

BERGISCHE UNIVERSITÄT WUPPERTAL

Search for New Physics with upward-going Air Showers in Auger

Karl-Heinz Kampert for the Pierre Auger Collaboration **ISVHECRI 2024, Puerto Vallarta**

AUGER

BERGISCHE UNIVERSITÄI WUPPERTAL

Search for New Physics Ethupward-going Air Showers in Auger

Karl-Heinz Kampert for the Pierre Auger Collaboration ISVHECRI 2024, Puerto Vallarta

AUGER

BERGISCHE UNIVERSITÄT WUPPERTAL

Outline:

- ANITA Anomalous Events
- Search for up-going showers in Auger
- Comparison with ANITA observation
- Constraints to BSM Physics

Atarctic mpulse Transient Antenna

2014-2015 37 km above Antartica 22 days 48 antennas

Karl-Heinz Kamper University of Wuppertal

Observation of Upward-propagating EAS

Karl-Heinz Kampert - University of Wuppertal

- **ANITA-I** and -III observed one
- anomalous up-going event, each
- emergence angles: 27° and 35°
- energies $\mathcal{O}(\mathsf{I EeV})$
- no polarity inversion, as from reflected events
- Why "anomalous"?

- Gorham et al., PRL 117 (2016) 7 PRL 121 (2018) 16
- Neutrinos at these energies from such directions will be absorbed in the Earth: Earth chord lengths \approx 7000 km
- $\lambda_{\text{int}} \approx 280 \text{ km}$
- $p_{\rm SM}(\varepsilon_{\tau} > 0.1 {\rm EeV})$ for $\varepsilon = 1 {\rm EeV} \approx 5 \cdot 10^{-8}$

Fox, Sigurdsson, Murase et al. arXiv: 1809.09615

Some Possible Interpretations

SM-origin upward-going Extensive Air Showers (EAS) excluded...

Pure SM, down-going

- Downward-going events, interacting with the geomagnetic field [deVries, Prohira, '19]

BSM, down-going

- Axionic UHECR reflecting on the ice [Esteban, Lopez-Pavon, Martinez-Soler, Salvado, '19]
- Askaryan emission in the Ice, induced by heavy dark matter [Hooper, Wegsman, Deaconu, Vieregg, '19]

BSM, up-going

- SUSY interpretations [Fox, Sigurdson, Murase et al., '18, Collins, P. S. Bhupal Dev, and Y. Su, '18, Altmannshofer, ,20]

$DM \rightarrow SM$ scattering, up-going

• Dark Matter decaying into leptons [Cline, Gross, Xue '19]

$DM \rightarrow BSM$ scattering, up-going

• Dark Matter decaying into RH neutrinos [Heurtier, Mambrini, Pierre '19] • Inelastic Boosted Dark Matter [Heurtier, Kim, Park, Shin, '19]

Karl-Heinz Kampert - University of Wuppertal

• Downward-going events, reflected by sub-layers of the ice sheet [Shoemaker, Kusenko, Munneke, Romero-Wolf, Schroeder, Siegert, '19]

• Sterile neutrino, or Axion Quark Nuggets, or Axions converting in the Earth [Cherry, Shoemaker, '19, Huang, '18], Liang , 21, Nicoladis , '20]

BSM Interactions and UHECR propagation

Karl-Heinz Kampert - University of Wuppertal

energy decreases with # interactions energy and angular distribution affected by interaction topologies

BSM Interactions and UHECR propagation

Karl-Heinz Kampert - University of Wuppertal

energy decreases with # interactions energy and angular distribution affected by interaction topologies

Test of ANITA observations by Auger FD

ANITA did not provide (publish) exposure for the detected events Flux of up-going events was not known collaborated with ANITA to calculate it

Karl-Heinz Kampert - University of Wuppertal

Auger Fluorescence Telescopes are sensitive to upwards going air showers

- \star Auger fluorescence detector is expected to provide an exposure larger than that of ANITA, but no reconstruction available upwards-going EAS

- determine signal detection efficiency as a fct of shower energy, elevation angle, and starting point in atmosphere
- determine reconstruction quality (energy, geometry, ...)
- determine background from misidentified downgoing showers
- apply data cleaning, e.g. discard laser events data sample
- apply proper cuts to maximise flux sensitivity (blind analysis, verified with 10% of data (burn sample))

- determine signal detection efficiency as a fct of shower energy, elevation angle, and starting point in atmosphere
- determine reconstruction quality (energy, geometry, ...)
- determine background from misidentified downgoing showers
- apply data cleaning, e.g. discard laser events data sample
- apply proper cuts to maximise flux sensitivity (blind analysis, verified with 10% of data (burn sample))

- determine signal detection efficiency as a fct of shower energy, elevation angle, and starting point in atmosphere
- determine reconstruction quality (energy, geometry, ...)
- determine background from misidentified downgoing showers
- apply data cleaning, e.g. discard laser events data sample
- apply proper cuts to maximise flux sensitivity (blind analysis, verified with 10% of data (burn sample))

- determine signal detection efficiency as a fct of shower energy, elevation angle, and starting point in atmosphere
- determine reconstruction quality (energy, geometry, ...)
- determine background from misidentified downgoing showers
- apply data cleaning, e.g. discard laser events data sample
- apply proper cuts to maximise flux sensitivity (blind analysis, verified with 10% of data (burn sample))

expect 0.27±12 events after unblinding

- determine signal detection efficiency as a fct of shower energy, elevation angle, and starting point in atmosphere
- determine reconstruction quality (energy, geometry, ...)
- determine background from misidentified downgoing showers
- apply data cleaning, e.g. discard laser events data sample
- 10% of data (burn sample))

Upwards Reconstructed Bkg-Event

one Background event in full data sample

Karl-Heinz Kampert - University of Wuppertal slant depth (g/cm²)

Simulated Upwards-Going event

Karl-Heinz Kampert - University of Wuppertai

E = 3 EeV $\Theta = 114.2^{\circ}$ (elevation angle 24.2°) $X_{max} = 844 \text{ g/cm}^2$ discrimination parameter l=1

Exposure and resulting Flux Bounds after unblinding

Would have expected several 10's to 100's of events in Auger under conservative assumptions

Karl-Heinz Kampert - University of Wuppertal

one event found after unblinding, consistent with expected bkg (poorly reconstructed event, typical for background) exposure calculated for different zenith angular bins using Rolke, the integral upper limit above 10^{17} eV is:

• $(7.2 \pm 0.2) \cdot 10^{-21}$ cm⁻² s⁻¹ sr⁻¹ weighting exposure with E⁻¹ • $(3.6 \pm 0.2) \cdot 10^{-20}$ cm⁻² s⁻¹ sr⁻¹ weighting exposure with E⁻²

Comparing Auger and ANITA 2D Exposures

Karl-Heinz Kampert - University of Wuppertal

The Pierre Auger Observatory

21	44	101	229	325	819	1208	2381	3923	6113			
											10 ³	
									8	Ξ	10	
5									_			
										_		
fiicie	ent MC	Statis	tics				4	5	19		10 ²	
Janti	fv exp	osure					1/	62	55	Ξ	10	
	.)				5	9	14	42	116		-	۲۲) ۲
						8	15	77	154			S
						4	56	144	192		10	J∠
						10	60	126	266	Ξ	;	(K
					4	15	70	237	463	_		ω
					9	60	123	298	558			
		4	5		43	57	212	377	604		1	
			24	30	72	82	273	418	771	Ξ	•	
	2	15	4	32	125	190	379	529	782			
5	9	23	40	55	198	333	461	749	977			
16	33	<mark>59</mark>	156	208	<mark>363</mark>	440	714	859	1 101		10 ⁻¹	
17.4 17.6 17.8					1	8	18.2 18		8.4			
log(E/eV)											1.0	
ANITA III												
.07	1.31	1.52	1.72	1.92	2.11	2.32	2.55	2.82	3.16			
).02	0.02	0.02	0.03	0.03	0.03	0.04	0.04	0.05	0.05	_		
).02	0.02	0.03	0.03	0.04	0.04	0.05	0.05	0.06	0.07			
0.03	0.03	0.03	0.04	0.04	0.05	0.05	0.06	0.07	0.08			
0.03	0.04	0.04	0.05	0.05	0.06	0.06	0.07	0.08	0.08			
0.04	0.04	0.05	0.05	0.06	0.06	0.07	0.08	0.08	0.09			1
0.04	0.05	0.06	0.06	0.07	0.07	0.08	0.09	0.09	0.10	_	10-	- (Y
).05	0.06	0.06	0.07	0.08	0.08	0.09	0.10	0.11	0.12			S
0.06	0.06	0.07	0.08	0.09	0.09	0.10	0.11	0.12	0.13	-		m ²
0.06	0.07	0.08	0.09	0.10	0.10	0.11	0.12	0.13	0.15	-		(ki
).07	0.08	0.09	0.10	0.11	0.11	0.12	0.13	0.15	0.16	-		ω
).07	0.08	0.09	0.11	0.12	0.13	0.14	0.15	0.16	0.18	_		
0.08	0.09	0.10	0.12	0.13	0.14	0.16	0.17	0.19	0.22			
0.08	0.10	0.11	0.13	0.14	0.16	0.17	0.19	0.21	0.24			
80.0	0.10	0.12	0.14	0.15	0.17	0.18	0.20	0.22	0.25			
0.09	0.11	0.13	0.15	0.16	0.18	0.20	0.22	0.24	0.27			
0.09	0.11	0.14	0.16	0.18	0.20	0.22	0.24	0.26	0.30		10-2	2
0.09	0.12	0.14	0.17	0.19	0.21	0.23	0.26	0.29	0.33	_		
),09	0.12	0,15	0.18	0 ₁ 20	0.22	0,25	0.27	0,30	0.3 4		ļ	
17.4 17.6 17.8 18 18.2 18.4												
13 log(E/eV)												

Auger

Note difference in absolute scales !

ANITA

Testing BSM Scenarios

Can test $\sigma_{\rm BSM}$ if

Karl-Heinz Kampert - University of Wuppertal

• σ is small enough to let BSM pass through, and • at the same time large enough to suffer interactions near surface, so that τ 's can escape and generate shower

Testing BSM Scenarios

Can test $\sigma_{\rm BSM}$ if

• σ is small enough to let BSM pass through, and at the same time large enough to suffer interactions near surface, so that τ 's can escape and generate shower

Testing BSM Scenarios

BSM-Bounds: $\phi_{RSM}^{90\%C.L.}$ **BSM** \Rightarrow \neq \leq $\tau + X$

assuming energy independent cross section

Karl-Heinz Kampert - University of Wuppertal

Karl-Heinz Kampert - University of Wuppertal

component wers in Surface Detector Array

advantage:

- ~ 100% duty cycle,
- ~ 95% ν_{τ} selection efficiency at $E_{\tau} > 10^{17.5} \text{ eV}$
- ~ one background event in 50 years

disadvantage:

only small solid angle: $90^{\circ} \le \theta \le 95^{\circ}$

Bounds on cosmogenic neutrino fluxes

Best present bounds on cosmogenic neutrinos from Auger & Icecube - (in Auger dominated by ES channel, despite its small solid angle!)

We can use the ES channel to test any (BSM $\rightarrow \tau$) model

Analysis in progress, but simple scaling yields good estimate....

BSM flux limits including Earth Skimming channel

$$\frac{d\phi_{\rm BSM}}{dE} \propto E^{-2}$$

$\phi_{\rm BSM}$ bounds from FD incl. au regeneration

$\phi_{\rm BSM}$ bounds from ES-SD incl. au regeneration

BSM flux limits including Earth Skimming channel

$$\frac{d\phi_{\rm BSM}}{dE} \propto E^{-2}$$

$\phi_{\rm BSM}$ bounds from FD incl. au regeneration UHECR flux (E>10¹⁷ eV)

$$\phi_{\rm BSM} < 10^{-3} \times \phi_{\rm UHECR}$$

 $\phi_{\rm BSM}$ bounds from ES-SD incl. au regeneration

BSM flux limits including Earth Skimming channel

$$\frac{d\phi_{\rm BSM}}{dE} \propto E^{-2}$$

$\phi_{\rm BSM}$ bounds from FD incl. au regeneration UHECR flux ($E > 10^{17} \text{ eV}$) constrains models in $\phi_{\rm BSM} < 10^{-3} \times \phi_{\rm UHECR}$ which UHECRs produce BSM $\phi_{\rm BSM}$ bounds from ES-SD incl. au regeneration

- The Pierre Auger Observatory is a 4π Multi-Messenger Observatory for UHECR, Photons, Neutrinos, and BSM particles
- The sensitivity up upwards-going air showers allowed us to check the ANITA "anomalous events"
- We would have expected (under sensible assumptions) some 100's of events in the Auger fluorescence telescopes \rightarrow strong tension with ANITA
- We can translate the bounds on upwards-going showers to - bounds of tau's created in the Earth crust, and - bounds of BSM particles as a function of their (unknown) cross section

Summary and Conclusions

