

8 - 12 July 2024

On the correlation between X-rays and TeV gamma-rays in HBL Blazars.

J. R. Sacahui¹, M. Osorio² & M. M. González²

1. IFIM, Escuela de Ciencias Físicas y Matemáticas, Universidad de San Carlos de Guatemala..

2. Instituto de Astronomía, Universidad Nacional Autónoma de México.

Blazars

- Brightest extragalactic gamma ray sources.
- Associated to neutrinos and cosmic rays.
- SED exhibits two distinct spectral

components.

SED Mkn421 (G. Xol 2024)

State of the art and motivation I

- High Synchrotron Peaked Blazars (HBL): the majority of the emission is concentrated in X-rays and TeV gamma-rays.
- Low energy component \rightarrow Synchrotron
- High energy gamma-ray component→?? Leptonic SSC or EC Hadronic models Combinations

Middei, R. et al. 2022

State of the art and motivation I

- High Synchrotron Peaked Blazars (HBL): the majority of the emission is concentrated in X-rays and TeV gamma-rays.
- Low energy component \rightarrow Synchrotron
- High energy gamma-ray component→??
 Leptonic SSC or EC
 Hadronic models
 Combinations

Combinations

Leptonic: Correlations expected

Middei, R. et al. 2022

Soft

Energy

HSP Blazar

(arbitrary units)

f(v)

State of the art and motivation II

Different correlations reported: linear, quadratic and between.

- → Specific blazar
- → Time scale of observations
- → Observational campaign

Katarzyński & Walczewska (2010): different correlation indices can be explained by considering a jet with multiple emission zones.

Mkr 421

State of the art and motivation III

Sample selection

HBL spectral type BL Lacs:

- 1. Detection threshold > 200 GeV
- 2. Spectral index ~ 2
- 3. Redshift < 0.15

14 sources in the TeVCAt catalog

4 sources with quasi-simultaneous X-ray and gamma-ray observations

Source	RA	Dec	Redshift	
Mrk 501	$16^{h}53^{m}52.21^{s}$	39.76°	0.00337	=
1ES 1959+650	$19^{h}59^{m}59.85^{s}$	65.15°	0.048	
PKS 2155-304	$21^{h}58^{m}52.06^{s}$	-30.22^{o}	0.117	→ 11% EBL absorption
$1 \text{ES} \ 2344 + 514$	$23^{h}47^{m}04.83^{s}$	31.70^{o}	0.044	

Observations

Quasi-simultaneous data from low to high fluxes

Data homogenization \rightarrow Integral flux to the predetermined energy threshold

 \rightarrow X-ray data unified to cgs system

Source	Period	Number of	Instruments		
	уу-уу	campaigns	X-rays	Gamma-rays	
Mrk 501	1997-2013	6	RXTE-PCA	HEGRA	
			Swift-BAT		
1ES 1959+650	2002-2016	5	RXTE-PCA	Whipple, HEGRA	
			Swift-BAT	MAGIC, VERITAS	
PKS 2155-304	2006-2016	4	Swift-XRT	HESS	
			Chandra-LETG		
1ES 2344+514	2007-2008	1	RXTE-PCA	VERITAS	
			Swift-XRT		

Statistical method

Bayesian statistical method (D'Agostini 2005):

Power Law model to describe the correlation:

$$F_{\chi} = b F_{\chi}^{\alpha}$$

$$\begin{split} L(\omega,\sigma_s;x,\gamma) &= \frac{1}{2} \sum log[\sigma_s^2 + \sigma_\gamma^2 + F_\gamma'^2(x,\omega)\sigma_x^2] \\ &+ \frac{1}{2} \sum \frac{[\gamma - F_\gamma]^2}{\sigma_s^2 + \sigma_\gamma^2 + F_\gamma'^2(x,\omega)\sigma_x^2}, \end{split}$$

w is the set of free parameters (b, **a**).

- Maximum Likelihood estimation.
- Takes into account an inherent unknown data scattering (σ_{s})
- 3 possible scenarios were tested: Linear, quadratic and free

Results I

 4 blazars are consistent with a linear correlation: Mkn 421, 1ES 2344+514, PKS 2155-304 and 1ES 1959+650 → KN regime??

Results I

 4 blazars are consistent with a linear correlation: Mkn 421, 1ES 2344+514, PKS 2155-304 and 1ES 1959+650 → KN regime??

 All of them present outliers with high gamma-ray flux → another mechanism??

Results II

Summary of results

Source	Correlation index	AIC ₁	AICfree	AIC ₂
Mkn 421	0.87 ± 0.08	116.82	116.69	181.48
Mkn 501	1.45 ± 0.01	168.28	144.25	170.03
1ES 1959+650	1.42 ± 0.22	372.60	370.71	374.35
PKS 2155-304	0.54 ± 0.12	148.54	142.72	172.59
PKS 2155-304 (flare)	1.95 ± 0.29	96.17	90.21	86.57
1ES 2344+514	1.25 ± 0.22	9.73	10.90	15.39

Summary of results

Summary...

- Overall the average correlations of these sources are consistent with indices values between 1 and 2, as previous work reported.
- These studies can contribute to ponderate the contribution of different radiative processes in blazar's emission.
- Outliers are present in all blazars suggesting the presence of different emission mechanisms in long term monitoring.

Thank you!

Dr. José Rodrigo Sacahui Reyes

Universidad de San Carlos de Guatemala

jrsacahui@profesor.usac.edu.gt

The authors would like to thank UNAM-PAPIIT for financial support by grant IG101323 and Senacyt by grant Gestiona I+D 02-2021.