Cost Effective Large Area Gaseous Detectors for Detection of Charged Particles

Dr. Rajesh Ganai

rajesh.ganai.physics@gmail.com

International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI) - 2024 July 8-July 12, 2024 Puerto Vallarta, Mexico.

July 12, 2024

Dr. Rajesh Ganai

ISVHECRI-2024- Mexico

July 12, 2024 1 / 24

Resistive Plate Chambers

- 2 Journey towards the deevelopment of oil-free bakelite-RPC
 - Failures
 - Development of small Oil-free Bakelite RPC
 - Development of large Oil-free Bakelite RPC
 - Summary

Multi-gap Resistive Plate Chamber

- Development of oil-free MRPCs
- Summary

Resistive Plate Chamber - RPC

3/24

Operation

Two modes of operation:

Avalanche mode

- Low gas gain mode (${\sim}10^6$)
- Low average charge per signal (${\sim}1$ pC).
- Pre-amplifier and amplifier are needed.
- Large number of electronic channels.
- Gas mixture is *R*134*a* : *i butane* : *SF*₆ :: 95 : 4.5 : 0.5

Streamer mode

- High gas gain mode (>>10⁶)
- High average charge per signal (\sim 100's pC).
- No need of pre-amplifier and amplifier.
- Limited number of electronic channels.
- Gas mixture is *Ar* : *R*134*a* : *i butane* :: 55 : 40 : 5

Electrodes

Mainly two kinds of electrode material used (till date):

Bakelite

- Less fragile than glass.
- Can be operated in streamer mode.
- High prone to impurities.
- Higher cost due to **Oil** coating on the inner surface of the electrodes.

Glass

- Less prone to impurities.
- Thinner plates can be manufactured \longrightarrow MRPC
- No oil-coating needed.
- Very fragile.

Development of oil-free Bakelite-RPC

- All experiments using bakelite RPCs uses oiled bakelite electrodes.
- Significant increase in the per-RPC production cost.
- What if bakelite RPCs can be produced without oil-coating?
- No oil coating \implies Bare bakelite surfaces exposed to impurities in gas in high electric field (\sim 50 kV/cm).
- Will streamer mode operation be possible?
- If NO → The advantage of bakelite RPC over any other electrode material *fails*.

We tried and tried and tried and for more than 3 years

Finally succeded.

Failure is the pillar of success - some failed results

P-301 sample : No oil-coating

I-V characteristics

July 12, 2024 7 / 24

Figure 3: Inner coated electrode under microscope

Figure 4: Inner coated electrode under microscope

Development of 30 cm imes 30 cm Oil-free Bakelite RPC

- Tested with 3 scintillator cosmic ray test bench.
- Operation mode : Streamer
- Gas gap : 0.2 cm.
- Gas mixture \rightarrow Argon:R134a:i-butane::55:40:5
- Gas flow rate : 12 SCCM
- Gas breakdown voltage : \sim 7000 V (\pm 3500 V).
- Current stability monitored at ${\sim}12000$ V (${\pm}6000$ V)

Development of 30 cm \times 30 cm Oil-free Bakelite RPC

- Signal threshold : -20 mV.
- Efficiency plateau was obtained beyond 8000 V.
- Cosmic muon detection efficiency : \sim 98%.
- Measured noise rate : ${\sim}1.7~\text{Hz}/\text{cm}^2$ at 9000 V.
- Successfull result \implies Development of (240 cm \times 120 cm) RPC.

Development of 240 cm \times 120 cm Oil-free Bakelite RPC

Glue testing

Problem faced with glue.

Figure 9: Bulk resistivity of different glue samples

 Glue samples were tested for their mechanical strengths and bulk resistivity.

Figure 10: Large RPC

Dr. Rajesh Ganai

ISVHECRI-2024- Mexico

July 12, 2024 11 / 24

Cosmic ray test results

- Operation mode : Streamer
- Gas gap : 0.2 cm.
- Gas mixture → Argon:R134a:i-butane::34:57:9
- Gas flow rate : ∼0.75 litres/hour

Figure 11: I-V characteristics

- Breakdown voltage : \sim 7000 V.
- From the Ohmic part, the calculated bulk resistivity of the chamber was fond to be $1.72 \times 10^{13} \ \Omega \text{cm}.$

Efficiency and Noise Rate

- Signal threshold : -20 mV.
- Efficiency plateau was obtained beyond 8400 V.
- Cosmic muon detection efficiency : >95%.
- Measured noise rate : \sim 0.75 Hz/cm² at 9000 V.

Efficiency at Different Locations

- Efficiency measured at 16 different locations 8 at the edges and 8 away from the edges.
- Efficiency measured at 9000 V.
- Two distinct groups were observed.
- Edges relatively low efficienct than the central part \implies Edge Effect.

Time resolution measurement

- Time resolution measured at central location.
- It is measured with 16 channel Philiphs Scientific 7186 TDC module.

Figure 16: Time resolution as a function of applied voltage.

Figure 17: TDC spectra at 9000 V.

• The best value of scintillator corrected time resolution measured to be ${\sim}0.83~\text{ns}$ at 9000 V.

Long term test results - Current and Efficiency.

- The detector was kept in continuous gas flow and HV for more than 10 months.
- Various detector performance parameters were measured and monitored continuously over a period of 60 days.

Figure 18: Long term current stability.

Figure 19: Efficiency measured after 10 months.

- Current was found to be stable at 9000 V.
- $\bullet\,$ Efficiency was found to be $>\!95\%$ and stable at 9000 V $_{\odot}$

Dr. Rajesh Ganai

ISVHECRI-2024- Mexico

July 12, 2024 16 / 24

Long term test results: Noise Rate and Time Resolution

Figure 20: Long-term noise rate. Figure 21: Long-term time resolution.

- The noise rate of the detector was stable at \sim 0.75 Hz/cm² at 9000 V.
- The time resolution of the chamber was stable with an average corrected value of ${\sim}0.83$ ns.

Summary of Large Oil-free Bakelite RPC

- \bullet Successfully developed large (${\sim}2.9~m^2$ area) oil-free bakelite RPC
- Very stable performance towards the detection of cosmic muons.
- Happy with long term performance.

Advantages

- Streamer mode operation possible ⇒ Significant reduction in electronics channel ⇒ Significant cost reduction.
- Happy with long term performance.
- Fabrication of the large detector cost ~ 100 USD.

Grade of the bakelite: P302- OLTC.

Multi-gap Resistive Plate Chamber - MRPC

Development of Oil-Free bakelite MRPC

- One of the toughest challenge \rightarrow Manufacture thin bakelite sheets.
- Regular communication with the company \implies Successfully manufactured \sim 500 μ m think bakelite sheets.
- Developed a couple of MRPCs with dimensions of 15 cm \times 15 cm \times 1 cm were developed.

Figure 22: Base plate with frame, gas nozzles and spacers.

Figure 23: Thin inner plates - 5 nos.

Specifications of the MRPC

Total area of the MRPC	$ \sim$ 15 cm $ imes$ 15 cm $ $
Active area of the MRPC	$ m \mid \sim 14~cm imes 14~cm$ $ m \parallel$
Number of outer electrodes	2
Number of inner electrodes	5
Dimensions of the outer electrodes	\mid \sim 15 cm $ imes$ 15 cm $ imes$ 0.30 cm $\mid\mid$
Dimensions of the inner electrodes	\mid \sim 14 cm $ imes$ 14 cm $ imes$ 0.050 cm $\mid\mid$
Thickness of each button spacer	$\mid \sim$ 0.024 cm $\mid\mid$
Thickness of the side spacer frame	0.40 cm
Total number of gas nozzles	2
Total number of gas gaps	6
Thickness of each gas gap	$ \sim$ 0.025 cm
	지 말 이 지 않은 지 말 이 지 말 이 말 수 있다.

Test Results of Bakelite MRPC- Efficiency and Noise Rate

Figure 24: Efficiency of oil-free bakeliteFigure 25: Noise rate of oil-free bakeliteMRPC.MRPC.

- The efficiency of the detector was obtained to be $\sim 85\%$.
- The maximum noise rate of the detector was found to be ~ 1.85 Hz/cm² at 16 kV of applied voltage and -10 mV of signal threshold.

Test Results of Bakelite MRPC- Time Resolution

bakelite MRPC.

Figure 27: Time resolution of oil-free bakelite MRPC.

 The best time resolution of the detectors obtained was ~154 ps at an applied voltage of 16 kV.

Summary of Oil-free Bakelite MRPC

- Difficult goal but achieved successfully.
- New idea to develope MRPCs with ${\sim}500~\mu m$ thin bakelite sheets without any coating.
- Happy with the performance of the detector.
- The time resolution can be improved further. Work is in progress.

Societal applications

- Successfully proved the basic working principle of ToF-PET imaging using MRPCs.
- A fully functional MRPC-ToF-PET scanner will reduce per scan cost significantly with much improved results.
- A couple of problems to be addressed first.

References

- R. Ganai et., al, Study of Performance of Bakelite Resistive Plate Chamber (RPC), Springer Proceedings in Physics 174 (2014), Chapter- 83.

R. Ganai et., al, Fabrication and Characterisation of Oil-Free Large High Pressure Laminate Resistive Plate Chamber, Journal of Instrumentation, (2016 JINST 11 P04026).

R. Ganai et., al, Long Term Performance Studies of Large Oil-Free Bakelite Resistive Plate Chamber, Journal of Instrumentation, (2016 JINST 11 C09010).

R. Ganai et., al, Development and Characterization of 6-gap Bakelite Multi-gap Resistive Plate Chamber, Journal of Instrumentation, (2018 JINST 13 P07022).

R. Ganai et., al, Timing Studies of Bakelite Multi-gap Resistive Plate Chamber, Nuclear Inst. and Methods in Physics Research- A, 936, (2019), 505-506.

R. Ganai et., al, Charge measurement of oil-free single gap Bakelite Resistive Plate Chamber, Journal of Instrumentation, (2019 JINST 14 P08007).

THANK YOU