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ANITA
ANtarctic Impulse Transient Antenna

2014-2015
37 km above Antartica
22 days
48 antennas



Observation of Upward-propagating EAS
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ANITA-I and -III observed one
anomalous up-going event, each
• emergence angles: 27° and 35°
• energies (1 EeV)
• no polarity inversion, as from reflected events

𝒪

Why „anomalous“? 
Neutrinos at these energies from such 
directions will be absorbed in the Earth:
Earth chord lengths ≈ 7000 km
λint ≈ 280 km 
pSM(ετ > 0.1EeV) for ε = 1 EeV ≈ 5 ⋅ 10−8

Fox, Sigurdsson, Murase et al.
arXiv: 1809.09615

Gorham et al., PRL 117 (2016) 7  
PRL 121 (2018) 16



Some Possible Interpretations
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• Downward-going events, interacting with the geomagnetic field [de Vries, Prohira, ‘19]

• Downward-going events, reflected by sub-layers of the ice sheet [Shoemaker, Kusenko, Munneke, Romero-Wolf, 
 Schroeder, Siegert, ‘19]

SM-origin upward-going Extensive Air Showers (EAS) excluded…

Pure SM, down-going

BSM, down-going

BSM, up-going

DM → SM scattering, up-going

DM → BSM scattering, up-going

• Axionic UHECR reflecting on the ice [Esteban, Lopez-Pavon, Martinez-Soler, Salvado, ‘19]

• Askaryan emission in the Ice, induced by heavy dark matter [Hooper, Wegsman, Deaconu, Vieregg, ’19]

• SUSY interpretations [Fox, Sigurdson, Murase et al., ’18, Collins, P. S. Bhupal Dev, and Y. Su, ’18, Altmannshofer, ‚20]

• Sterile neutrino, or Axion Quark Nuggets, or Axions converting in the Earth [Cherry, Shoemaker, ’19, 
Huang, ’18], Liang ‚21, Nicoladis ‚ ’20]

• Dark Matter decaying into leptons [Cline, Gross, Xue ’19]

• Dark Matter decaying into RH neutrinos [Heurtier, Mambrini, Pierre ‘19]

• Inelastic Boosted Dark Matter [Heurtier, Kim, Park, Shin, ‘19] … and many more



BSM Interactions and UHECR propagation
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BSM Interactions and UHECR propagation
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Test of ANITA observations by Auger FD
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★  ANITA did not provide (publish) exposure for the detected events
➡ Flux of up-going events was not known 

➡ collaborated with ANITA to calculate it 

★Auger fluorescence detector is expected to provide an exposure larger  
than that of ANITA, but no reconstruction available upwards-going EAS

★Auger Fluorescence Telescopes are 
sensitive to upwards going air showers 

30°



Key Steps in Simulations and Analysis

8Karl-Heinz Kampert - University of Wuppertal ISVHECRI 2024

➡ determine signal detection efficiency as a fct of  
shower energy, elevation angle, and starting point in atmosphere

➡ determine reconstruction quality (energy, geometry, …)

➡ determine background from misidentified downgoing showers
➡ apply data cleaning, e.g. discard laser events data sample 

➡ apply proper cuts to maximise flux 
sensitivity (blind analysis, verified with 
10% of data (burn sample))
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➡ determine signal detection efficiency as a fct of  
shower energy, elevation angle, and starting point in atmosphere

➡ determine reconstruction quality (energy, geometry, …)

➡ determine background from misidentified downgoing showers
➡ apply data cleaning, e.g. discard laser events data sample 

➡ apply proper cuts to maximise flux 
sensitivity (blind analysis, verified with 
10% of data (burn sample))

Note, showers landing behind the telescopes look like upgoing showers 
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➡ determine signal detection efficiency as a fct of  
shower energy, elevation angle, and starting point in atmosphere

➡ determine reconstruction quality (energy, geometry, …)

➡ determine background from misidentified downgoing showers
➡ apply data cleaning, e.g. discard laser events data sample 

➡ apply proper cuts to maximise flux 
sensitivity (blind analysis, verified with 
10% of data (burn sample))
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➡ determine signal detection efficiency as a fct of  
shower energy, elevation angle, and starting point in atmosphere

➡ determine reconstruction quality (energy, geometry, …)

➡ determine background from misidentified downgoing showers
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Upwards Reconstructed Bkg-Event
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Simulated Upwards-Going event
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Exposure and resulting Flux Bounds after unblinding
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Comparing Auger and ANITA 2D Exposures
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Testing BSM Scenarios
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σϕBSM  ϕτ

Earth

Can test  if
•  is small enough to let BSM pass through, and
• at the same time large enough to suffer interactions 

near surface, so that ’s can escape and generate shower

σBSM
σ

τ
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σϕBSM  ϕτ

Earth

Can test  if
•  is small enough to let BSM pass through, and
• at the same time large enough to suffer interactions 

near surface, so that ’s can escape and generate shower

σBSM
σ

τ

ϕupper limit
BSM

σBSM−matter

→ BSM particles absorbed in Earth

→ more BSM particles interact near surface

max. sensitivity

PSurvival
BSM PInteraction

BSM→τ

P(BSM → τ)

In the last 
50 km crust

to -50 km from 
the surface of 

the Earth
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BSM-Bounds: ϕ90%C.L.
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Earth Skimming Showers in Surface Detector Array
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Figure 2. Distribution of hAoPi after the Earth-skimming inclined selection. Black histogram:
full data set up to 31 August 2018 containing 25904 events. Red-shaded histogram: Monte Carlo
simulated ES ⌫⌧ events.

governed by its lifetime and the available target matter for neutrino interactions along the
earth’s chord. The neutrino search is not limited by the background due to UHECR-induced
showers since this can be very e�ciently reduced as shown in figure 2.

2.3 Downward-going (DG) neutrinos

For optimization purposes, the DG category of events is further subdivided into two sets for
Low (DGL) and High (DGH) zenith angles, between 60� < ✓ < 75� [33, 54] and 75� < ✓ <
90� [50] respectively.

Since the core of DG showers always hits the ground, standard angular reconstruction
techniques [46] can be used to obtain an estimate of the zenith angle of the shower. However,
these techniques have larger uncertainties for nearly horizontal events [46, 47]. For this reason
the primary observables for inclined selection in the DGH case are the ratio L/W of the signal
pattern of the shower at ground as well as the apparent average velocity of the signal hV i,
in addition to a simple estimate of the zenith angle ✓rec [33, 47]. In the case of DGH showers
the cuts on the properties of the signal pattern are L/W > 3, hV i < 0.313mns�1 and
RMS(V )/hV i < 0.08, along with a further requirement on the estimated shower zenith angle
✓rec > 75� (see table I in [33]). In contrast, in the DGL case, corresponding to 60� < ✓ < 75�,
restrictions on the signal patterns have been found to be less e�cient in selecting inclined
events than ✓rec [54], and only an angular cut 58.5� < ✓rec  76.5� is applied, including
some allowance to account for the resolution in the angular reconstruction of the simulated
neutrino events [54]. In both the DGH and DGL cases, at least 4 stations (Nstat � 4) are
required in the event.

– 6 –

perfect discrimination
just by Area-over-Peak

background free measurement !
CR ν

➡ advantage: 
~ 100% duty cycle, 
~ 95%  selection efficiency at  eV 
~ one background event in 50 years

ντ Eτ > 1017.5

➡ disadvantage: 
only small solid angle: 90∘ ≤ θ ≤ 95∘

JCAP11(2019)004

Figure 2. Instantaneous e↵ective areas for ES (red lines), DGH (blue) and DGL (green) neutrinos
as a function of zenith angle for selected neutrino energies. The DG and ES e↵ective areas are
respectively obtained with eqs. (3.2) and (3.3).

earth’s surface [42].2 The rapid rise of the earth’s chord as the zenith angle increases below
the horizon and its absorptive e↵ect for high-energy neutrinos are responsible for a strong
dependence of pexit on ✓ within a small range from ✓ = 90� to ✓ ' 95� [34, 35, 42, 43].
This probability, folded with the selection and identification e�ciency "ES and the tau decay
probability per unit length, must be integrated over tau energy and decay length l to obtain
the e↵ective area:

AES =

Z

E⌧

Z

A

Z

l
dA dE⌧

dl

�⌧�
exp


� l

�⌧�

�
| cos ✓| pexit "ES, (3.3)

where � = c�⌧⌧⌧ ' 86.93 ⇥ 10�6 m is the decay length, �⌧ and �⌧ = E⌧/(m⌧ c2) are the
speed and Lorentz factor of the tau lepton, m⌧ ' 1.777GeV is its mass, and the tau-lepton
is assumed to be ultra-relativistic.

The instantaneous e↵ective area for the ES, DGH and DGL neutrinos as a function
of neutrino energy is displayed in figure 1 for selected zenith angles and is compared to
that of IceCube [40]. The EeV energy range in which the Pierre Auger Observatory has
optimal e↵ective area extends in energy beyond the published e↵ective area of IceCube and,
for favourable source positions as seen from the SD, the e↵ective area of the Pierre Auger
Observatory is significantly larger.

The dependence of the e↵ective area on the zenith angle is displayed in figure 2, for DG
charged-current electron neutrinos and selected neutrino energies in the zenith angle range

2See also [43] and references therein.

– 6 –

huge 
instantaneous 
effective area



Bounds on cosmogenic neutrino fluxes

17Karl-Heinz Kampert - University of Wuppertal ISVHECRI 2024

Auger Collaboration, JCAP10 (2019) 022

Best present bounds on cosmogenic 
neutrinos from Auger & Icecube
(in Auger dominated by ES channel, 
despite its small solid angle!)

We can use the ES channel to 
test any (BSM ) model→ τ

Analysis in progress, but simple 
scaling yields good estimate….



BSM flux limits including Earth Skimming channel
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 bounds from FD incl.  regenerationϕBSM τ

 bounds from ES-SD incl.  regenerationϕBSM τ

dϕBSM

dE
∝ E−2prelimianry integral upper limits

Baobiao Yue et al, Auger
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 bounds from FD incl.  regenerationϕBSM τ

 bounds from ES-SD incl.  regenerationϕBSM τ

dϕBSM

dE
∝ E−2prelimianry integral upper limits

UHECR flux (E>1017 eV)

ϕBSM < 10−3 × ϕUHECR

constrains models in 
which UHECRs 
produce BSM

Baobiao Yue et al, Auger



Summary and Conclusions

19Karl-Heinz Kampert - University of Wuppertal ISVHECRI 2024

• The Pierre Auger Observatory is a 4π Multi-Messenger Observatory for 
UHECR, Photons, Neutrinos, and BSM particles

• The sensitivity up upwards-going air showers allowed us to check the 
ANITA „anomalous events“

• We would have expected (under sensible assumptions) some 100’s of events 
in the Auger fluorescence telescopes → strong tension with ANITA

• We can translate the bounds on upwards-going showers to 
- bounds of tau’s created in the Earth crust, and 
- bounds of BSM particles as a function of their (unknown) cross section


