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Einstein (1915) R — 0
LV
Nonlinear equations . . No superposition
A gl(jj) () + 59/821/) () Not a solution!

It is very useful, but difficult, to find exact solutions!

They are few and far between!

Very important in order to stablish the presence of Horizons, singularities, etc

Free Spin 2 (and higher) in flat space

Fierz-Pauli (1939) Those are linear equations!

It happens to be the first order in the perturbative expansion of Einstein equations

G = Muv + Khy



Fierz-Pauli and its fiends: Transverse and unimodular
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Both transverse and unimodular are invariant under transverse (volume preserving)
gauge transformations

5hy,1/ — ,u,gl/ T al/é-,u a'ué-,u =0

Unimodular is also invariant under local conformal tramsformations
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The action we are going to be interested at is the transverse UG one
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(This is UG in unimodular variables) Yuv
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Classical implications



Study rank one traceless deformations of an arbitrary background

Juv = gw, + l,ull/ l2 = 0.

Why we want to do that?

In general the inverse metric is an infinite power series in Newton’s constant

WV _ =V MY 27 AV
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Nilpotency however implies [gaﬁ = gaﬁ —— ]

This is an exact result!



The Ricci tensor is the sum of the background one, a linear piece and a nonlinear one

Ry = Ew/ + Xapll] + Aagl!]

This exact, no approximations are involved

No more terms in the expansion!!!



The linear piece is essentially the Fierz-Pauli equation as deduced from the
transverse lagrangian
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The nonlinear piece is more complicated
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There are no more terms.

The whole series has reduced to two terms



G\”urses-G\”ursey, Xanthopulos’ work (1978)

When X=0 then both the deformed and the original Ricci tensors are the same

What happens with the A tensor?



In fact the vanishing of the first condition implies the vanishing of the second one

A linear condition implies a nonlinear one !






Flat space as seed

rs 7
Null vector l, = \/; (1, —7) It obeys X=0

ds® = n,,dz"dz” — %(dt + dr)?

In this way we reach the Kerr-Schild family of spacetimes

(Schwarzschild, Kerr, Reissner-Nordstrom, Kerr-Newman, etc)



Ricci flat spacetime as seed

3
Kasner spacetime ds? = dt? — Z £2Pi dg?
1=1

Null vector l, = (1,t**,0,0) X=0

ds® = 2dt* + 2t dtdx — t*P2dy® — t*P3dz?

The deformed spacetime is again Ricci flat



Gravitational waves

2
Plane fronted GW  ds® = ﬁwd:c“dx” = dudv — Z gabdx“da:b
a,b=1
Those are exact solutions of the vacuum Einstein equations

Null vector | = f(v)du

ds* = g, dxtdx’ = f*(v)du® + g,,dz"dz"

When [ = 4/vdu The deformed spacetime is Ricci flat



de Sitter as seed

Constant curvature spacetime d3(2cc3) = g datdz” = dt* — *"5;dx'dy’
Null vector [, = (1,—€"",0,0)
ds? = dt* — e2H5,;dzidy? + (dt — eftdz)” =
icci-flat!!
= 2dt? — 2ettdtdr — 2t (dy? + dz?) Ricei-flat!
In this case Fierz-Pauli does not vanish, but it generates a cosmological constant

Xwll)+Aull) = 3H?g,,
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Conspiracy between X and A in such a way that the
deformed spacetime is Ricci flat



Nilpotent Orbits

Flat seed
All vacuum solutions of Einstein O




We have traded in some sense a nonlinear equation

(Ricci flatness) by a linear one (Fierz-Pauli)

|s there superposition of solutions?

(1)7(1) The sum of two nilpotent matrices needs not be nilpotent
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12]2) The condition for that to happen is
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Quantum implications to follow!

fluctuations around nilpotent Fierz-Pauli
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A full expansion of the Ricci tensor [ R, = R,uu + R,(B + R,(fZ + RS’ZJ

Power counting with nilpotent fluctuations is not trivial

[{Rs; _ 0} — {R® + RS — 0}]
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Nilpotency not only makes the expansion finite, but also

makes it linear at the level of the EM
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This is UG at lowest order in unimodular variables



. . 1.
R=R+V“l“+9+92+§l2

Hilbert’s lagrangian vanishes on shell






















