

Design, manufacturing and installation of multi-PMT vessel for Hyper-Kamiokande

11th July 2024 | Eng. Elisa Medina on behalf of HK Mexico collaboration

Table of Contents

02. 03. 04.

01.

06.

05.

07.

Introduction

Mechanical design

Metrology

Testing

Reflector rings

Characterization of a PMT

Conclusions

01. Introduction

Hyper-Kamiokande (Hyper-K) is a water Cherenkov detector filled with 260,000 metric tons of ultrapure water.

What it will do?

- Detect neutrinos from accelerators, solar neutrinos and supernova neutrinos.
- Explore **CP violation** in neutrino oscillations.
- Determine neutrino mass hierarchy.
- Investigate proton decay.

— 68 m —

Image taken from Hyper-Kamiokande website

The Hyper-K will be conformed by 800 **multi-PMT (mPMT)** optical modules.

Image taken from Hyper-Kamiokande collaboration

01.

Each mPMT has 19 **photomultiplier tubes (PMTs)**

02. Mechanical Design

3D SolidWorks modeling of the mPMT vessel.

Computational simulations in **SolidWorks** for **stress analysis** due to the hydrostatic pressure suffered by the sensor vessel.

- Design improvement identification
- Simulation with new materials for the mPMT vessel.

02.

Materials

STRESS TEST

BUCKLING TEST

Pieza	Material	Factor de Carga
Domo	General Purpose Acrylic Resin	6.4392
	Röhm ACRYLITE	6.4132
Soporte de PMT	Acrilonitrilo butadieno estireno (ABS)	0.92119
	ABS (ABS834G40L)	2.4419
	PET-G	4.5832
Cilindro	POM-C	283.77
	HDPE	65.549
	AISI-304	13,042
Backplate	AISI-304	19,382
	Acero inoxidable AISI-316	19,741
Clamping Ring	AISI-304	2,863
	Acero inoxidable AISI-316	2,872

Pieza	Material	Límite elástico [N/m²]	Limite max. simulación [N/m²]	ela m aj
Domo	General Purpose Acrylic Resin	3.907×10 ⁷	1.204×107	3
	Röhm ACRYLITE	5.199×10 ⁷	1.204×107	2
Soporte de PMT	Acrilonitrilo butadieno estireno (ABS)	2.000×10 ⁷	1.289×10 ⁸	64
	ABS (ABS834G40L)	6.502×10 ⁷	1.291×10 ⁸	19
	PET-G	1.007×10 ⁸	1.154×10 ⁸	11
Cilindro	POM-C	5.102×107	1.270×107	2
	HDPE	2.344×10 ⁷	1.224×107	5
	AISI-304	2.151×10 ⁸	1.323×107	(
Backplate	AISI-304	2.151×10 ⁸	2.304×10 ⁶	1
	Acero inoxidable AISI-316	2.399×10 ⁸	2.288×10 ⁶	(
Clamping Ring	AISI-304	2.151×10 ⁸	1.106×10 ⁷	4
	Acero inoxidable AISI-316	2.399×10 ⁸	1.110×107	2

02.

DEFORMATION TEST

Pieza	Material	ESTRN Valor máximo [%]
Domo	General Purpose Acrylic Resin	3.461×10 ⁻¹
	Röhm ACRYLITE	3.475×10 ⁻¹
Soporte de PMT	Acrilonitrilo butadieno estireno (ABS)	5.128
	ABS (ABS834G40L)	1.924
	PET-G	9.127×10 ⁻¹
Cilindro	POM-C	2.264×10 ⁻¹
	HDPE	1.065×10 ⁻⁰
	AISI-304	4.618×10 ⁻³
Backplate	AISI-304	6.010×10 ⁻⁴
	Acero inoxidable AISI-316	5.962×10 ⁻⁴
Clamping Ring	AISI-304	5.152×10-3
	Acero inoxidable AISI-316	5.158×10 ⁻³

03. Metrology

Measuring tools:

- Digital and analog vernier
- Rulers
- Flexometers

The **average** of all the measurements taken was obtained.

> The dimensions were **confirmed** to be close to those of the SW model for the fabrication of the PMT vessel.

04. Testing

SUPPORT TESTING

Тор

Bottom

Barrel

SHIPPING PACKAGING TESTING

Vibrating table

Compression piston

Humidity chamber

05. **Reflector rings**

2D design from "mPMT Technical Note v5" (2023)

- Cutting
 - thickness

• 26-gauge aluminum sheet, 0.46mm • Plasma cutter

O6. Characterization of a PMT

By Eng. Rodrigo Medina

07. Conclusions

The work done by the Mexican students and researchers contributed to the development of the project and set the stage for more in-depth analyses on various topics, which could lead to improvement proposals.

Thank you!

Know more in Outreach HK México

elisa_medina@exatec.tec.mx