PLANCK2024 Instituto Superior Tecnico, Lisboa, 3-7 June 2024

Majorana mass generation in the early universe

(Cantino planisphere, 1502, Biblioteca Estense Modena)

Pasquale Di Bari (University of Southampton) HIDDE Contract of Southampton Southampton

A map to new physics?

Even barring:

□ (more or less) compelling theoretical motivations

 \Box Experimental anomalies (e.g., $(g-2)_{\mu}$, 95 GeV excess,....)

Standard physics (SM+GR) cannot explain:

Discovery of gravitational waves opens new prospects

(talk tomorrow by 5. King)
 Observation of GWs from a binary black hole merger (LIGO+Virgo 1602.03837)

• Evidence of a stochastic GW background from NANOGrav PTA 15yr data

Hellings-Downs correlations in NANOGrav 15 yr data (2306.16213)

....in addition to a rich variety of various cosmological tools

• CMB anisotropies

Planck (2013)

• Large scale structure

\Rightarrow CMB acoustic oscillations

Planck (2018)

 \Rightarrow Baryon acoustic oscillations

- Indirect searches of dark matter (γ's, high energy v's,....)
-
 21 cm cosmology (EDGES, SARAS3,...)
- CMB spectral distortions and excess radio background (ARCADE 2)

A natural solution to the problem of the origin of matter

WIMP miracle

Freeze-out + WIMP \Rightarrow EW scale (WIMP miracle) < $\sigma_{\rm ann} v >_{\rm th} \simeq 3 \times 10^{-26} {\rm cm}^3 {\, s}^{-1}$

$$<\sigma_{\rm ann}^{\rm weak}v>=rac{lpha_{
m weak}^2}{m_X^2}=<\sigma_{
m ann}v>_{
m th}$$

 $\Rightarrow m_X \sim 100 \text{ GeV-1TeV}$

Electroweak baryogenesis (EWB)

- ☐ It requires a strong first order phase transition (FOPT) EWSB ⇒ physics beyond the SM at the EW scale
- Great attention focussed on extensions of the SM in SUSY models (MSSM and NMSSM) and in generic extensions of the SM with gauge singlets
- In a strong FOPT a detectable GW production is also possible, though it is not clear whether this is compatible with EWB
- $\Box \Rightarrow EWB + WIMP$ miracle provide a very attractive and well-motivated natural solution
- However, the strong constraints on new physics at the 100 GeV-TeV scale from LHC+DM searches make WIMP miracle +EW baryogenesis, if not ruled out, certainly less compelling ⇒ we live in a kind of *nothing is impossible era*: no prejudice on the scale of new physics

A neutrino solution

Dirac Majorana

$-\mathcal{L}_{Y+M}^{\nu} = \overline{L}h^{\nu}\nu_{R}\widetilde{\boldsymbol{\Phi}} + \frac{1}{2}\overline{\nu_{R}^{C}}M\nu_{R} + \text{h.c.} \stackrel{EWSB}{\Longrightarrow} - \mathcal{L}_{mass}^{\nu} = \overline{\nu_{L}}m_{D}\nu_{R} + \frac{1}{2}\overline{\nu_{R}^{C}}M\nu_{R} + \text{h.c.}$

In the see-saw limit (M >> $m_D = v_{ew}h^{\nu}$) the mass spectrum splits into 2 sets: (Minkowski '77; Gell-mann,Ramond,Slansky: Yanagida; Mohapatra,Senjanovic '79)

• 3 light Majorana neutrinos with masses (seesaw formula):

$$m_v = -m_D M^{-1} m_D^T \Longrightarrow \operatorname{diag}(m_1, m_2, m_3) = -U^{\dagger} m_v U^{\ast}$$

- N≥2 heavier "seesaw" neutrinos N₁,..., N_{N,...} with M_N > ... > M₁
- matter-antimatter asymmetry from leptogenesis (Fukugita, Yanagida 1986)
- N1 as dark matter from LH-RH (active-sterile) neutrino mixing (Dodelson, Widrow 1993; Asaka, Blanchet, Shaposhnikov 2005)

How is the Majorana mass term generated?

Majorana mass generation in the Majoron model (Y. Chikashige, R. Mohapatra, R. Peccei 1981)

$$-\mathcal{L}_{Y+\phi}^{\nu} = \left(\overline{L_a}h_{aI}^{\nu}N_I\widetilde{\boldsymbol{\Phi}} + \frac{\lambda_I}{2}\phi\overline{N_I^{C}}N_I + \text{h.c.}\right) + V_0(\phi)$$

 $\xrightarrow{U_L(1)-SSB}\overline{L_a}h_{aI}^{\nu}N_I\widetilde{\Phi} + \frac{1}{2}M_I\overline{N_I^C}N_I + \text{h.c} \xrightarrow{EWSB} - \mathcal{L}_{\text{mass}}^{\nu} = \overline{\nu_L}m_DN_I + \frac{1}{2}\overline{N_I^C}M_IN_I + \text{h.c.}$

- \Box One can also have U_L (1)-SSB occurring after EWSB
- □ It is convenient to introduce also the radial component: $\phi = \frac{\varphi}{\sqrt{2}} e^{i\theta}$
 - At the end of the ϕ -phase transition, L is violated and: $\phi = \frac{e^{i\theta_0}}{\sqrt{2}} (v_0 + S) e^{i\frac{J}{v_0}} \qquad \qquad M_I = \lambda_I \frac{v_0}{\sqrt{2}}$
- Dirac neutrino mass matrix m_D=v_{ew}h^v generated after EWSB
 after both symmetry breakings: $m_v = -m_D M^{-1} m_D^T$

S is a massive boson, while J is a (pseudo?)-Goldstone boson: the majoron (it is an example of ALP)

□ DARK SECTOR \equiv N_I's + J + S VISIBLE SECTOR \equiv SM particles

There is an associated phase transition if $T_R > T_*$

First order phase transition in the early universe (Kirzhnits,Linde '72: Dolan, Jackiw '74: Anderson, Hall '92: Dine et al. '92: Quiros '98, Curtin et al. 2016)

dressed
effective potential
$$V(\phi,T) = V_0 (\phi) + \sum_i V_{CW}^i(\phi) + \sum_i V_T^i(\phi,T)$$

 i

1 loop thermal potential with resummed thermal masses

1 loop zero T $V(\varphi, T) \simeq D(T - T_0)^2 \varphi^2 - (AT + \tilde{\mu})\varphi^3 + \frac{\lambda(T)}{4}\varphi^4 + \dots$

This picture relies on the validity of perturbative expansion. In the SM, at the EWSB, this would imply $M_H < M_W$. With the large M_H measured value, there is not even a PT in the SM, just a smooth crossover.

From the effective potential to the euclidean action

(Coleman '77; Linde '82;)

 $\Gamma_0(T) = \mathcal{O}(1)T^4$ $\Gamma(T) = \Gamma_0(T) e^{-S_E(T)}$ Probability of bubble nucleation per unit volume per unit time $S_E(T \ge T_c) \to \infty$ $S_E(T \to T_0) \to 0$ $S_{E}(\phi) = \int d\tau d^{3}x \left| \frac{1}{2} \left(\frac{d\phi}{d\tau} \right)^{2} + \frac{1}{2} \left(\overline{\nabla}\phi \right)^{2} + V(\phi) \right|$ euclidean action $S_{E}(\phi,T) = \int_{0}^{1/T} d\tau d^{3}x \left| \frac{1}{2} \left(\frac{d\phi}{d\tau} \right)^{2} + \frac{1}{2} \left(\overline{\nabla}\phi \right)^{2} + V(\phi) \right| \xrightarrow{T \to R^{-1}(0)} \frac{S_{3}(\phi,T)}{T}$ At finite temperatures spatial $S_{3}(\phi,T) = \int d^{3}x \left[\frac{1}{2} \left(\vec{\nabla}\phi \right)^{2} + V(\phi,T) \right] = 4\pi \int dr \ r^{2} \left[\frac{1}{2} \left(\frac{d\phi}{dr} \right)^{2} + V(\phi,T) \right]$ euclidean action Euler-Lagrange $\frac{1}{2} \left(\frac{d\phi}{dr} \right)^2 + \frac{2}{r} \frac{d\phi}{dr} - \frac{\partial V(\phi, T)}{\partial \phi} = 0, \quad \phi(r = \infty) = 0, \quad \frac{d\phi}{dr} = 0$ Equation for the

bubble solution $2(dr) r dr \partial \phi$ dr

In general, one finds numerically a bounce solution

Thin-wall approximation $\phi(r,t) = \frac{1}{2} < \phi > \left[1 - \tanh\left(\frac{r - r_n - v_w(t - t_n)}{\Delta_w}\right)\right]$

 v_w and Δ_w are the bubble wall velocity and thickness, t_n is the nucleation time

From the Euclidean action to the GW spectrum

(Kamionkowski,Kosowsky,Turner '93;Apreda et al 2001; Grogejan,Servant 2006; Ellis,Lewicki,No 2020)

time and temperature of nucleation $\int_{0}^{t_{*}} \frac{dt \Gamma}{H^{3}} \sim 1 \Rightarrow \int_{T_{*}}^{\infty} \frac{dT}{T} \left(\frac{90}{8\pi^{3}g_{*}}\right)^{2} \left(\frac{T}{M_{p}}\right)^{4} e^{-S_{3}/T} = 1 \Rightarrow \frac{S_{3}(T_{*})}{T_{*}} \approx -4 \ln\left(\frac{T_{*}}{M_{p}}\right) \Rightarrow T_{*}$ More precisely T* has to be identified with the percolation temperature, slightly more involved definition than the nucleation temperature

$$\beta = \frac{\dot{\Gamma}}{\Gamma}, \quad \Gamma = \Gamma_0 e^{-S(t)} \simeq \Gamma_0 e^{-S(t_*)} e^{-\frac{dS}{dt}\Big|_{t_*}(t-t_*)} \Longrightarrow \beta \simeq -\frac{dS}{dt}\Big|_{t_*} \Longrightarrow \frac{\beta}{H_*} = T_* \frac{d(S_*/T)}{dT}\Big|_{T_*}$$

Notice that $\beta/2\pi$ gives the characteristic frequency f* of the FOPT while $1/\beta$ the time scale of its duration

 $\begin{array}{l} \text{latent heat} \\ \text{freed in} \\ \text{the PT} \end{array} \mathcal{E} = -\Delta V(\phi) - T\Delta s = V(\phi_{\text{false}}) - V(\phi_{\text{true}}) + T \frac{\partial V}{\partial T} \Rightarrow \alpha = \frac{\mathcal{E}(T_*)}{\rho_R(T_*)} \quad \begin{array}{l} \text{Strength} \\ \text{of the PT} \end{array} \end{array}$

If the temperature of the dark sector $T_D \neq T \Rightarrow \alpha_D = \epsilon(T_{D^*}) / \rho_{RD}(T_{D^*}) > \alpha$ From α , α_D and β/H_* one can calculate the GW spectrum

Gravitational waves from first order phase transitions

(Hindmarsh et al. 1704.05871; D. Weir 1705.01783; PDB, King, Rahat 2306.4680 ; PDB, Rahat 2307.03184)

 $\frac{1}{GW} \text{ spectrum} \qquad h^2 \Omega_{GW0}(f) \equiv \frac{1}{\rho_{c0} h^{-2}} \frac{d \varrho_{GW0}}{d \ln f}$

□ 3 contributions: bubble wall collisions, sound waves and turbulence

$$\Omega_{GW0}(f) = \Omega_{bwc0}(f) + \Omega_{sw0}(f) + \Omega_{turb0}(f)$$

□ FOPT in the dark sector: sound wave contribution dominates

at the production (assuming $T_D = T$ and $\alpha \leq 0.1$):

$$\Omega_{GW*}(f) \simeq \Omega_{SW*}(f) = 3h^2 \widetilde{\Omega}_{GW} \frac{(8\pi)^3 v_w}{\beta/H_*} \left[\frac{\kappa(\alpha)\alpha}{1+\alpha}\right]^2 \widetilde{S}_{SW}(f) \Upsilon(\alpha, \beta/H_*)$$

1

 $t/R_{*} = 0.656$

xM

$$\begin{split} & \underset{\text{over wave numbers}}{\text{dimensionless integral}} & \text{efficiency factor} \\ & \underset{\text{over wave numbers}}{\tilde{\Omega}_{\text{gw}}} = \frac{(0.8 \pm 0.1)}{2\pi^3} \sim 10^{-2} \end{split} \quad \begin{array}{l} & \underset{\text{sw}(f) \simeq 0.687 \, S_{\text{sw}}(f)}{\tilde{S}_{\text{sw}}(f) \simeq 0.687 \, S_{\text{sw}}(f)} \\ & \underset{\text{sw}(f) = \left(\frac{f}{f_{\text{sw}}}\right)^3 \left[\frac{7}{4+3(f/f_{\text{sw}})^2}\right]^{7/2}}{\tilde{S}_{\text{sw}}(f)} \\ & \underset{\text{sw}(f) = \left(\frac{f}{f_{\text{sw}}}\right)^3 \left[\frac{7}{4+3(f/f_{\text{sw}})^2}\right]^{7/2}}{r_{\text{sw}}} \\ & \text{fsw} = 8.9 \,\mu\text{Hz} \frac{1}{v_w} \frac{\beta}{H_\star} \left(\frac{T_\star}{100 \,\text{GeV}}\right) \left(\frac{g_{\rho\star}}{106.75}\right)^{1/6} \\ & \text{at present:} \quad \Omega_{\text{sw}\,0}(f) = r_{gw}(t_{\star,t_0}) \Omega_{\text{sw}\,\star}(f) \\ & \underset{\text{factor}}{\text{redshift}} \\ & \underset{\text{factor}}{r_{gw}(t_{\star,t_0})} = \left(\frac{a_\star}{a_0}\right)^4 \left(\frac{H_\star}{H_0}\right)^2 \\ & \text{numerically:} \end{aligned}$$

GWs from SFOPTs: tuning the knob

0

(from PDB, D. Marfatia, YL. Zhou 2001.07637)

The minimal model $V_0(\varphi) = -\frac{1}{2}\mu^2\varphi^2 + \frac{\lambda}{4}\varphi^4 \quad (\lambda,\mu^2 > 0)$ $\Rightarrow \nu_0 = \sqrt{\mu^2/\lambda} , \quad m_S^2 = 2\lambda\nu_0^2 , \quad m_J = 0$ One-loop finite temperature effective potential:

$$V(\varphi, T) \simeq D(T - T_0)^2 \varphi^2 - (AT + \lambda) \varphi^3 + \frac{\lambda(T)}{4} \varphi^4$$

A numerical fit for the euclidean action

(Dine, Leigh, Huet, Linde 1992)

$$\frac{S_3}{T} = \frac{2D(T - T_0)^2}{A^2 T^3} f(a); \ a = \frac{\lambda(T)D(T - T_0)^2}{A^2 T^2}$$
$$f(a) \simeq 4.85 \left[1 + \frac{a}{4} \left(1 + \frac{2.4}{1 - a} + \frac{0.26}{(1 - a)^2} \right) \right]$$

The GW signal turns out to be a few orders of magnitude below the experimental sensitivity of any experiment

(from PDB, D. Marfatia, YL. Zhou 2001.07637)

Adding an auxiliary (real) scalar

(Kehayias, Profumo 0911.0687; PDB, D. Marfatia, YL. Zhou 2001.07637; PDB, S.King, M.Rahat 2306.04680)

$$V(\varphi, \eta) = V_0(\varphi) + \zeta \varphi^2 \eta^2 - \frac{1}{2} \mu_{\eta}^2 \eta^2 + \frac{\lambda_{\eta}}{4} \eta^4$$
$$v_{\eta} \gg v_{\varphi}$$

The scalar field η also undergoes a phase transition settling to its true vacuum prior to the φ phase transition

$$V(\varphi, \mathbf{T}) \simeq D(T - T_0)^2 \varphi^2 - (AT + \tilde{\boldsymbol{\mu}})\varphi^3 + \frac{\lambda(T)}{4} \varphi^4$$

This time one has a non-zero barrier at zero temperature:

$$\tilde{\mu} = \zeta^2 \frac{\nu_0}{4\lambda_\eta}$$

This greatly enhances the strength of the FOPT and, therefore, the GW spectrum

Adding an auxiliary scalar: GW spectrum

(PDB, D. Marfatia, YL. Zhou 2001.07637)

		Inpu	Predictions					
	$m_S/{ m GeV}$	$\tilde{\mu}/{ m GeV}$	$M/{\rm GeV}$	$v_0/{ m GeV}$	$T_{\star}/{ m GeV}$	α	β/H_{\star}	a_0
A1	0.06190	0.0005857	0.5361	3.5873	0.6504	0.1248	2966	0.05951
A2	156.2	13.15	465.6	1014	721	0.04139	754.8	0.3886
A3	1036	13.72	7977	44424	9180	0.08012	1975	0.06268
A4	43874	1856	181099	567378	247807	0.05611	809.7	0.1944

GeV RH neutrinos can give a signal at LISA interplay with collider searches

Two-majoron model

(PDB, S.King, M.Rahat 2306.04680)

$$-\mathcal{L}_{N_{I}+\phi_{1}+\phi_{3}} = \left(\overline{L_{\alpha}} h_{\alpha I} N_{I} \widetilde{\Phi} + \frac{y_{1}}{2} \phi_{1} \overline{N_{1}^{c}} N_{1} + \frac{y_{2}}{2} \phi_{1} \overline{N_{2}^{c}} N_{2} + \frac{y_{3}}{2} \phi_{3} \overline{N_{3}^{c}} N_{3} + \text{h.c.}\right) + V_{0}(\phi_{1},\phi_{3})$$

$$V_0(\phi_1,\phi_3) = -\mu_1^2 |\phi_1|^2 + \lambda_1 |\phi_1|^4 - \mu_3^2 |\phi_3|^2 + \lambda_3 |\phi_3|^4 + \zeta |\phi_1|^2 |\phi_3|^2$$

At high temperatures it respects a $U(1)_{L_1} \times U(1)_{L_3}$ symmetry

- first (high scale) phase transition at $T_{*3} \sim v_3 \Rightarrow U(1)_{L3}$ is broken and $M_3 = y_3 v_3$
- second (low scale) phase transition at $T_{*1} \sim v_1 \Rightarrow U(1)_{L1}$ is broken and $M_{1,2} = y_{1,2}v_1$
- Taking V₃>>V₁ ⇒ the high scale vev generates the zero temperature barrier term enhancing the strength of the phase transition and the GW production

GWs from global cosmic strings

Three-majoron model

(PDB, S.King, M.Rahat 2306.04680)

$$-L_{N_{I}+\phi_{I}} = \left(\overline{L_{a}}h_{aI}HN_{I} + \frac{y_{1}}{2}\phi_{1}\overline{N_{1}^{c}}N_{1} + \frac{y_{2}}{2}\phi_{2}\overline{N_{2}^{c}}N_{2} + \frac{y_{3}}{2}\phi_{3}\overline{N_{3}^{c}}N_{3} + \text{h.c.}\right) + V_{0}(\phi_{1},\phi_{2},\phi_{3})$$
$$V_{0}(\phi_{1},\phi_{2},\phi_{3}) = \sum_{I=1,2,3}\left[-\mu_{I}^{2}\phi_{I}^{*}\phi_{I} + \lambda_{I}(\phi_{I}^{*}\phi_{I})^{2}\right] + \sum_{I,J,I\neq J}^{1,2,3}\frac{\zeta_{IJ}}{2}(\phi_{I}^{*}\phi_{I})(\phi_{J}^{*}\phi_{J}).$$

At high temperatures it respects a $U(1)_{L_1} \times U(1)_{L_2} \times U(1)_{L_3}$ symmetry Taking $v_3 \gg v_2 \gg v_1$ guarantees that there are 3 sequential one-field PTs

Split majoron model

(PDB, Marfatia, Zhou 2106.00025; PDB, Rahat 2307.03184)

for definiteness let us consider N=2 and N'=1 (in this case the lightest RH neutrino could be responsible of the lightest neutrino mass (as in the ν MSM model)

Extra radiation: challenge or opportunity?

 $\varrho_R(T) = g_\rho(T) \frac{\pi^2}{30} T^4$

number of radiation degrees of freedom

 $g_{\rho}(T) = g_{\rho}^{SM}(T) \left(\Delta g_{\varrho}(T) \right)$ number of extra (or dark) radiation degrees of freedom $\Delta g_{\rho}(T) \equiv \frac{7}{\Lambda} \Delta N_{\nu}(T) \left(\frac{T_{\nu}}{T}\right)^{2}$

effective number of (extra-)neutrino species

 $\Delta N_{\nu}(T) \equiv N_{\nu}(T) - N_{\nu}^{SM}(T)$

$$N_{\nu}^{SM}(T \gg m_e) = 3$$
 $N_{\nu}^{SM}(T \ll m_e) = 3.045$

<u>three different stages to constraint ΔN_{v} :</u>

 t_{fr} ≃1s, T_{fr} ≃ 1 MeV: BBN + Y_p ⇒ $\Delta N_v(t_{fr})$ = -0.1±0.3 ⇒ $\Delta N_v(t_{fr}) \lesssim 0.5$ (95% C.L.) •

 $t_{nuc} \simeq 310s$, $T_{nuc} \simeq 65 \text{ keV}$: BBN + D/H $\Rightarrow \Delta N_v (t_{nuc}) = -0.05 \pm 0.22 \Rightarrow \Delta N_v (t_{nuc}) \lesssim 0.4 (95\% C.L.)$ •

 $t_{\text{nuc}} \simeq 4 \times 10^5 \text{yr}, T_{\text{rec}} \simeq 0.3 \text{ eV} : CMB \Rightarrow \Delta N_{\nu}(t_{\text{rec}}) = -0.05 \pm 0.17 \Rightarrow \Delta N_{\nu}(t_{\text{nuc}}) \lesssim 0.3 (95\% \text{ C.L.})$ (Planck 2018, ACDM)

Split seesaw model with N'=1 and T '* = T'_D* ~10 MeV $\Rightarrow \Delta N_v = 4/7 \simeq 0.6$

Hubble tension and fractional N_v

 $H_0^{(Planck13)} = 67.3 \pm 1.2 \text{ km s}^{-1}\text{Mpc}^{-1}$ $N_v^{(Planck13)} = 3.36 \pm 0.34$

 $H_0^{(SNe)} = 73.8 \pm 2.4 \text{ km s}^{-1}\text{Mpc}^{-1}$ $N_v^{(Planck13+SNe)} = 3.62 \pm 0.25$

(from Planck 13 1303.5076)

Many proposed models for $\Delta N_{\nu}(T_{rec}) \sim 0.5$:

- long-lived particle decays (PDB, S.F. King, A. Merle 1303.6267)
- Axionic dark radiation (J.Conlon, M.C. David Marsh, 1304.1804)
- Goldstone boson: $\Delta N_v = 4/7 \simeq 0.6$ (S. Weinberg 1305.1971)

......

Cosmological tensions: beyond a fractional N_v

Different cosmological tensions

• Hubble tension:

 $H_0^{(P18)} = 67.66 \pm 0.42 \text{ km s}^{-1}\text{Mpc}^{-1} \xleftarrow{\sim}{\sim} H_0^{(SH0ES)} = 73.30 \pm 1.04 \text{ km s}^{-1}\text{Mpc}^{-1}$

- Growth tension
- Cosmic dipoles
- CMB anisotropy anomaly

A model should improve the Λ CDM baseline model rather than solve one tension in isolation.

The majoron model is one of the leading model proposed to ameliorate the cosmological tensions (silver medal in H_0 Olympics) (Lesgourgues, Poulin et al. 2107.10291)

Neutrino re-thermalisation

(Chacko,Hall,Okui,Oliver hep-ph 0312267; PDB, Rahat 2307.03184)

- \square Consider now that the dark sector decouples at high energies and $T_D \ll T$
- \Box Let us consider T '* \lesssim 1 MeV (after neutrino decoupling)
- This low energy phase transition generates Majorana masses for the N' light RH neutrinos (minimal case N' = 1)
- lacksquare At these temperatures, ordinary neutrinos interact with the majoron J and ϕ' :

$$-\mathcal{L}_{\nu+\mathrm{D}} = \frac{i}{2} \zeta J |\phi'|^2 + \frac{i}{2} \sum_{i=2,3} \lambda_i \overline{\nu_i} \gamma^5 \nu_i J + \mathrm{h.c.}$$

These interactions couple neutrinos to majorons, so that the dark sector thermalises prior to the phase transition to a common temperature T_D:

$$T_{\nu \rm D} = T_{\nu}^{\rm SM}(T) \left(\frac{3.045}{3.045 + N' + 12/7 + 4\Delta g/7}\right)^{\frac{1}{4}}$$

contribution from J and ϕ'

□ Minimal case: N' = 1 and $\Delta g = 0 \Rightarrow T_{\nu D} = 0.815 T_{\nu}^{SM}$ □ It predicts a CvB temperature lower than in the standard case

Confronting the deuterium constraint

(PDB, Rahat 2307.03184)

$$g_{\rho}(T) = g_{\rho}^{\gamma + e^{\pm} + 3\nu}(T) + \frac{7}{4}\Delta N_{\nu}(T) \left(\frac{T_{\nu}}{T}\right)^{4}$$

- Prior to neutrino rethermalisation, above neutrino decoupling, ΔN_{ν} is negligible
- After the phase transition and the decay of N_h massive particles (S + N' right-handed neutrinos):

$$\Delta N_{\nu} \simeq 3.045 \left[\left(\frac{3.045 + N' + 12/7 + 4\Delta g/7}{3.043 + N' + 12/7 + 4\Delta g/7 - N_{\rm h}} \right)^{\frac{1}{3}} - 1 \right]$$

• For $\Delta g = 0, 1, 2, 3 \Rightarrow \Delta N_{\nu} = 0.46, 0.41, 0.37, 0.33$

For $T_* > T_{nuc} \approx 65$ keV one has to confront BBN+D/H constraint. There are actually 2 different results:

- $\Delta N_{\nu}(T_{nuc}) = -0.05 \pm 0.22 \Rightarrow \Delta N_{\nu}(t_{nuc}) \le 0.4 (95\% C.L.)$ (Pisanti et al. 2011.11537)
- $\Delta N_{\nu}(T_{nuc}) = 0.3 \pm 0.15$ (Pitrou et al. 2011.11320)

The split majoron model can nicely address this potential *deuterium problem*

The split majoron model confronts the NANOGrav signal (PDB, Rahat 2307.03184)

$$h^{2}\Omega_{\rm sw0}(f) = 1.845 \times 10^{-6} \frac{\tilde{\Omega}_{\rm gw}}{10^{-2}} \frac{v_{\rm w}(\alpha)}{\beta/H_{\star}} \left[\frac{\kappa(\alpha_{\nu\rm D})\,\alpha}{1+\alpha} \right]^{2} \left(\frac{15.5}{g_{s\star}'} \right)^{4/3} \left(\frac{g_{\rho\star}'}{15.5} \right) \, S_{\rm sw}(f) \,\Upsilon(\alpha, \alpha_{\nu\rm D}, \beta/H_{\star})$$

valid for $\alpha \lesssim 0.1$ At values $\alpha \sim 0.5$ some deviation is expected, especially around the peak. Recently a strong enhancement has been found in certain cases

(Caprini et al 2308.12943)

B.P.	N'	λ'	$v_0'/{ m keV}$	$M'/{ m keV}$	$C/{ m keV}$	lpha	$lpha_{ m u D}$	$\kappa_{ m u D}$	eta/H_{\star}	T_{\star}/keV	$v_{ m w}$	Υ
A	1	0.0013	54.85	16.08	0.96	0.45	2.06	0.74	423.93	276.70	0.96	0.014
B	1	0.001	71.0	20.0	0.75	0.52	2.40	0.74	424.0	240.58	0.97	0.013
\bigcirc	1	0.001	83.0	23.0	1.70	0.60	2.62	0.75	399.73	515.11	0.97	0.013
D	1	0.001	144.0	40.0	3.0	0.59	2.56	0.75	393.63	888.35	0.97	0.013

An unstable cosmic neutrino background?

- Initially proposed to solve the EDGES anomaly in the 21 cm global signal (Chianese, PDB, Farrag Samanta 1805.11717)
- It provides (best?) solution to the mysterious excess radio background observed by ARCADE 2 and that will be soon tested by the Tenerife Microwave Spectrometer (TMS) (B.Dev, PDB, I.Martinez-Soler, R.Roshan 2312.03082)

□ It can solve the tension between the most recent upper bound on neutrino masses placed by the DESI collaboration, $\Sigma_i m_i < 0.072 \text{ eV}$ (95% CL), and the lower bound from neutrino oscillation experiments

(Craig, Green, Meyers, Rejendran 2435.00836)

The existence of a low scale dark sector could be the origin of the instability

Conclusions

The generation of Majorana mass can lead to the production of a stochastic GW cosmological background in the early universe at the seesaw scale or scales in the case of a multiple majoron model

- The split majoron model can motivate a modification of prerecombination era and be related to the generation of a light Majorana mass
- It can alleviate cosmological tensions and might solve a potential deuterium problem: this might be regarded as a signature of the model.
- At the phase transition GWs can be generated with a spectrum peaks in the NANOGrav frequencies just for critical temperature above deuterium synthesis (~100 keV)
- It cannot explain the whole signal, but it might contribute marginally in addition to SMBH binaries, one can hope its contribution could be disentangled
- The low energy dark sector might destabilize cosmic neutrinos and this might solve some puzzles such as the excess radio background

BACKUP SLIDES

Split majoron model

(PDB, Rahat 2307.03184)

(Cutting,Hindmarsh,Weir 1906.00480)

Confronting the cosmological tensions

(M.Escudero, S. Whitte 1909.04044)

In addition to extra radiation, it also couples the majoron background to neutrinos reducing r_s allowing for larger H_0

Parameter	ACDM	$\Lambda \text{CDM} + \Delta N_{\text{eff}}$	Majoron + $\Delta N_{\rm eff}$
$\Delta N_{ m eff}$	_	$0.43 (0.358) \pm 0.18$	$0.52 (0.545) \pm 0.19$
$m_{\phi}/{ m eV}$	_	_	(0.33)
$\Gamma_{ m eff}$	_	_	(8.1)
$100 \Omega_b h^2$	$2.252~(2.2563)\pm0.016$	$2.270~(2.2676)\pm0.017$	$2.280~(2.2765)\pm0.02$
$\Omega_{ m cdm} h^2$	$0.1176~(0.11769)\pm 0.0012$	$0.125~(0.1243)\pm 0.003$	$0.127~(0.1279)\pm 0.004$
100 θ_s	$1.0421~(1.04223)\pm0.0003$	$1.0411~(1.04125)\pm0.0005$	$1.0410~(1.04102)\pm 0.0005$
$\ln(10^{10}A_s)$	$3.09~(3.1102)\pm0.03$	$3.10~(3.072)\pm0.03$	$3.11(3.116) \pm 0.03$
n_s	$0.971~(0.9690)\pm0.004$	$0.981~(0.9780)\pm0.006$	$0.990~(0.99354)\pm 0.010$
$ au_{ m reio}$	$0.051~(0.0500)\pm0.008$	$0.052~(0.0537)\pm0.008$	$0.052~(0.0576)\pm0.008$
H_0	$68.98~(69.04)\pm0.57$	71.27 (70.60) \pm 1.1	$71.92~(71.53)\pm 1.2$
$(R-1)_{\min}$	0.009	0.009	0.03
χ^2_{\min} high- ℓ	2341.56	2345.39	2338.84
$\chi^2_{\rm min}$ lowl	22.45	21.56	20.81
$\chi^2_{\rm min}$ lowE	395.72	395.89	396.40
$\chi^2_{\rm min}$ lensing	9.91	9.21	10.69
$\chi^2_{\rm min}$ BAO	4.74	4.5	4.69
χ^2_{min} SH ₀ ES	12.34	5.82	3.10
$\chi^2_{\rm min}$ CMB	2769.6	2772.1	2766.7
χ^2_{min} TOT	2786.7	2782.4	2774.5
$\chi^2_{min} - \chi^2_{min} ^{\Lambda CDM}$	0	-4.3	-12.2

Significant improvement compared to the Λ CDM model but new calculations neutrino-majoron interaction rate seems to reduce the statistical significance (S. Sandner, M.Escudero, S. Whitte 2305.01692)

Baryon asymmetry of the universe

(Hu, Dodelson, astro-ph/0110414)

(Planck 2018, 1807.06209)

- Consistent with (older) BBN determination but more precise and accurate
- Today the asymmetry coincides with the matter abundance since there is no evidence of primordial antimatter
- Even though all 3 Sakharov conditions are satisfied in the SM, any attempt to reproduce the observed value fails by many orders of magnitude
 it requires NEW PHYSICS!

Dark Matter

At the present time dark matter acts as a cosmic glue keeping together

...but it also needs to be primordial to understand structure formation and CMB anisotropies

(Hu, Dodelson, astro-ph/0110414)

In general a bounce solution is found numerically by (overshootingundershooting) trials and errors procedure.

Typical solution (for T*~100 GeV)

In the `thin-wall' approximation a kink solution is found analytically:

$$\phi(r,t) = \frac{1}{2} < \phi > \left[1 - \tanh\left(\frac{r - r_n - v_w(t - t_n)}{\Delta_w}\right)\right]$$

Where v_w and Δ_w are respectively the bubble wall velocity and thickness and t_n is the nucleation time of the bubble.

Indirect DM searches with y-ray experiments

(from Aldo Morselli @ CORFU 2023)

- Combination of the observation results towards 20 dwarf spheroidal galaxies (dSphs)
- Significant increase of the statistics
 Increase the sensitivity to potential dark matter signals
- Cover the widest energy range ever investigated : 20 MeV 80 TeV

