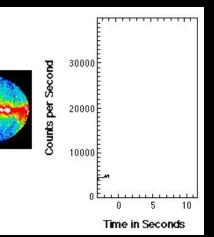
Calculation of LGRBs Pseudo-Redshifts using the Amati Correlation

Gabriela Xol ECFM-USAC

> In collaboration with: Dr. Rodrigo Sacahuí Dra. Magdalena González Dr. Yunior Pérez


22nd ISVHECRI - Vallarta, July 2024

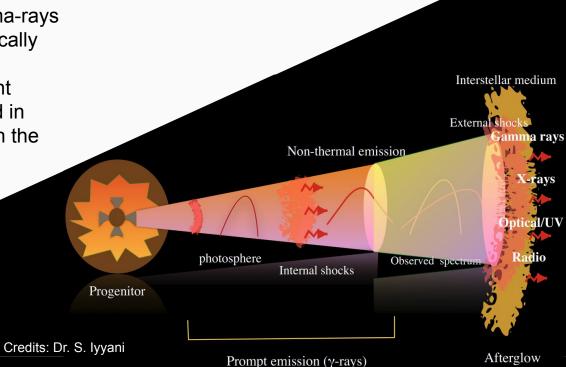
Gamma-Ray Burst (GRBs)

- Among biggest explosions in the universe (~ $10^{55} erg$)
- Detectable at redshifts up to $z \approx 9.4$
- Can last from milliseconds to several minutes
- Can outshine entire galaxies

Gamma-Ray Burst Types and progenitors

Short gamma-ray burst $T_{90} < 2s$

Long gamma-ray burst $T_{90} > 2s$


 T_{90} : Time interval during which 90% of the total observed counts have been detected

Progenitors of long and short GRBs, after M. Ruffert and H.-Th. Jahnka (1996), duration distribution from Kouveliotou et al. (1993).

Fireball Model

- Prompt emission: Initial and most intense part, where the gamma-rays are released keV – MeV, typically last a few seconds
- Afterglow: Radiates in different wavelenghts, initially detected in X-rays. Last much longer than the prompt emission

Motivation

Few GRBs with z associated ($\sim 11\%$)

The measurement of the redshift (hence distance) of a GRB is essential to measuring its intrinsic properties.

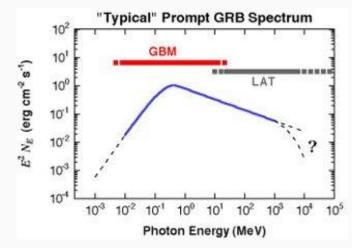
Since LGRB are believed to originate from the core-collapse of massive stars, are powerful tools for investigating the early universe at high redshift.

Empirical Correlations to inferred pseudo-redshifts

$$N_{E}(E) = A \left(\frac{E}{100 \text{ keV}}\right)^{\alpha} \exp\left(-\frac{E}{E_{0}}\right),$$

$$(\alpha - \beta)E_{0} \ge E,$$

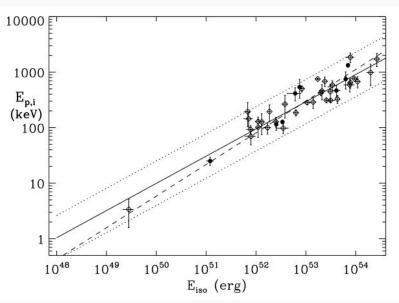
$$= A \left[\frac{(\alpha - \beta)E_{0}}{100 \text{ keV}}\right]^{\alpha - \beta} \exp\left(\beta - \alpha\right) \left(\frac{E}{100 \text{ keV}}\right)^{\beta},$$


$$(\alpha - \beta)E_{0} \le E,$$
Dend at al. (1002)

Band. et.al (1993).

$$E_{p,obs} = E_0 \times (2 + \alpha)$$

Peak energy of the $\nu F \nu$ spectrum


GRB spectra typically described by the empirical Band Function

The typical spectrum of a gamma burst Credit: NASA

The Amati Correlation $(E_{p,rest} - E_{iso})$

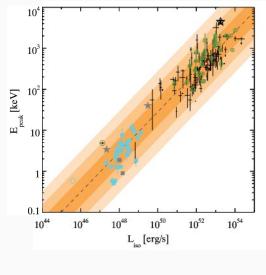
 $E_{p,i} - E_{iso}$ Correlation for 41 GRBs/XRFs L. Amati (2006)

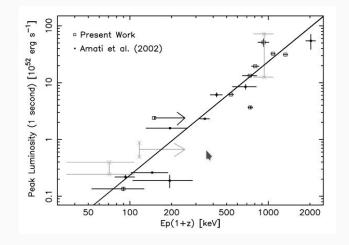
Amati correlation is given by $E_{p, rest} = k E_{iso}^{m}$

$$m = 0.57, \ k = 80.0$$
 $\sigma = 0.18$

Since we don't know the redshift...

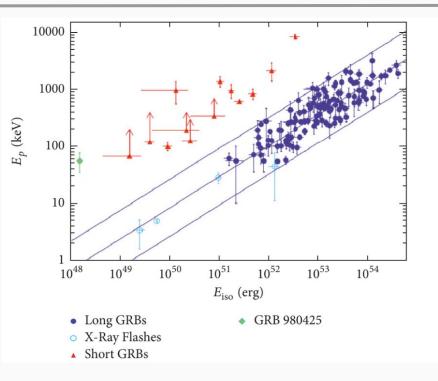
$$E_{p,obs}(1+z) = E_{p,rest}$$
 $E_{iso} = \frac{4 \pi d_L^2 F}{1+z}$


Standard cosmological model was used since: $d_{L} \Big(H_{0}, \Omega_{m}, \Omega_{\wedge}, z \Big)$


Other correlations

The correlation holds also when E_{iso} is substituted with L_{iso} (Ghirlanda et. al 2011)

or L_{peak} (Yonoteku 2004)



Why Amati Correlation?

 L_p , L_{iso} is subject to more uncertainties (eg. light curves peaks at different times in different energy bands)

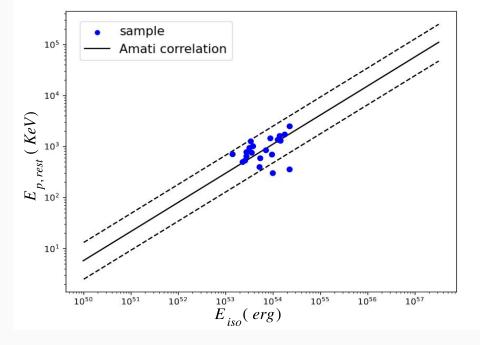
The lines indicates the best fit, and the + 2σ confidence region for LGRBs

Goals

Methods

Use the Amati correlation to calculate the pseudo-redshift of a LGRBs sample, detected by Fermi telescope (GLAST)

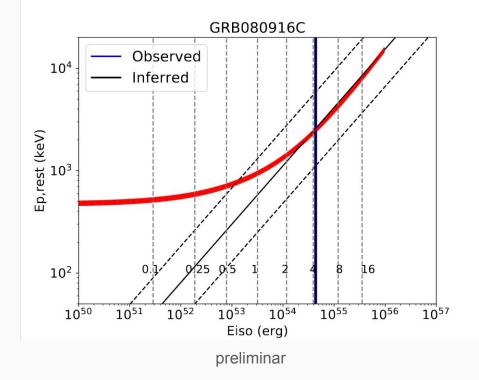
- Perform a time integrated spectral fitting to the LGRBs sample.
- Obtain from the spectral fitting parameters: Peak energy, low energy index and high energy index
- Perform the calculation of the pseudoredshift to the sample



The initial sample

22 high fluence Long GRBs detected by Fermi-GBM, with reported redshift

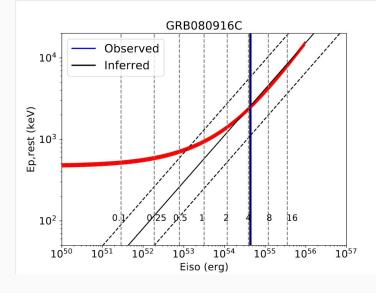
Data show consistency with the Amati correlation



Preliminary Results

We used the Amati correlation to inferred the range of the redshift in which the burst is consistent

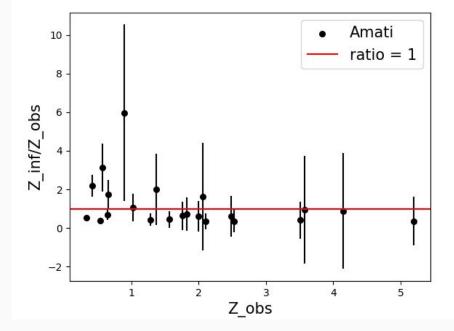
Z reported	Amati min z	Amati z
3.57	0.6	3.38



Preliminary Results

GRB	Reported redshift	Min Amati pseudo-re dshift	Amati pseudo-re dshift
090323	3.57	0.6	3.38
140508A	1.027	0.37	1.09
120711A	5.2	0.54	1.81
170405A	3.51	0.45	1.41

Some of the 22 preliminary results GRBs pseudo-redshifts



preliminar

Preliminary Results

Ratio between the pseudo-redshift inferred using the Amati correlation and the redshift observed.

Summary and Future work

Preliminary results show consistency with the Amati correlation

Amati correlation shows consistency for a large range of redshifts: from 0.2 - 5

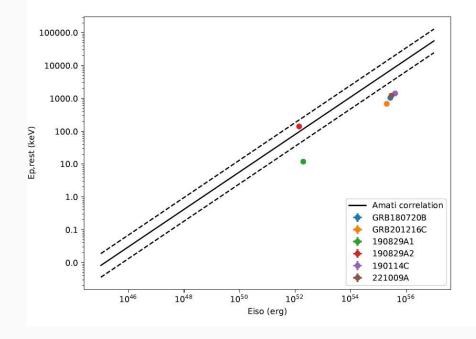
Combination with other methods and correlations can help us to better determined pseudo-redshifts for GRBs

We are going to extend the work for a bigger sample of LGRBs detected by FERMI-GBM, and combine Amati correlation with other methods

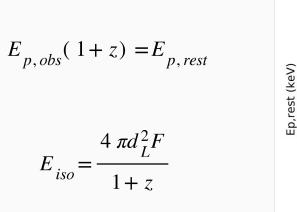
THANKS!

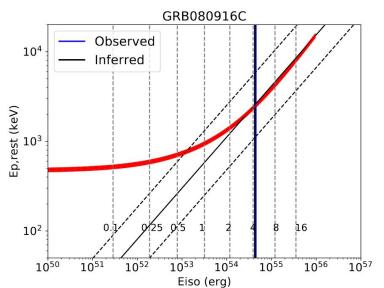
Thanks to the PAPIIT IG101323 project and the organizing committee

22nd ISVHECRI - Vallarta, July 2024

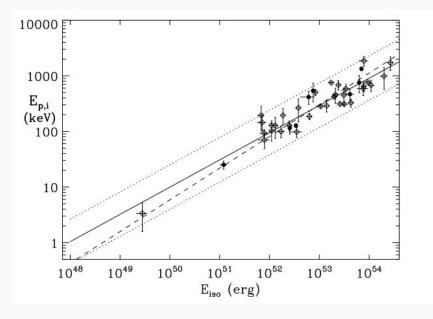

Backup Slides

22nd ISVHECRI - Vallarta, July 2024


Backup slide 1


GRBs at GeV - TeV that don't are consistent with the Amati correlation

Backup slide 2



Backup slide 3

Dashed line: best fitting power law obtained fitting the data without accounting for sample variance

