

Determination of Pseudo-redshifts to Long GRBs by the Guiriec Method

Paula Yuc (IFIM, ECFM, USAC) Rodrigo Sacahuí (IFIM, ECFM, USAC) Magdalena González (IA-UNAM) Yunior Pérez (IF-UNAM)

Special thanks to the PAPIIT IG101323 Project, to the academic exchange program COIC/STIA/9748/2023, and to the organizing committee for the opportunity.

22nd ISVHECRI - Puerto Vallarta, México 2024

Gamma Ray Bursts (GRBs)

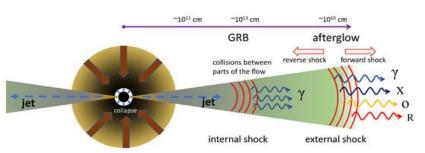


Figure 1: Visualization of the Fireball Model of GRBs (Dado S, Dar A, De Rújula A., 2022)

- Isotropic Energy: 10⁴⁸ to 10⁵⁵ erg
- Peak energies: keV-MeV (Zhang et al., 2020)
- Non-Thermal Emission:

-Predominantly synchrotron and inverse Compton processes.

-Characterized by the Band function spectrum.

Classification of GRBs according to their duration:

-Short GRBs: T₉₀ < 2s

-Long GRBs: T₉₀ ≥ 2s

Only about 11% of the redshifts of known GRBs have been recorded (Dainotti et al., 2024)

Fermi Observatory Data

Instruments:

- LAT (Large Area Telescope)
- > GBM (Gamma-ray Burst Monitor)
 - Energy range: 8 keV 40 MeV
 - Dead time per event: 2.6 µs

Science Data Type used :

- > **TTE Data**: Time-tagged events during bursts
 - Resolution of **0.064s** during bursts

GBM Tools Software (Goldstein et al., 2022):

- Data Processing
- Spectral Analysis
- Temporal Analysis

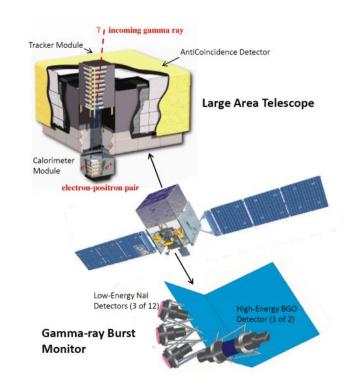


Figure 2: Fermi Observatory Instruments (Michelson et al., 2010)

Spectral Analysis Methodology

The implementation of a **Multicomponent Fitting** in **GRBs**, allows for the identification and characterization of different emission mechanisms contributing to the GRB prompt emission.

In this case we use three components:

- Comptonized (C) Component: Used instead of the Band model when the high-energy part of the spectrum is very steep.
- Blackbody (BB) Component: Thermal component representing photospheric emission.
- **Power Law (PL) Component**: Non-thermal component linked to high-energy emissions.

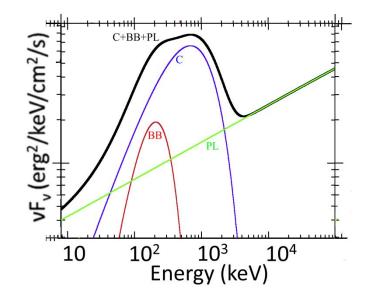


Figure 3: Sketch of the C+BB+PL model (Guiriec et al., 2015)

Multicomponent Model and Fine-Time Spectroscopy

Our three component model was reduced to have 5 free parameters whilst still maintaining the same quality for the fits. This makes it more statistically competitive with the simpler 4-parameter Band function (Guiriec et al., 2015).

Comptonized (C) Component:

$$F(E) = A e^{-(2+\lambda)E/E_{peak}} ig(rac{E}{E_{piv}} ig)^{\lambda}$$
 fixed $\lambda = -0.7$

Power Law (PL) Component:

$$F(E) = Aig(rac{E}{E_{piv}}ig)^{\lambda}$$
 fixed $\lambda = -1.5$

Black Body (BB) Component:

$$F(E) = A rac{E^2}{e^{E/kT}-1}$$

To better understand the behavior and temporal evolution of these spectral components, we conduct a fine-time spectral analysis, wherein we examine the data within very short time intervals (bins).

Guiriec Correlation

• The correlation specifically ties the non-thermal component's energy flux to its peak energy, using fine-time spectroscopy:

 $F_i^{\rm NT} - E_{{\rm peak},i}^{\rm NT}$

This relationship is observed to be quite strong when a multi-component spectral model is applied.

• Another strong correlation also appears between the luminosity and the rest-frame peak energy:

$$L_i^{\text{NT}} = (9.6 \pm 1.1) 10^{52} \left(\frac{E_{\text{peak},i}^{\text{rest,NT}}}{100 \text{ keV}} \right)^{1.38 \pm 0.04} \text{ erg s}^{-1}$$

(Guiriec et al., 2015)

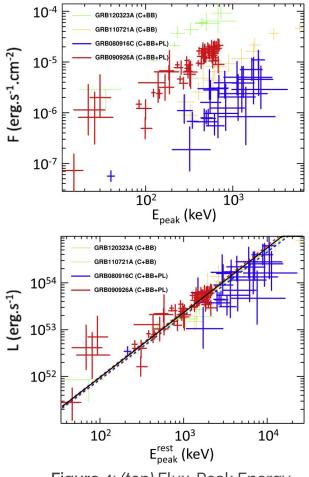


Figure 4: (top) Flux-Peak Energy relation (bottom) Luminosity-Rest Energy relation (Guiriec et al., 2015)

Sample Selection

24 GRBs were selected.

Criteria:

- Long GRBs
- High Luminosity (Fluence)
- Recorded redshift
- Currently working on:
 Fluence to T₉₀ ratio > 0.12E-5

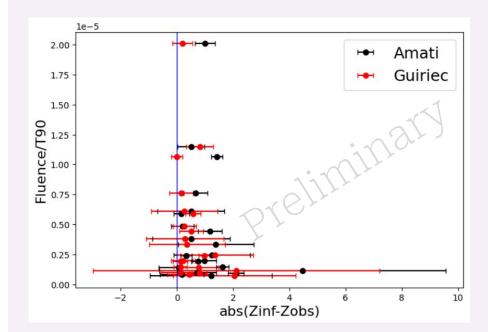


Figure 5: Analysis of the Fluence/T90 criteria for Long GRBs.

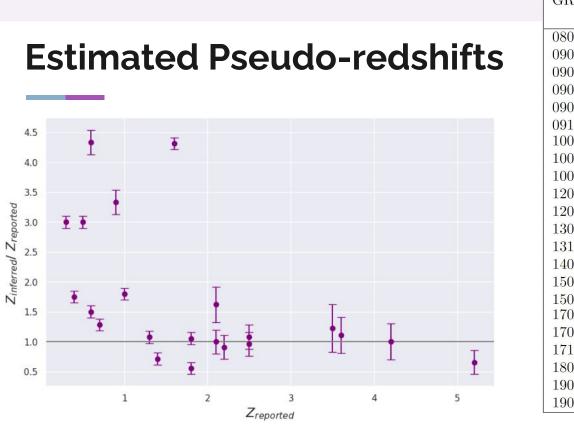
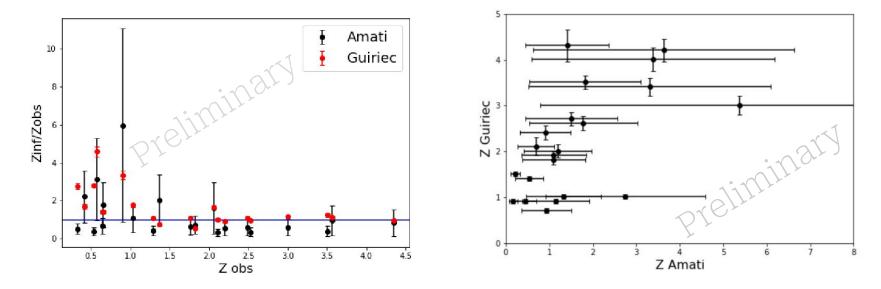



Figure 6: Estimated pseudo-redshifts obtained using the Guiriec Correlation

GRB	Reported	inferred redshift
	redshift	$E_{peak,i}^{NT}$ - L_i^{NT} correlation
080916C	4.2 ± 0.2	4.2 ± 0.3
090323	3.6	4.0 ± 0.3
090618	0.5	1.5 ± 0.1
090902B	1.8	1.0 ± 0.1
090926A	2.1	2.1 ± 0.2
091003	0.9	3.0 ± 0.2
100414A	1.4	1.0 ± 0.1
100724B	1.3	1.4 ± 0.1
100728A	1.6	$6.9 \pm 0.$
120624B	0.6	2.6 ± 0.2
120711A	1.4^{1} - 3^{2}	3.4 ± 0.2
130518A	2.5	2.7 ± 0.2
131231A	0.6	0.9 ± 0.1
140508A	1.0	1.8 ± 0.1
150314A	1.8	1.9 ± 0.1
150403A	2.1	3.4 ± 0.3
170214A	2.5	2.4 ± 0.2
170405A	3.5	4.3 ± 0.4
171010A	0.3	0.9 ± 0.1
180720B	0.7	0.9 ± 0.1
190114C	0.4	0.7 ± 0.1
190530A	$<\!2.2$	2.0 ± 0.2

Table 1: GRBs Sample with ReportedRedshifts and Inferred Redshifts ObtainedUsing the Guiriec Correlation.

Comparison between the Guiriec Correlation and the Amati Correlation

Figures 7 and 8: Comparisons between the inferred pseudo-redshifts obtained with the Amati and Guiriec correlations.

Conclusions

- The obtained results align well with existing redshift data, showing that the Guiriec Correlation is an effective tool for estimating pseudo-redshifts to long GRBs.
- The calculated pseudo-redshifts provide a coherent view with cosmological observations.
- The results obtained from this sample are crucial for validating the empirical methods used and offer a valuable reference for future research in high-energy astrophysics.

Thank you for your attention!

Contact information: pyuc@astro.unam.mx