties for Ny: only up to ~ 10% enhancement

@ Model uncertainties for Xmax. only up to ~ 10 g/cm? shift
(using the standard interaction treatment)

@ more exotic: 'collective effects’ = AXmax up to ~ 25 g/cm2
(disfavored by LHCf data & by PAO measurements of X#]ax)



Extra slides follow
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(1) Few comments on the parton saturation mechanism

Usually a picture of a crowded bus in mind

o the 'unitarity’ argument: not too
many partons in a small volume

@ incorrect: those are virtual
(= unobservable) partons

Observable are consequences of (hard) interactions of partons

= o
o

h_ L4

@ correct argument: not too many “ ﬂ

boxing pairs at the same ring € L a»5»
I a4
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Usually a picture of a crowded bus in mind

@ the 'unitarity’ argument: not too
many partons in a small volume

@ incorrect: those are virtual
(= unobservable) partons

@ but: one may have arbitrary many
virtual boxers at the ring, if they don’t
fight (no problem with unitarity)



(1) Few comments on the parton saturation mechanism

Usually a picture of a crowded bus in mind

@ the 'unitarity’ argument: not too
many partons in a small volume

@ incorrect: those are virtual
(= unobservable) partons

@ but: one may have arbitrary many
virtual boxers at the ring, if they don't
fight (no problem with unitarity)

@ above-discussed: mechanism preventing
partons from 'fighting each other’



(2) Technical improvement: Teexchange process

Starting with NA49 data at 158 GeV/c

dn/dx
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(2) Technical improvement: Teexchange process

And moving over 6 energy decades to 13 TeV c.m.
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(3) Hard scattering: importance of the parton cascade

@ high energies = quick rise of (mini)jet production

o small ag(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(X/Xi;+1), In(ptziﬂ/ptzi)
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Why (mini)jet production is important for EAS predictions?

@ hadron jets: typically produced in
central region (y ~ 0) in c.m.s.
@ small impact on forward spectra
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(3) Hard scattering: importance of the parton cascade

@ high energies = quick rise of (mini)jet production

o small as(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(X/Xi+1), In(ptziﬂ/ptzi)

Why (mini)jet production is important for EAS predictions?

@ hadron jets: typically produced in
central region (y ~ 0) in c.m.s.
@ small impact on forward spectra
@ but: hardest scattering preceeded by
parton cascade (smaller pt, higher Xx)

@ = most important are first
('softest’) partons in the cascade

lower R higher x

higher R lower
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@ high energies = quick rise of (mini)jet production
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(arising from parton cascading): In(X/Xi+1), In(ptziﬂ/ptzi)

Why (mini)jet production is important for EAS predictions?

@ hadron jets: typically produced in
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parton cascade (smaller pt, higher x)
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@ the cascade starts at Q%—scale with

'soft’ gluons?
(fg(x, Q) Ox %, Ag=~0.2)




(3) Hard scattering: importance of the parton cascade

@ high energies = quick rise of (mini)jet production

o small as(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(X/Xi+1), In(ptziﬂ/ptzi)

Why (mini)jet production is important for EAS predictions?

@ hadron jets: typically produced in
central region (y ~ 0) in c.m.s.
@ small impact on forward spectra
@ but: hardest scattering preceeded by
parton cascade (smaller pt, higher x)

@ = most important are first
('softest’) partons in the cascade

lower R higher x

higher R lower

a

@ the cascade starts at Q%—scale with
'soft’ gluons?
(fg(x,Q3) O x 129, Ag ~ 0.2)

@ no: X-distribution of those gluons is
weighted with the hard scattering!




(3) Hard scattering: importance of the parton cascade

@ high energies = quick rise of (mini)jet production

o small ag(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(Xi/Xi+1), In(ptziﬂ/ptzi)

1-0g

Virtual gluons emitted by protons are indeed soft: [1Xx™

hard

@ but the probability for hard scattering: convolution with Ogg

Whard(S) 0 / dx*dx” fg(x", Qf) fy(x ™, QF) GSSrd(X+X‘s Q%)

° oggrd(é, Qg) [0 &nard — contribution of the DGLAP 'ladder’




(3) Hard scattering: importance of the parton cascade

@ high energies = quick rise of (mini)jet production

o small ag(p?) - compensated by infrared and collinear logs
(arising from parton cascading): In(Xi/Xi+1), In(ptziﬂ/ptzi)

1-0g

Virtual gluons emitted by protons are indeed soft: [1Xx™

hard

@ but the probability for hard scattering: convolution with ggg

Whard(S) 0 / dx*dx fg(x",Qf) fy(x ™, QF) GSSrd(X+X‘s Q%)

° oggrd(é, Qg) [0 &nard — contribution of the DGLAP 'ladder’

@ = gluons which succeed to interact have large x: [ x®hara—8g—1

o i.e., first partons in a perturbative cascade are 'valence-like'
(independently on our assumptions for string end distribution)




(4) PAO data: what kind of interaction physics is required?

Extreme case - Feynman scaling: same 0(Xmax), much deeper Xmax
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+ - PAO data

Ll Ll Lo 0 Ll Ll Lo

1017 1018 1019 1020 1017 1018 1019 1020
E, (eV) E, (eV)

° o-ip?flairv olel ., anel . — all kept unchanged (wrt QGSJET-11-04)

@ nonlinear effects & hard scattering switched off
(K—factorzO, Gppp =0, Kyt = 0)

@ production spectra - frosen at 100 GeV lab.
I




(4) Scaling model is dead since > 50 years

Since it misses the observed rise of the 'rapidity plato’ ngP,/dr]

= 10
g [ p+pat8TeVc.m- C(CMS-TOTEM)
8 I
6 L
4
N \
[ = QGSJET-III-03 .
N scaling ° ngB/dr] at small n: of weak
L. AR [ T N RS S B .
%0 2 4 s importance for EAS (small Xg)
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(4) Scaling model is dead since > 50 years

More important: LHCf data on forward neutrons - measure of K},“pe'

x 10
> 0.15 n=10.75 10.06<n < 10.75 9.65<n < 10.06
= p+p at 13 TeV c.m.- n
5
1“5" — QGSJET-III-03
E ----- scaling
0.1

0.05

x 10
0.8

do/dE, mb/GeV

- = PRI — - T
6000 2000 4000 6000
E, GeV E, GeV

@ scaling: energy loss of leading nucleons is underestimated




(4) Most general warning regarding large Xmax predictions

Changing Xmax implies equal or larger changes for Xhax

@ any change of the primary interaction (Og‘eglr, Og'ﬂ;”, K'nel air)

impacts only the initial stage of EAS development
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(4) Most general warning regarding large Xmax predictions

Changing Xmax implies equal or larger changes for Xhax

@ any change of the primary interaction (Og‘eglr, Og'ﬂ;”, K'nel air)

impacts only the initial stage of EAS development

Xy

@ = parallel up/down shift of the i
cascade profile (same shape)

00

@ = same effect on Xmax & XHax

V4
T (vomur o ¥

0

@ additionally: the corresponding
change of physics impacts Trair
interactions at all the steps of the
cascade development

o = cumulative effect on Xhax




(4) Most general warning regarding large Xmax predictions

Changing Xmax implies equal or larger changes for Xhax
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