

"An ignorance of a law is not a justification for violating the law"

This applies equally to the laws of physics

#### Jet production in MC generators: collinear factorization of pQCD

$$\frac{d\sigma_{pp}^{\text{jet}}}{dp_t^2} = \sum_{I,J=q,\bar{q},g} f_I \otimes \frac{d\sigma_{IJ}^{2\to 2}}{dp_t^2} \otimes f_J$$

hard scattering involves one projectile & one target parton

#### Jet production in MC generators: collinear factorization of pQCD

$$\frac{d\sigma_{pp}^{\text{jet}}}{dp_t^2} = \sum_{I,J=q,\bar{q},g} f_I \otimes \frac{d\sigma_{IJ}^{2\to 2}}{dp_t^2} \otimes f_J$$

- hard scattering involves one projectile & one target parton
- problem:  $d\sigma_{IJ}^{2\to 2}/dp_t^2 \propto 1/p_t^4 \Rightarrow$  explodes at small  $p_t$ 
  - $\bullet \Rightarrow \text{low } p_t \text{ cutoff } (Q_0) \text{ required (technical parameter?)}$

#### Jet production in MC generators: collinear factorization of pQCD

$$\frac{d\sigma_{pp}^{\text{jet}}}{dp_t^2} = \sum_{I,J=q,\bar{q},g} f_I \otimes \frac{d\sigma_{IJ}^{2\to 2}}{dp_t^2} \otimes f_J$$

- hard scattering involves one projectile & one target parton
- problem:  $d\sigma_{IJ}^{2\to 2}/dp_t^2 \propto 1/p_t^4 \Rightarrow$  explodes at small  $p_t$ 
  - $\Rightarrow$  low  $p_t$  cutoff  $(Q_0)$  required (technical parameter?)
- ullet choice of  $Q_0$  impacts strongly the predictions (e.g.  $\sigma_{pp}^{ ext{tot/inel}}$ )

#### Jet production in MC generators: collinear factorization of pQCD

$$\frac{d\sigma_{pp}^{\text{jet}}}{dp_t^2} = \sum_{I,J=q,\bar{q},g} f_I \otimes \frac{d\sigma_{IJ}^{2\to 2}}{dp_t^2} \otimes f_J$$

- hard scattering involves one projectile & one target parton
- problem:  $d\sigma_{IJ}^{2\to2}/dp_t^2 \propto 1/p_t^4 \Rightarrow$  explodes at small  $p_t$ 
  - ullet  $\Rightarrow$  low  $p_t$  cutoff  $(Q_0)$  required (technical parameter?)
- ullet choice of  $Q_0$  impacts strongly the predictions (e.g.  $\sigma_{pp}^{
  m tot/inel}$ )

#### What kind of physics is behind this cutoff?

- ullet for  $Q_0\sim$  few GeV, soft physics irrelevant
  - ⇒ a perturbative mechanism missing

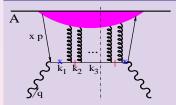
#### Jet production in MC generators: collinear factorization of pQCD

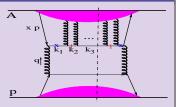
$$\frac{d\sigma_{pp}^{\text{jet}}}{dp_t^2} = \sum_{I,J=q,\bar{q},g} f_I \otimes \frac{d\sigma_{IJ}^{2\to 2}}{dp_t^2} \otimes f_J$$

- hard scattering involves one projectile & one target parton
- problem:  $d\sigma_{IJ}^{2\to2}/dp_t^2 \propto 1/p_t^4 \Rightarrow$  explodes at small  $p_t$ 
  - ullet  $\Rightarrow$  low  $p_t$  cutoff  $(Q_0)$  required (technical parameter?)
- ullet choice of  $Q_0$  impacts strongly the predictions (e.g.  $\sigma_{pp}^{
  m tot/inel}$ )

#### What kind of physics is behind this cutoff?

- ullet for  $Q_0\sim$  few GeV, soft physics irrelevant
  - ⇒ a perturbative mechanism missing
- are MC predictions trustworthy, without such a mechanism?


#### Hint: collinear factorization of pQCD valid at leading twist level

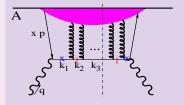

- perhaps higher twist effects do the job?
  - ullet come into play at relatively small  $p_{\mathrm{t}}$  [suppressed as  $1/p_{\mathrm{t}}^{n}$ ]

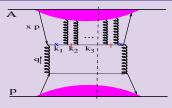
Hint: collinear factorization of pQCD valid at leading twist level

- perhaps higher twist effects do the job?
  - ullet come into play at relatively small  $p_{\mathrm{t}}$  [suppressed as  $1/p_{\mathrm{t}}^{n}$ ]

Promising: coherent multiple scattering on 'soft' gluons in  $\gamma^*A/pA$  [Qiu & Vitev, PRL93 (2004) 262301; PLB632 (2006) 507]





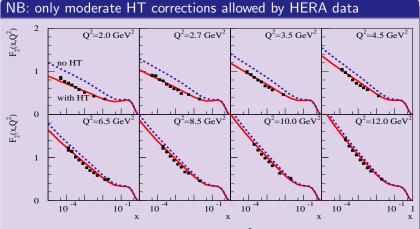


scattering involves any number of 'soft' gluon pairs
 (⇒ multiparton correlators)

Hint: collinear factorization of pQCD valid at leading twist level

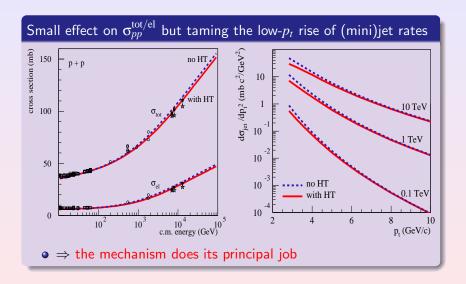
- perhaps higher twist effects do the job?
  - ullet come into play at relatively small  $p_{\mathrm{t}}$  [suppressed as  $1/p_{\mathrm{t}}^{n}$ ]

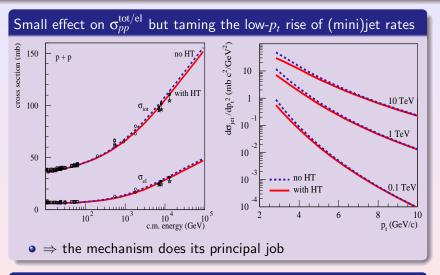
Promising: coherent multiple scattering on 'soft' gluons in  $\gamma^*A/pA$  [Qiu & Vitev, PRL93 (2004) 262301; PLB632 (2006) 507]





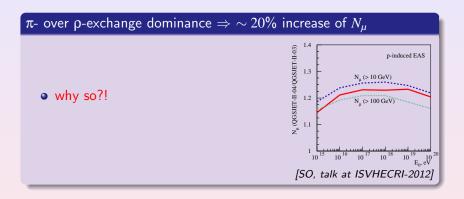

scattering involves any number of 'soft' gluon pairs
 (⇒ multiparton correlators)


Extrapolation to hadron-proton & light nuclei [SO & Bleicher, Universe 5 (2019) 106; SO, arXiv: 2401.06202]




- HT corrections important at low  $Q^2$ 
  - ullet  $\Rightarrow$  too strong corrections at tension with  $Q^2$ -evolution of  $F_2$



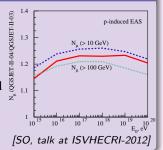

- HT corrections important at low  $Q^2$ 
  - $\Rightarrow$  too strong corrections at tension with  $Q^2$ -evolution of  $F_2$
- known fact:  $Q^2$ -evolution of  $F_2$  is well-described by DGLAP
  - ⇒ little space for HT or/and saturation effects





NB: this is NOT parton saturation! [see also backup slides]

rather resembles LPM effect in QED




# 

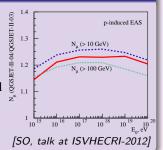
# π- over ρ-exchange dominance $\Rightarrow$ ~ 20% increase of $N_{\mu}$ • why so?! • isospin symmetry: $\rho^+:\rho^-:\rho^0=1:1:1:1$ • $\Rightarrow \langle E_{\pi^\pm}\rangle:\langle E_{\pi^0}\rangle=2:1$ in central production $(\rho^\pm\to\pi^\pm\pi^0,\,\rho^0\to\pi^+\pi^-)$

## π- over ρ-exchange dominance $\Rightarrow \sim 20\%$ increase of $N_{μ}$

- why so?!
- isospin symmetry:  $\rho^+ : \rho^- : \rho^0 = 1 : 1 : 1$
- $\Rightarrow \langle E_{\pi^\pm} \rangle : \langle E_{\pi^0} \rangle = 2 : 1 \text{ in central production } (\rho^\pm \to \pi^\pm \pi^0, \ \rho^0 \to \pi^+ \pi^-)$



## $\pi$ -exchange process in $\pi^+A$ : only $\rho^+$ and $\rho^0$ produced forward


$$\bullet \Rightarrow \langle E_{\pi^{\pm}} \rangle : \langle E_{\pi^0} \rangle = 3 : 1$$

$$\pi^+ \frac{u}{\overline{d}} \frac{u}{\overline{d}} \rho$$

$$\tau^{+} \frac{u}{\overline{d}} \frac{u}{\overline{d}}$$

## π- over ρ-exchange dominance $\Rightarrow \sim 20\%$ increase of $N_{μ}$

- why so?!
- isospin symmetry:  $\rho^+ : \rho^- : \rho^0 = 1 : 1 : 1$
- $\Rightarrow \langle E_{\pi^\pm} \rangle : \langle E_{\pi^0} \rangle = 2 : 1 \text{ in central production } (\rho^\pm \to \pi^\pm \pi^0, \ \rho^0 \to \pi^+ \pi^-)$



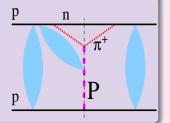
## $\pi$ -exchange process in $\pi^+A$ : only $\rho^+$ and $\rho^0$ produced forward

- $\bullet \Rightarrow \langle E_{\pi^{\pm}} \rangle : \langle E_{\pi^0} \rangle = 3 : 1$
- ⇒ less energy channeled into e/m cascades!

$$\pi^{+} \frac{\underline{u} \qquad \underline{u}}{\overline{d} \qquad \overline{d} \qquad \overline{d}} \rho^{+} \qquad \pi^{+} \frac{\underline{u} \qquad \underline{u}}{\overline{d} \qquad \overline{u}} \rho^{0}$$

$$\pi^{0} \qquad \qquad \pi^{+}$$

## $\pi$ -exchange process in $\pi^+A$ : only $\rho^+$ and $\rho^0$ produced forward


- $\bullet \Rightarrow \langle E_{\pi^{\pm}} \rangle : \langle E_{\pi^0} \rangle = 3 : 1$
- ⇒ less energy channeled into e/m cascades!

$$\pi^{+} \frac{u}{\overline{d}} \frac{u}{\overline{d}} \rho^{+} \qquad \pi^{+} \frac{u}{\overline{d}} \frac{u}{\overline{d}} \rho^{0}$$

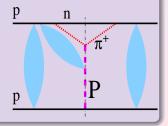
$$\pi^{0} \qquad \pi^{+}$$

#### Energy-dependence: driven by absorptive corrections to the process

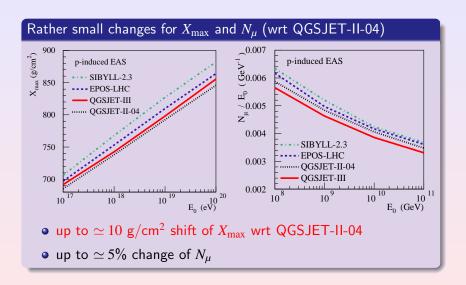
• high x production of  $\rho$  in  $\pi^{\pm}p$  ( $\pi^{\pm}A$ ) or of neutrons in pp: only without additional inelastic rescatterings



## $\pi$ -exchange process in $\pi^+A$ : only $\rho^+$ and $\rho^0$ produced forward

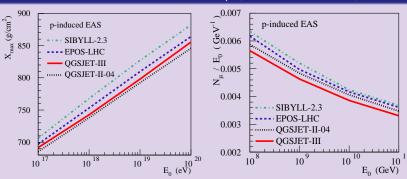

- $\bullet \Rightarrow \langle E_{\pi^{\pm}} \rangle : \langle E_{\pi^0} \rangle = 3 : 1$
- ⇒ less energy channeled into e/m cascades!

$$\pi^{+} \frac{u}{\overline{d}} \frac{u}{\overline{d}} \rho^{+} \qquad \pi^{+} \frac{u}{\overline{d}} \frac{u}{\overline{u}} \rho^{0}$$


$$\pi^{0} \qquad \pi^{+}$$

#### Energy-dependence: driven by absorptive corrections to the process

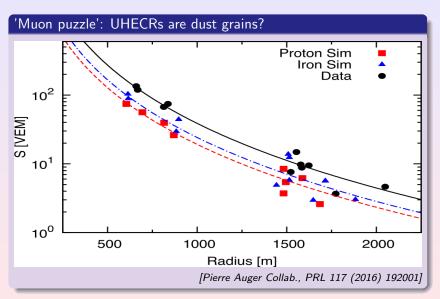
- high x production of  $\rho$  in  $\pi^{\pm}p$  ( $\pi^{\pm}A$ ) or of neutrons in pp: only without additional inelastic rescatterings
- now can be tested in  $pp \rightarrow nX$ thanks to LHCf data [backup slides]



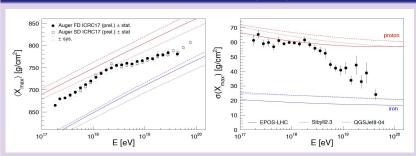

#### Results for extensive air showers



## Results for extensive air showers


#### Rather small changes for $X_{\rm max}$ and $N_{\mu}$ (wrt QGSJET-II-04)

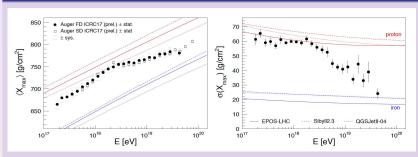



- up to  $\simeq 10 \text{ g/cm}^2$  shift of  $X_{\text{max}}$  wrt QGSJET-II-04
- ullet up to  $\simeq 5\%$  change of  $N_{\mu}$

#### What is the reason for the stability of the predictions?

- the model sufficiently constrained by LHC data?
- or a mere consequence of a particular model approach?

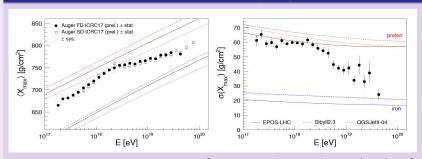



## More serious: tension between $X_{\text{max}}$ & $\sigma(X_{\text{max}})$



[Pierre Auger Collab., JCAP 04 (2017) 038]

• energy dependence of  $X_{max}$  &  $\sigma(X_{max})$ : both indicate a change towards a heavier composition


## More serious: tension between $X_{\text{max}}$ & $\sigma(X_{\text{max}})$



[Pierre Auger Collab., JCAP 04 (2017) 038]

- energy dependence of  $X_{max}$  &  $\sigma(X_{max})$ : both indicate a change towards a heavier composition
- but:  $\sigma(X_{\text{max}})$  implies a faster change

## More serious: tension between $X_{\text{max}}$ & $\sigma(X_{\text{max}})$



[Pierre Auger Collab., JCAP 04 (2017) 038]

- energy dependence of  $X_{max}$  &  $\sigma(X_{max})$ : both indicate a change towards a heavier composition
- but:  $\sigma(X_{\text{max}})$  implies a faster change

#### $\sigma(X_{ m max})$ – theoretically robust [Berezinsky et al., PRD 77 (2008) 025007]

- higher elongation rate (deeper  $X_{\text{max}}$ )?
  - by how much?!







Adjustments to Model Predictions of Depth of Shower Maximum and Signals at Ground Level using Hybrid Events of the Pierre Auger Observatory

Jakub Vícha<sup>a,\*</sup> on behalf of the Pierre Auger<sup>b</sup> Collaboration

• to be compatible with PAO data,  $X_{\rm max}$  of QGSJET-II should be larger by  $48 \pm 2^{+9}_{-12}$ 





## PROCEEDINGS OF SCIENCE



## Adjustments to Model Predictions of Depth of Shower Maximum and Signals at Ground Level using Hybrid Events of the Pierre Auger Observatory

Jakub Vícha<sup>a,\*</sup> on behalf of the Pierre Auger<sup>b</sup> Collaboration

- to be compatible with PAO data,  $X_{
  m max}$  of QGSJET-II should be larger by  $48\pm2^{+9}_{-12}$
- is it feasible, in view of available LHC data?
  - what kind of physics changes are required?



#### How to define 'model uncertainties'?

 violating energy conservation: any desirable (though meaningless) result

#### How to define 'model uncertainties'?

- violating energy conservation: any desirable (though meaningless) result
- isospin symmetry breaking ⇒ equally meaningless results

#### How to define 'model uncertainties'?

- violating energy conservation: any desirable (though meaningless) result
- isospin symmetry breaking ⇒ equally meaningless results
  - e.g., producing preferably  $\pi^{\pm}$ , at an expance of  $\pi^0$ : any desirable enhancement of  $N_{\mu}$

#### How to define 'model uncertainties'?

- violating energy conservation: any desirable (though meaningless) result
- isospin symmetry breaking ⇒ equally meaningless results
  - e.g., producing preferably  $\pi^{\pm}$ , at an expance of  $\pi^0$ : any desirable enhancement of  $N_{\mu}$

#### 3 'pillars' of the current study

- restrict oneself with the standard physics (no BSM effects!)
- make changes at the microscopic level
- check consequences regarding a (dis)agreement with accelerator & CR data

#### Kinematic range for hadron production, relevant for $N_{\mu}$ predictions

• let us restrict ourselves with pion production only:

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\text{air}}^{\pi^{\pm}}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

#### Kinematic range for hadron production, relevant for $N_u$ predictions

• let us restrict ourselves with pion production only:

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\text{air}}^{\pi^{\pm}}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

• abundant production at  $x \to 0$ :  $dN_{p-\text{air}}^{\pi^{\pm}}(E_0,x)/dx \propto x^{-1-\Delta}$ 

#### Kinematic range for hadron production, relevant for $N_u$ predictions

• let us restrict ourselves with pion production only:

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\text{air}}^{\pi^{\pm}}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

- abundant production at  $x \to 0$ :  $dN_{p-\mathrm{air}}^{\pi^{\pm}}(E_0,x)/dx \propto x^{-1-\Delta}$
- large  $N_{\mu}$  yields at  $x \to 1$ :  $N_{\pi^{\pm}}^{\mu}(xE_0) \propto (xE_0)^{\alpha_{\mu}}$

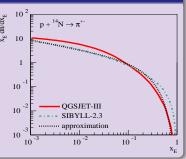
• let us restrict ourselves with pion production only:

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\text{air}}^{\pi^{\pm}}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

- abundant production at  $x \to 0$ :  $dN_{p-\mathrm{air}}^{\pi^{\pm}}(E_0,x)/dx \propto x^{-1-\Delta}$
- large  $N_{\mu}$  yields at  $x \to 1$ :  $N_{\pi^{\pm}}^{\mu}(xE_0) \propto (xE_0)^{\alpha_{\mu}}$

Using an ansatz: 
$$dN_{p-\mathrm{air}}^{\pi^\pm}(E_0,x)/dx \propto x^{-1-\Delta}(1-x)^{\beta}$$
 
$$N_p^\mu(E_0) \propto E_0^{\alpha_\mu} \int_{x_{\mathrm{min}}}^1 dx \, x^{\alpha_\mu - 1 - \Delta} (1-x)^{\beta} \stackrel{\mathbb{R}^3}{\underset{\mathbb{R}^3}{=}} \frac{10^2}{10^{-2}} \stackrel{\mathbb{R}^3}{\underset{\mathbb{R}^3}{=}} \frac{10^2}{10^{-2}} \stackrel{\mathbb{R}^3}{\underset{\mathbb{R}^3}{=}} \frac{10^2}{10^{-2}} \stackrel{\mathbb{R}^3}{\underset{\mathbb{R}^3}{=}} \frac{10^2}{\underset{\mathbb{R}^3}{=}} \frac{10^2}{\underset{\mathbb$$

• let us restrict ourselves with pion production only:


$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\text{air}}^{\pi^{\pm}}(E_0, x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

- abundant production at  $x \to 0$ :  $dN_{p-\text{air}}^{\pi^{\pm}}(E_0,x)/dx \propto x^{-1-\Delta}$
- large  $N_{\mu}$  yields at  $x \to 1$ :  $N^{\mu}_{\pi^{\pm}}(xE_0) \propto (xE_0)^{\alpha_{\mu}}$

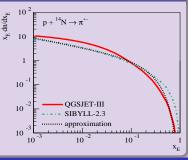
Using an ansatz: 
$$dN_{p-{\rm air}}^{\pi^\pm}(E_0,x)/dx \propto x^{-1-\Delta}(1-x)^{\beta}$$

$$N_p^{\mu}(E_0) \propto E_0^{\alpha_{\mu}} \int_{x_{\min}}^1 dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} (1 - x)^{\beta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} (1$$

• largest contribution from  $\langle x_{\pi} \rangle \simeq \frac{\alpha_{\mu} - \Delta}{\alpha_{\mu} + \beta - 1 - \Delta} \sim 0.1$   $(\Delta \simeq 0.4, \ \alpha_{\mu} \simeq 0.9, \ \beta \simeq 4.5)$ 



• let us restrict ourselves with pion production only:


$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\text{air}}^{\pi^{\pm}}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

- abundant production at  $x \to 0$ :  $dN_{p-\text{air}}^{\pi^{\pm}}(E_0,x)/dx \propto x^{-1-\Delta}$
- large  $N_{\mu}$  yields at  $x \to 1$ :  $N^{\mu}_{\pi^{\pm}}(xE_0) \propto (xE_0)^{\alpha_{\mu}}$

# Using an ansatz: $dN_{p-{\rm air}}^{\pi^\pm}(E_0,x)/dx \propto x^{-1-\Delta}(1-x)^{\beta}$

$$N_p^{\mu}(E_0) \propto E_0^{\alpha_{\mu}} \int_{x_{\min}}^1 dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} (1 - x)^{\beta} (1 - x)^{\beta} \stackrel{\text{gradients}}{\underset{\text{for } 100}{\text{proposition}}} \int_{x_{\min}}^{10^2} dx \, x^{\alpha_{\mu} - 1 - \Delta} (1 - x)^{\beta} (1$$

- largest contribution from  $\langle x_{\pi} \rangle \simeq \frac{\alpha_{\mu} \Delta}{\alpha_{\mu} + \beta 1 \Delta} \sim 0.1$  ( $\Delta \simeq 0.4$ ,  $\alpha_{\mu} \simeq 0.9$ ,  $\beta \simeq 4.5$ )
- relevant  $\langle x_{\pi} \rangle$  for  $\pi$ -air interactions follows similarly



• let us restrict ourselves with pion production only:

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\text{air}}^{\pi^{\pm}}(E_0, x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

- abundant production at  $x \to 0$ :  $dN_{p-\text{air}}^{\pi^{\pm}}(E_0,x)/dx \propto x^{-1-\Delta}$
- large  $N_{\mu}$  yields at  $x \to 1$ :  $N_{\pi^{\pm}}^{\mu}(xE_0) \propto (xE_0)^{\alpha_{\mu}}$

## Accounting for all 'stable' hadrons $(\pi^{\pm}$ , kaons, (anti)nucleons)

• relevant quantity for EAS muon content:

$$\sum_{h=\text{stable}} \langle (x_E^h)^{\alpha_\mu} \rangle = \sum_{h=\text{stable}} \int dx_E \, x_E^{\alpha_\mu} \, \frac{dN_{\pi^{\pm}\text{air}}^h(E_0, x_E)}{dx_E}$$

• let us restrict ourselves with pion production only:

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\text{air}}^{\pi^{\pm}}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

- abundant production at  $x \to 0$ :  $dN_{p-\text{air}}^{\pi^{\pm}}(E_0,x)/dx \propto x^{-1-\Delta}$
- large  $N_{\mu}$  yields at  $x \to 1$ :  $N_{\pi^{\pm}}^{\mu}(xE_0) \propto (xE_0)^{\alpha_{\mu}}$

## Accounting for all 'stable' hadrons $(\pi^{\pm}$ , kaons, (anti)nucleons)

• relevant quantity for EAS muon content:

$$\sum_{h=\text{stable}} \langle (x_E^h)^{\alpha_\mu} \rangle = \sum_{h=\text{stable}} \int dx_E \, x_E^{\alpha_\mu} \, \frac{dN_{\pi^{\pm}_{\text{air}}}^h(E_0, x_E)}{dx_E}$$

ullet can be well approximated by  $\sum_{h=\mathrm{stable}}\langle x_E^h 
angle \ (oldsymbol{lpha}_{\mu} 
ightarrow 1)$ 

• let us restrict ourselves with pion production only:

$$N_p^{\mu}(E_0) \simeq \int dx \, \frac{dN_{p-\text{air}}^{\pi^{\pm}}(E_0,x)}{dx} \, N_{\pi^{\pm}}^{\mu}(xE_0)$$

- abundant production at  $x \to 0$ :  $dN_{p-\mathrm{air}}^{\pi^{\pm}}(E_0,x)/dx \propto x^{-1-\Delta}$
- large  $N_{\mu}$  yields at  $x \to 1$ :  $N_{\pi^{\pm}}^{\mu}(xE_0) \propto (xE_0)^{\alpha_{\mu}}$

## Accounting for all 'stable' hadrons $(\pi^{\pm}$ , kaons, (anti)nucleons)

relevant quantity for EAS muon content:

$$\sum_{h=\text{stable}} \langle (x_E^h)^{\alpha_\mu} \rangle = \sum_{h=\text{stable}} \int dx_E \, x_E^{\alpha_\mu} \, \frac{dN_{\pi^{\pm} \text{air}}^h(E_0, x_E)}{dx_E}$$

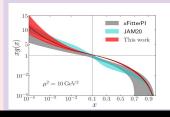
- ullet can be well approximated by  $\sum_{h=\mathrm{stable}} \langle x_E^h 
  angle \; (lpha_\mu o 1)$
- $\Rightarrow N^{\mu}$  is governed by the total energy fraction taken by all 'stable' hadrons (not by the multiplicity)

# How to increase $\sum_{h=\text{stable}} \langle x_E^h \rangle$ ?

- ullet change the energy dependence of the multiplicity for  $\pi^\pm$ air
  - driven by the energy-rise of (mini)jet production
     by the gluon density of the pion

# How to increase $\sum_{h=\mathrm{stable}} \langle x_E^h \rangle$ ?

- ullet change the energy dependence of the multiplicity for  $\pi^\pm$ air
  - driven by the energy-rise of (mini)jet production
     by the gluon density of the pion
- change the energy dependence of the pion exchange process
  - $\Rightarrow$  larger forward yield of  $\rho$ -mesons

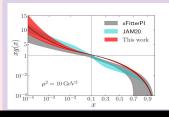

# How to increase $\sum_{h=\mathrm{stable}} \langle x_E^h \rangle$ ?

- ullet change the energy dependence of the multiplicity for  $\pi^\pm$ air
  - driven by the energy-rise of (mini)jet production
     by the gluon density of the pion
- change the energy dependence of the pion exchange process
   ⇒ larger forward yield of ρ-mesons
- change the model calibration (e.g. based on NA61 data): more kaons, (anti)nucleons & ρ-mesons

# How to increase $\sum_{h=\text{stable}} \langle x_E^h \rangle$ ?

- ullet change the energy dependence of the multiplicity for  $\pi^\pm$ air
  - driven by the energy-rise of (mini)jet production
     by the gluon density of the pion
- change the energy dependence of the pion exchange process
   ⇒ larger forward yield of ρ-mesons
- change the model calibration (e.g. based on NA61 data): more kaons, (anti)nucleons & ρ-mesons

### $G_{\pi}(x,q^2)$ - mostly constrained by the momentum sum rule

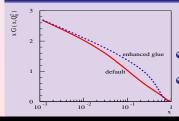



- $ullet q_{\pi}^{
  m v}(x,q^2)$  well constrained by Drell-Yan process studies
  - ullet uncertainties for  $\langle x_g 
    angle$  and  $\langle x_{q_{
    m sea}} 
    angle$
- $G_{\pi}(x,q^2)$  constrained by direct photon &  $J/\psi$  production studies

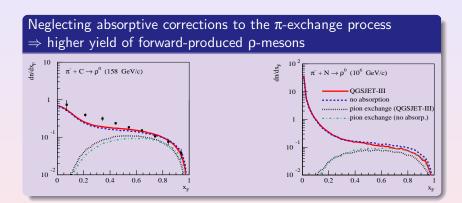
# How to increase $\sum_{h=\text{stable}} \langle x_E^h \rangle$ ?

- ullet change the energy dependence of the multiplicity for  $\pi^\pm$ air
  - driven by the energy-rise of (mini)jet production
     by the gluon density of the pion
- change the energy dependence of the pion exchange process
   ⇒ larger forward yield of ρ-mesons
- change the model calibration (e.g. based on NA61 data): more kaons, (anti)nucleons & ρ-mesons

### $G_{\pi}(x,q^2)$ - mostly constrained by the momentum sum rule

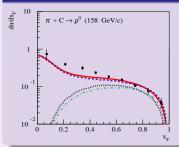


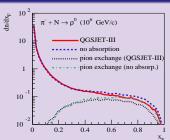

- $ullet q_{\pi}^{
  m v}(x,q^2)$  well constrained by Drell-Yan process studies
  - ullet uncertainties for  $\langle x_g 
    angle$  and  $\langle x_{q_{
    m sea}} 
    angle$
- $G_{\pi}(x,q^2)$  constrained by direct photon &  $J/\psi$  production studies


# How to increase $\sum_{h=\text{stable}} \langle x_E^h \rangle$ ?

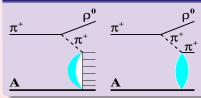
- ullet change the energy dependence of the multiplicity for  $\pi^\pm$ air
  - driven by the energy-rise of (mini)jet production
     by the gluon density of the pion
- change the energy dependence of the pion exchange process
   ⇒ larger forward yield of ρ-mesons
- change the model calibration (e.g. based on NA61 data): more kaons, (anti)nucleons & ρ-mesons

# Reducing $\langle x_{q_{\mathrm{v}}} \rangle$ by factor 2 and enhancing $\langle x_{g} \rangle$ & $\langle x_{q_{\mathrm{sea}}} \rangle$





- change of  $N_{\mu}$ :  $\lesssim 1\%$
- sizable impact on  $\pi$ -air collisions at highest energies only (top of EAS)

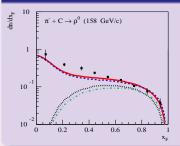


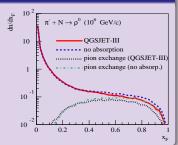

# Neglecting absorptive corrections to the $\pi$ -exchange process

 $\Rightarrow$  higher yield of forward-produced  $\rho$ -mesons

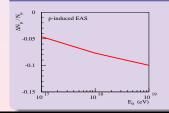




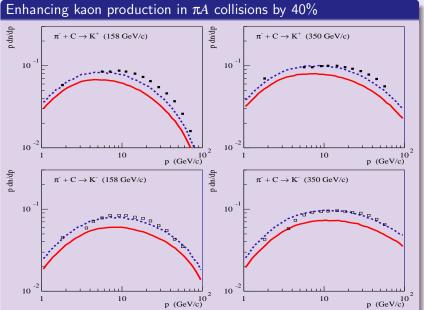

#### In such a case: large contribution of pion elastic scattering

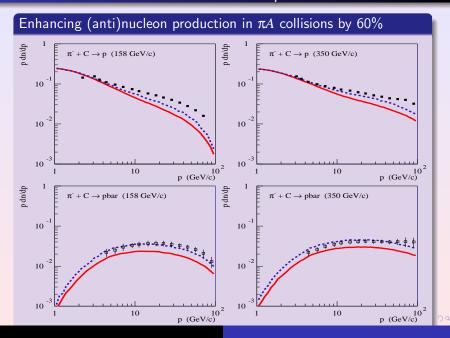


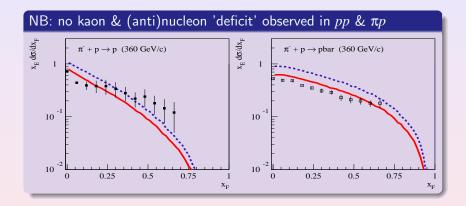

- ullet  $\sigma_{\pi-{
  m air}}^{
  m el} 
  ightarrow rac{1}{2} \sigma_{\pi-{
  m air}}^{
  m tot}$  at  $E_0 
  ightarrow \infty$
- ⇒ scarce hadron production!

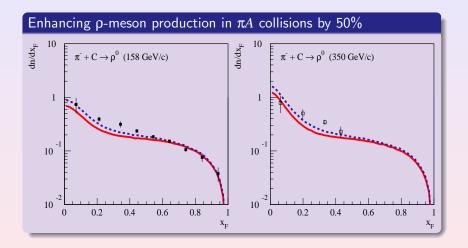

#### Neglecting absorptive corrections to the $\pi$ -exchange process

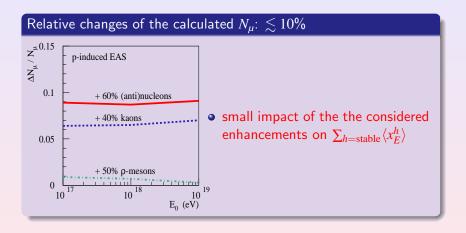
 $\Rightarrow$  higher yield of forward-produced p-mesons



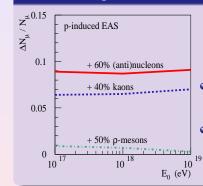





#### In such a case: large contribution of pion elastic scattering





- $\sigma_{\pi-{
  m air}}^{
  m el} 
  ightarrow rac{1}{2} \sigma_{\pi-{
  m air}}^{
  m tot}$  at  $E_0 
  ightarrow \infty$
- ⇒ scarce hadron production!
- $\Rightarrow$  decrease of  $N_{\mu}$  (instead of an enhancement)









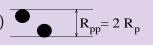



# Relative changes of the calculated $N_{\mu}$ : $\lesssim 10\%$

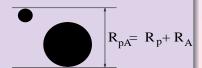


- small impact of the the considered enhancements on  $\sum_{h=\text{stable}} \langle x_F^h \rangle$
- ullet  $\Rightarrow$  one can't enhance  $N_{\mu}$  by more than  $\sim 10\%$ , without contradicting accelerator data!

#### 3 main 'switches' for changing $X_{\rm max}$ predictions


- ullet inelastic proton-air cross section  $(\sigma_{\it p-air}^{\rm inel})$
- ullet inelastic diffraction rate  $(\sigma_{p-{
  m air}}^{
  m diffr}/\sigma_{p-{
  m air}}^{
  m inel})$
- inelasticity of non-diffractive interactions  $(K_{p-{
  m air}}^{
  m inel})$

### 3 main 'switches' for changing $X_{\rm max}$ predictions

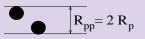

- ullet inelastic proton-air cross section  $(\sigma_{p-{
  m air}}^{
  m inel})$
- inelastic diffraction rate  $(\sigma_{p-{\rm air}}^{{\rm diffr}}/\sigma_{p-{\rm air}}^{{\rm inel}})$
- ullet inelasticity of non-diffractive interactions  $(K_{p-{
  m air}}^{
  m inel})$

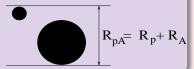
#### Inelastic cross section: well constrained by LHC data

• < 3% difference for  $\sigma_{pp}^{\rm inel}$ between ATLAS & TOTEM (79.5  $\pm$  1.80 & 77.41  $\pm$  2.92 mb)



• even smaller difference for pA:  $\sigma_{pp}^{\text{inel}} \propto R_p^2$ ,  $\sigma_{pA}^{\text{inel}} \propto (R_p + R_A)^2$ 



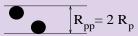


#### 3 main 'switches' for changing $X_{\rm max}$ predictions

- ullet inelastic proton-air cross section  $(\sigma_{p-{
  m air}}^{
  m inel})$
- ullet inelastic diffraction rate  $(\sigma_{p-{
  m air}}^{
  m diffr}/\sigma_{p-{
  m air}}^{
  m inel})$
- ullet inelasticity of non-diffractive interactions  $(K_{p-{
  m air}}^{
  m inel})$

#### Inelastic cross section: well constrained by LHC data

- < 3% difference for  $\sigma_{pp}^{\rm inel}$  between ATLAS & TOTEM (79.5  $\pm$  1.80 & 77.41  $\pm$  2.92 mb)
- even smaller difference for pA:  $\sigma_{pp}^{\text{inel}} \propto R_p^2$ ,  $\sigma_{pA}^{\text{inel}} \propto (R_p + R_A)^2$
- NB: 1% change of  $\sigma_{p-{\rm air}}^{{\rm inel}} \Rightarrow \Delta X_{{\rm max}} \simeq 1~{\rm g/cm^2}$  at  $10^{19}~{\rm eV}$






### 3 main 'switches' for changing $X_{\rm max}$ predictions

- ullet inelastic proton-air cross section  $(\sigma_{p-{\rm air}}^{{
  m inel}})$
- inelastic diffraction rate  $(\sigma_{p-{\rm air}}^{{\rm diffr}}/\sigma_{p-{\rm air}}^{{\rm inel}})$
- ullet inelasticity of non-diffractive interactions  $(K_{p-{
  m air}}^{
  m inel})$

#### Inelastic cross section: well constrained by LHC data

- < 3% difference for  $\sigma_{pp}^{\rm inel}$  between ATLAS & TOTEM (79.5  $\pm$  1.80 & 77.41  $\pm$  2.92 mb)
- even smaller difference for pA:  $\sigma_{np}^{\text{inel}} \propto R_p^2$ ,  $\sigma_{nA}^{\text{inel}} \propto (R_p + R_A)^2$
- NB: 1% change of  $\sigma_{p-{\rm air}}^{{\rm inel}} \Rightarrow \Delta X_{\rm max} \simeq 1~{\rm g/cm^2}$  at  $10^{19}~{\rm eV}$



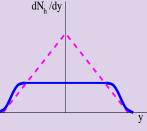


Diffraction uncertainties:  $\Delta X_{\text{max}} \lesssim 5 \text{ g/cm}^2$  [SO, PRD89 (2014) 074009]

#### The only freedom left: inelasticity for p - air

ullet higher energy  $\Rightarrow$  higher multiple scattering  $\Rightarrow$  higher  $K_{p-{
m air}}^{{
m inel}}$ 

#### The only freedom left: inelasticity for p - air

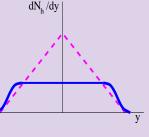

- ullet higher energy  $\Rightarrow$  higher multiple scattering  $\Rightarrow$  higher  $K_{p-{
  m air}}^{{
  m inel}}$
- ullet  $\Rightarrow$  one needs softer spectra for secondary hadrons  $(\pi,K...)$ 
  - ideally: Feynman scaling for forward spectra

#### The only freedom left: inelasticity for p - air

- ullet higher energy  $\Rightarrow$  higher multiple scattering  $\Rightarrow$  higher  $K_{p-{
  m air}}^{{
  m inel}}$
- ullet  $\Rightarrow$  one needs softer spectra for secondary hadrons  $(\pi,K...)$ 
  - ideally: Feynman scaling for forward spectra

# How to give less energy away to secondary hadrons?

- hadronization (string fragmentation) procedure is a 'holy cow' (universal)
- central rapidity density of secondaries: constrained by data
- main 'switch': constituent parton (string end) momentum distribution  $(x^{-\alpha_q})$  [SO, J.Phys. G29 (2003) 831]

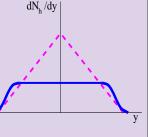



#### The only freedom left: inelasticity for p - air

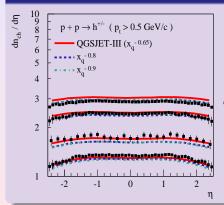
- ullet higher energy  $\Rightarrow$  higher multiple scattering  $\Rightarrow$  higher  $K_{p-{
  m air}}^{{
  m inel}}$
- ullet  $\Rightarrow$  one needs softer spectra for secondary hadrons  $(\pi,K...)$ 
  - ideally: Feynman scaling for forward spectra

### How to give less energy away to secondary hadrons?

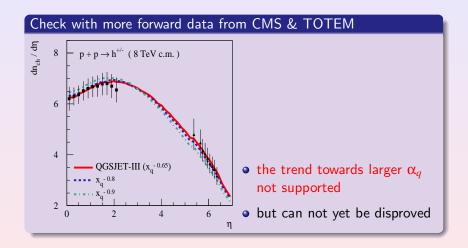
- hadronization (string fragmentation) procedure is a 'holy cow' (universal)
- central rapidity density of secondaries: constrained by data
- main 'switch': constituent parton (string end) momentum distribution  $(x^{-\alpha_q})$  [SO, J.Phys. G29 (2003) 831]
- $\alpha_q \rightarrow 1$ : approximate Feynman scaling for forward spectra



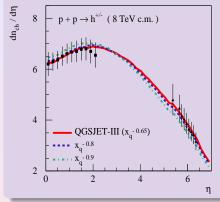

### The only freedom left: inelasticity for p-air


- ullet higher energy  $\Rightarrow$  higher multiple scattering  $\Rightarrow$  higher  $K_{p-{
  m air}}^{{
  m inel}}$
- ullet  $\Rightarrow$  one needs softer spectra for secondary hadrons  $(\pi,K...)$ 
  - ideally: Feynman scaling for forward spectra

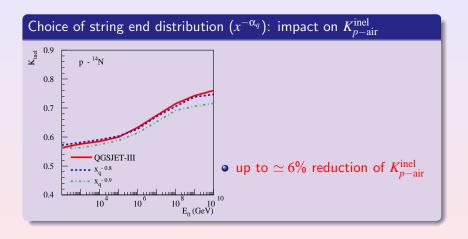
### How to give less energy away to secondary hadrons?

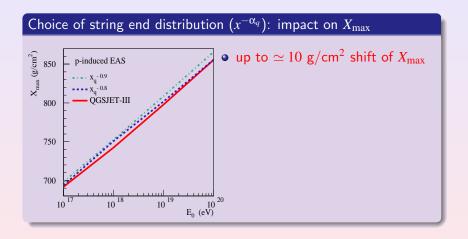

- hadronization (string fragmentation) procedure is a 'holy cow' (universal)
- central rapidity density of secondaries: constrained by data
- main 'switch': constituent parton (string end) momentum distribution  $(x^{-\alpha_q})$  [SO, J.Phys. G29 (2003) 831]
- $\alpha_q \rightarrow 1$ : approximate Feynman scaling for forward spectra
- NB: may not work for semihard scattering (minijet production)

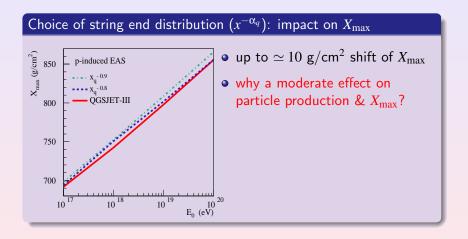



#### Vary the string end distributions, $x^{-\alpha_q}$ : with $\alpha_q = 0.65, 0.8, 0.9$

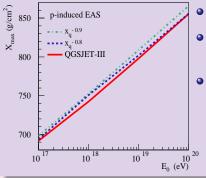



- perform the same model tuning:
  - to fixed target data
  - and to central production at LHC

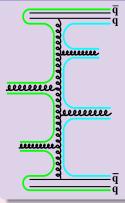




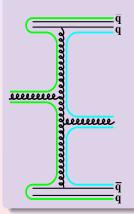


- the trend towards larger  $\alpha_q$  not supported
- but can not yet be disproved
- NB: higher discrimination power expected from combined studies with central & forward detectors (e.g. LHCf & ATLAS)
   [SO, Bleicher, Pierog & Werner, PRD94 (2016) 114026]



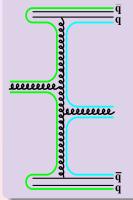




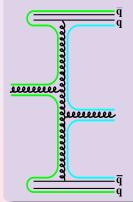

## Choice of string end distribution $(x^{-\alpha_q})$ : impact on $X_{\text{max}}$



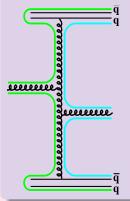

- up to  $\simeq 10 \text{ g/cm}^2 \text{ shift of } X_{\max}$
- why a moderate effect on particle production &  $X_{\rm max}$ ?
- 'warranted' scaling violation due to semihard scattering
   (energy fraction taken by perturbatively generated partons ⇒ lower bound on K<sup>inel</sup><sub>n-air</sub>)




- standard treatment: strings of color field stretched between constituent partons and/or all perturbatively produced partons
  - ⇒ production of partons (& hadrons) covers the full rapidity range

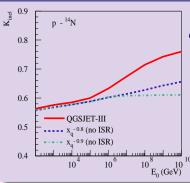

#### Exotic: modification of the hadronization by 'collective effects'




 assuming this is modified by 'collective effects' & neglecting parton cascades: strings are formed between constituent partons & highest p<sub>t</sub> partons

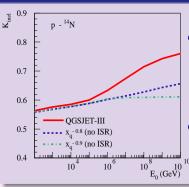


- assuming this is modified by 'collective effects' & neglecting parton cascades: strings are formed between constituent partons & highest  $p_t$  partons
- $\alpha_q \to 1$  limit: short strings concentrated at central rapidities in c.m. frame
  - ullet  $\Rightarrow$  small impact on  $K_{p-{
    m air}}^{
    m inel}$

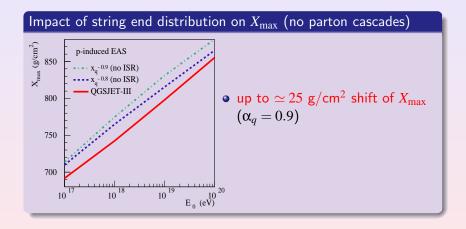



- assuming this is modified by 'collective effects' & neglecting parton cascades: strings are formed between constituent partons & highest  $p_t$  partons
- $\alpha_q \to 1$  limit: short strings concentrated at central rapidities in c.m. frame
  - $\Rightarrow$  small impact on  $K_{p-{\rm air}}^{{\rm inel}}$
- rather nonphysical: collective effects may be strong in central (small b) collisions only

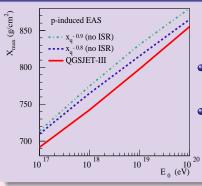



- assuming this is modified by 'collective effects' & neglecting parton cascades: strings are formed between constituent partons & highest  $p_t$  partons
- $\alpha_q \to 1$  limit: short strings concentrated at central rapidities in c.m. frame
  - $\Rightarrow$  small impact on  $K_{p-{\rm air}}^{{\rm inel}}$
- rather nonphysical: collective effects may be strong in central (small b) collisions only
  - ⇒ should not have large impact on the average parton production pattern (dominated by peripheral collisions)

# Impact of string end distribution on $K_{p-{ m air}}^{ m inel}$ (no parton cascades)

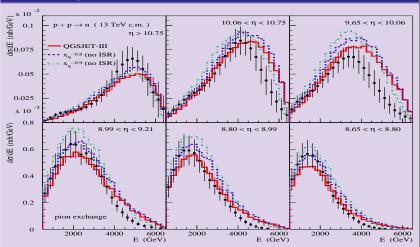



- energy-dependence of  $K_{p-{
  m air}}^{
  m inel}$  reduced drastically
  - $lpha_q = 0.9$ :  $K_{p-{
    m air}}^{
    m inel}$  doesn't depend on energy above 1 PeV


# Impact of string end distribution on $K_{p-{ m air}}^{ m inel}$ (no parton cascades)

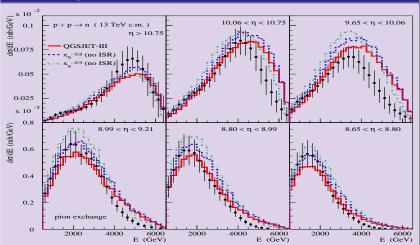


- ullet energy-dependence of  $K_{p-{
  m air}}^{
  m inel}$  reduced drastically
  - $\alpha_q = 0.9$ :  $K_{p-{
    m air}}^{
    m inel}$  doesn't depend on energy above 1 PeV
- ullet  $\Rightarrow$  (mini)jet production has no impact on the inelasticity in the  $\alpha_q \to 1$  limit

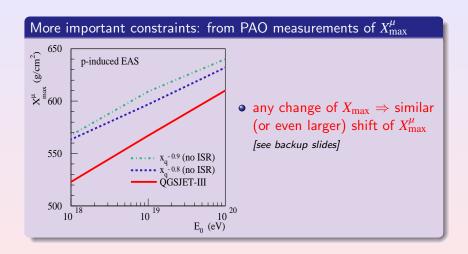


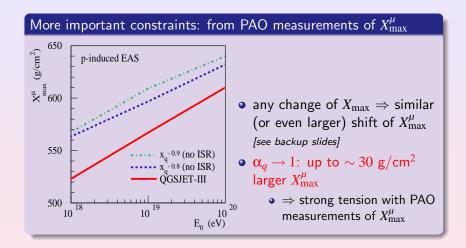

#### Impact of string end distribution on $X_{\rm max}$ (no parton cascades)




- up to  $\simeq 25$  g/cm<sup>2</sup> shift of  $X_{\rm max}$  ( $\alpha_a=0.9$ )
- can be refuted/constrained by LHC data?







ullet  $\alpha_q 
ightarrow 1$ : forward neutron yield exceeds the measured one

### The limit $lpha_q ightarrow 1$ : disfavored by LHCf data on forward neutrons



- ullet  $lpha_q 
  ightarrow 1$ : forward neutron yield exceeds the measured one
- ⇒ energy loss of leading nucleons is underestimated





- Major development in QGSJET-III: phenomenological treatment of HT corrections to hard scattering processes
  - tames the low  $p_t$  rise of (mini)jet rates
  - ullet reduces the model dependence on the low  $p_t$  cutoff  $Q_0$
- ullet Technical improvement: treatment of  $\pi$ -exchange process
  - energy-dependence: due to absorptive corrections (probability not to have additional inelastic rescattering)
- Rather small changes for EAS characteristics (wrt QGSJET-II)
  - up to  $\simeq 10$  g/cm $^2$  shift of  $X_{
    m max}$  and up to  $\simeq 5\%$  change of  $N_{\mu}$
- Model uncertainties for  $N_{\mu}$ : only up to  $\sim 10\%$  enhancement
- Model uncertainties for  $X_{\rm max}$ : only up to  $\sim 10~{\rm g/cm^2}$  shift (using the standard interaction treatment)
  - more exotic: 'collective effects'  $\Rightarrow \Delta X_{\rm max}$  up to  $\simeq 25~{\rm g/cm^2}$  (disfavored by LHCf data & by PAO measurements of  $X_{\rm max}^{\mu}$ )



- Major development in QGSJET-III: phenomenological treatment of HT corrections to hard scattering processes
  - tames the low  $p_t$  rise of (mini)jet rates
  - ullet reduces the model dependence on the low  $p_t$  cutoff  $Q_0$
- Technical improvement: treatment of  $\pi$ -exchange process
  - energy-dependence: due to absorptive corrections (probability not to have additional inelastic rescattering)
- Rather small changes for EAS characteristics (wrt QGSJET-II)
  - up to  $\simeq 10$  g/cm $^2$  shift of  $X_{
    m max}$  and up to  $\simeq 5\%$  change of  $N_{\mu}$
- Model uncertainties for  $N_{\mu}$ : only up to  $\sim 10\%$  enhancement
- Model uncertainties for  $X_{\rm max}$ : only up to  $\sim 10~{\rm g/cm^2}$  shift (using the standard interaction treatment)
  - more exotic: 'collective effects'  $\Rightarrow \Delta X_{\rm max}$  up to  $\simeq 25~{\rm g/cm^2}$  (disfavored by LHCf data & by PAO measurements of  $X_{\rm max}^{\mu}$ )



- Major development in QGSJET-III: phenomenological treatment of HT corrections to hard scattering processes
  - ullet tames the low  $p_t$  rise of (mini)jet rates
  - ullet reduces the model dependence on the low  $p_t$  cutoff  $Q_0$
- ullet Technical improvement: treatment of  $\pi$ -exchange process
  - energy-dependence: due to absorptive corrections (probability not to have additional inelastic rescattering)
- Rather small changes for EAS characteristics (wrt QGSJET-II)
  - ullet up to  $\simeq 10$  g/cm $^2$  shift of  $X_{
    m max}$  and up to  $\simeq 5\%$  change of  $N_{\mu}$
- Model uncertainties for  $N_{\mu}$ : only up to  $\sim 10\%$  enhancement
- Model uncertainties for  $X_{\rm max}$ : only up to  $\sim 10~{\rm g/cm^2}$  shift (using the standard interaction treatment)
  - more exotic: 'collective effects'  $\Rightarrow \Delta X_{\rm max}$  up to  $\simeq 25~{\rm g/cm^2}$  (disfavored by LHCf data & by PAO measurements of  $X_{\rm max}^{\mu}$ )



- Major development in QGSJET-III: phenomenological treatment of HT corrections to hard scattering processes
  - ullet tames the low  $p_t$  rise of (mini)jet rates
  - ullet reduces the model dependence on the low  $p_t$  cutoff  $Q_0$
- ullet Technical improvement: treatment of  $\pi$ -exchange process
  - energy-dependence: due to absorptive corrections (probability not to have additional inelastic rescattering)
- Rather small changes for EAS characteristics (wrt QGSJET-II)
  - ullet up to  $\simeq 10~{
    m g/cm^2}$  shift of  $X_{
    m max}$  and up to  $\simeq 5\%$  change of  $N_{\mu}$
- Model uncertainties for  $N_{\mu}$ : only up to  $\sim 10\%$  enhancement
- Model uncertainties for  $X_{\rm max}$ : only up to  $\sim 10~{\rm g/cm^2}$  shift (using the standard interaction treatment)
  - more exotic: 'collective effects'  $\Rightarrow \Delta X_{\rm max}$  up to  $\simeq 25~{\rm g/cm^2}$  (disfavored by LHCf data & by PAO measurements of  $X_{\rm max}^\mu$ )



- Major development in QGSJET-III: phenomenological treatment of HT corrections to hard scattering processes
  - tames the low  $p_t$  rise of (mini)jet rates
  - ullet reduces the model dependence on the low  $p_t$  cutoff  $Q_0$
- ullet Technical improvement: treatment of  $\pi$ -exchange process
  - energy-dependence: due to absorptive corrections (probability not to have additional inelastic rescattering)
- Rather small changes for EAS characteristics (wrt QGSJET-II)
  - ullet up to  $\simeq 10$  g/cm $^2$  shift of  $X_{
    m max}$  and up to  $\simeq 5\%$  change of  $N_{\mu}$
- Model uncertainties for  $N_{\mu}$ : only up to  $\sim 10\%$  enhancement
- Model uncertainties for  $X_{\rm max}$ : only up to  $\sim 10~{\rm g/cm^2}$  shift (using the standard interaction treatment)
  - more exotic: 'collective effects'  $\Rightarrow \Delta X_{\rm max}$  up to  $\simeq 25~{\rm g/cm^2}$  (disfavored by LHCf data & by PAO measurements of  $X_{\rm max}^{\mu}$ )



## Extra slides follow

#### Usually a picture of a crowded bus in mind

 the 'unitarity' argument: not too many partons in a small volume



#### Usually a picture of a crowded bus in mind

- the 'unitarity' argument: not too many partons in a small volume
- incorrect: those are virtual(⇒ unobservable) partons



#### Usually a picture of a crowded bus in mind

- the 'unitarity' argument: not too many partons in a small volume
- incorrect: those are virtual
   (⇒ unobservable) partons



#### Observable are consequences of (hard) interactions of partons

 correct argument: not too many boxing pairs at the same ring



#### Usually a picture of a crowded bus in mind

- the 'unitarity' argument: not too many partons in a small volume
- incorrect: those are virtual(⇒ unobservable) partons



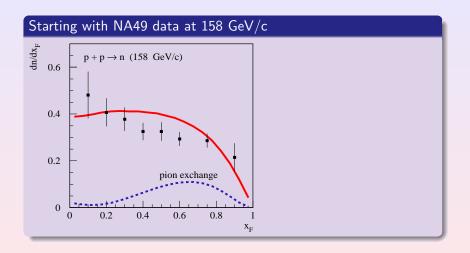
#### Observable are consequences of (hard) interactions of partons

 but: one may have arbitrary many virtual boxers at the ring, if they don't fight (no problem with unitarity)

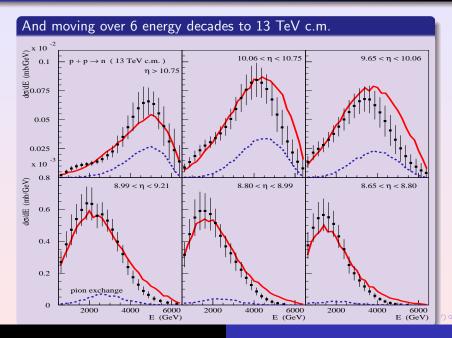


#### Usually a picture of a crowded bus in mind

- the 'unitarity' argument: not too many partons in a small volume
- incorrect: those are virtual
   (⇒ unobservable) partons



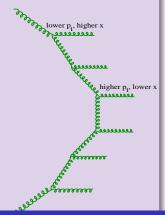

#### Observable are consequences of (hard) interactions of partons


- but: one may have arbitrary many virtual boxers at the ring, if they don't fight (no problem with unitarity)
- above-discussed: mechanism preventing partons from 'fighting each other'



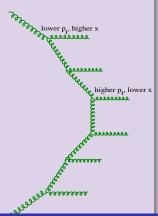
## (2) Technical improvement: $\pi$ -exchange process




# (2) Technical improvement: $\pi$ -exchange process

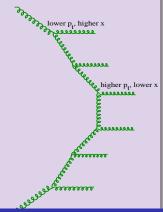


- high energies ⇒ quick rise of (mini)jet production
  - small  $\alpha_{\rm s}(p_{\rm t}^2)$  compensated by infrared and collinear logs (arising from parton cascading):  $\ln(x_i/x_{i+1})$ ,  $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$


- high energies ⇒ quick rise of (mini)jet production
  - small  $\alpha_s(p_t^2)$  compensated by infrared and collinear logs (arising from parton cascading):  $\ln(x_i/x_{i+1})$ ,  $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

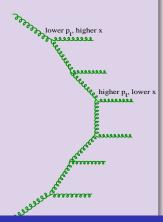
- hadron jets: typically produced in central region  $(y \sim 0)$  in c.m.s.
  - small impact on forward spectra




- high energies ⇒ quick rise of (mini)jet production
  - small  $\alpha_s(p_t^2)$  compensated by infrared and collinear logs (arising from parton cascading):  $\ln(x_i/x_{i+1})$ ,  $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- hadron jets: typically produced in central region  $(y \sim 0)$  in c.m.s.
  - small impact on forward spectra
- but: hardest scattering preceded by parton cascade (smaller p<sub>t</sub>, higher x)
  - ⇒ most important are first ('softest') partons in the cascade




- high energies ⇒ quick rise of (mini)jet production
  - small  $\alpha_s(p_t^2)$  compensated by infrared and collinear logs (arising from parton cascading):  $\ln(x_i/x_{i+1})$ ,  $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- hadron jets: typically produced in central region  $(y \sim 0)$  in c.m.s.
  - small impact on forward spectra
- but: hardest scattering preceded by parton cascade (smaller p<sub>t</sub>, higher x)
  - ⇒ most important are first ('softest') partons in the cascade
- the cascade starts at  $Q_0^2$ -scale with 'soft' gluons?  $(f_o(x,Q_0^2)\propto x^{-1-\Delta_g},\,\Delta_g\simeq 0.2)$



- high energies ⇒ quick rise of (mini)jet production
  - small  $\alpha_s(p_t^2)$  compensated by infrared and collinear logs (arising from parton cascading):  $\ln(x_i/x_{i+1})$ ,  $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

- hadron jets: typically produced in central region  $(y \sim 0)$  in c.m.s.
  - small impact on forward spectra
- but: hardest scattering preceded by parton cascade (smaller p<sub>t</sub>, higher x)
  - ⇒ most important are first ('softest') partons in the cascade
- the cascade starts at  $Q_0^2$ -scale with 'soft' gluons?  $(f_g(x,Q_0^2)\propto x^{-1-\Delta_g},\,\Delta_g\simeq 0.2)$
- no: x-distribution of those gluons is weighted with the hard scattering!





- high energies ⇒ quick rise of (mini)jet production
  - small  $\alpha_{\rm s}(p_{\rm t}^2)$  compensated by infrared and collinear logs (arising from parton cascading):  $\ln(x_i/x_{i+1})$ ,  $\ln(p_{t_{i+1}}^2/p_{t_i}^2)$

#### Virtual gluons emitted by protons are indeed soft: $\propto x^{-1-\Delta_g}$

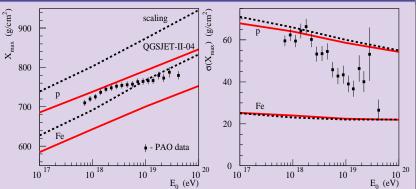
 $\bullet$  but the probability for hard scattering: convolution with  $\sigma_{\it gg}^{hard}$ 

$$w_{\text{hard}}(s) \propto \int dx^+ dx^- f_g(x^+, Q_0^2) f_g(x^-, Q_0^2) \, \sigma_{gg}^{\text{hard}}(x^+ x^- s, Q_0^2)$$

•  $\sigma_{gg}^{\rm hard}(\hat{s},Q_0^2) \propto \hat{s}^{\Delta_{\rm hard}}$  — contribution of the DGLAP 'ladder'

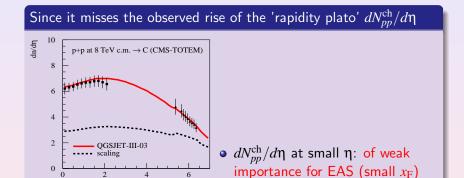
- high energies ⇒ quick rise of (mini)jet production
  - small  $\alpha_{\rm s}(p_{\rm t}^2)$  compensated by infrared and collinear logs (arising from parton cascading):  $\ln(x_i/x_{i+1})$ ,  $\ln(p_{{\rm t}_{i+1}}^2/p_{{\rm t}_i}^2)$

### Virtual gluons emitted by protons are indeed soft: $\propto x^{-1-\Delta_g}$

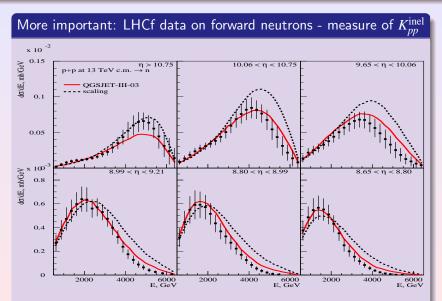

 $\bullet$  but the probability for hard scattering: convolution with  $\sigma_{\it gg}^{hard}$ 

$$w_{\text{hard}}(s) \propto \int dx^+ dx^- f_g(x^+, Q_0^2) f_g(x^-, Q_0^2) \, \sigma_{gg}^{\text{hard}}(x^+ x^- s, Q_0^2)$$

- $\sigma_{gg}^{\rm hard}(\hat{s},Q_0^2) \propto \hat{s}^{\Delta_{\rm hard}}$  contribution of the DGLAP 'ladder'
- $\Rightarrow$  gluons which succeed to interact have large x:  $\propto x^{\Delta_{\text{hard}} \Delta_g 1}$  (iff  $\Delta_{\text{hard}} \simeq 0.3 > \Delta_g$ )
  - i.e., first partons in a perturbative cascade are 'valence-like' (independently on our assumptions for string end distribution)


# (4) PAO data: what kind of interaction physics is required?

## Extreme case - Feynman scaling: same $\sigma(X_{max})$ , much deeper $X_{max}$

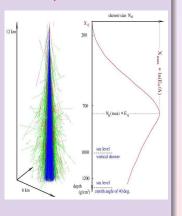



- $\sigma_{p-{
  m air}}^{
  m inel}$ ,  $\sigma_{A-{
  m air}}^{
  m inel}$ ,  $\sigma_{\pi-{
  m air}}^{
  m inel}$  all kept unchanged (wrt QGSJET-II-04)
- nonlinear effects & hard scattering switched off (K-factor=0,  $G_{\mathbb{PPP}} = 0$ ,  $K_{\mathrm{HT}} = 0$ )
- production spectra frosen at 100 GeV lab.

## (4) Scaling model is dead since > 50 years



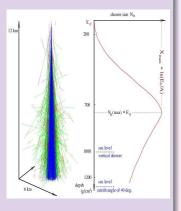
# (4) Scaling model is dead since > 50 years




• scaling: energy loss of leading nucleons is underestimated

# (4) Most general warning regarding large $X_{\max}$ predictions

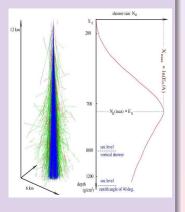
## Changing $X_{\max}$ implies equal or larger changes for $X_{\max}^{\mu}$


• any change of the primary interaction  $(\sigma_{p-\text{air}}^{\text{inel}}, \sigma_{p-\text{air}}^{\text{diffr}}, K_{p-\text{air}}^{\text{inel}})$  impacts only the initial stage of EAS development



# (4) Most general warning regarding large $X_{\text{max}}$ predictions

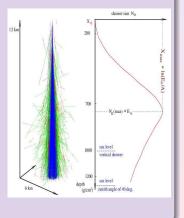
## Changing $X_{\max}$ implies equal or larger changes for $X_{\max}^{\mu}$


- any change of the primary interaction  $(\sigma_{p-{\rm air}}^{\rm inel}, \, \sigma_{p-{\rm air}}^{\rm diffr}, \, K_{p-{\rm air}}^{\rm inel})$  impacts only the initial stage of EAS development
- ⇒ parallel up/down shift of the cascade profile (same shape)

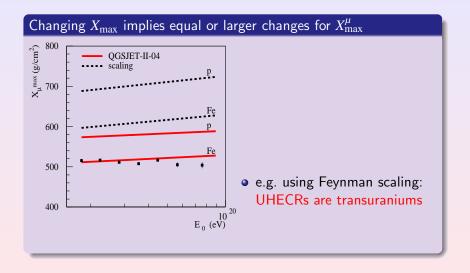


# (4) Most general warning regarding large $X_{\max}$ predictions

## Changing $X_{\max}$ implies equal or larger changes for $X_{\max}^{\mu}$


- any change of the primary interaction  $(\sigma_{p-{\rm air}}^{\rm inel}, \sigma_{p-{\rm air}}^{\rm diffr}, K_{p-{\rm air}}^{\rm inel})$  impacts only the initial stage of EAS development
- ⇒ parallel up/down shift of the cascade profile (same shape)
- $\Rightarrow$  same effect on  $X_{\max}$  &  $X_{\max}^{\mu}$




# (4) Most general warning regarding large $X_{\max}$ predictions

## Changing $X_{ m max}$ implies equal or larger changes for $X^{\mu}_{ m max}$

- any change of the primary interaction  $(\sigma_{p-{\rm air}}^{\rm inel}, \, \sigma_{p-{\rm air}}^{\rm diffr}, \, K_{p-{\rm air}}^{\rm inel})$  impacts only the initial stage of EAS development
- ⇒ parallel up/down shift of the cascade profile (same shape)
- $\Rightarrow$  same effect on  $X_{\max} \& X_{\max}^{\mu}$
- additionally: the corresponding change of physics impacts  $\pi$ -air interactions at all the steps of the cascade development
  - $\Rightarrow$  cumulative effect on  $X_{\max}^{\mu}$



# (4) Most general warning regarding large $X_{\text{max}}$ predictions

