

[Physics Results from ATLAS]

P. Conde Muíño on behalf of the ATLAS Collaboration

ſſ

LHC schedule and ATLAS Data Taking statistics

	Center of mass energy	Period	<pp bx="" col=""></pp>	Accumulated luminosity	
Run 1	7, 8 TeV	2010-2011	20	35 fb-1	
Run 2	13 TeV	2015-2018	34	147 fb ⁻¹	
Run 3	13.6 TeV	2022-2025	48	84 fb⁻¹	
HL-LHC (Run 4 and beyond)	13.6-14 TeV	2029-2040	200	3000 fb ⁻¹	

ATLAS pp Run-3: 2023

Trigger	Inne	er Trac	ker	Calorimeters		Muon Spectrometer			Magnets	
L1+HLT	Pixel	SCT	TRT	LAr	Tile	MDT	RPC	TGC	Solenoid	Toroid
97.5-99.6	99.8	99.7	100	99.5	99.6	99.7	99.9	99.8	100	100

Good for physics: 94.6%-96.5% (27.2-27.8 fb⁻¹)

ATLAS Standard

Model Measurements in a nutshell

ATLAS Standard Model Measurements

in a nutshell

Recent top-quark properties measurements

First observation of quantum entanglement in $t\bar{t}$ pairs

- Measured using spin correlations
- Entanglement marker $D=-3<\cos\phi>$

- ϕ = angle between leptons in special rest frame

$$D = -0.547 \pm 0.002(\text{stat}) \pm 0.021(\text{syst})$$

Top-quark, W and Higgs mass measurements

W-boson, top-quark and Higgs Boson mass interrelated in the SM

$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8}\pi\alpha(1 + \Delta r)}{G_F M_Z^2}} \right)$$

Probe the coherence of the SM results

Precise measurements needed

Top-quark mass measurement

ATLAS and CMS mass combination using 7, 8 TeV analyses in different final states

Using Best Linear Unbiased Estimator method (BLUE)

 $m_t = 172.52 \pm 0.14(\text{stat}) \pm 0.30(\text{syst}) = 172.52 \pm 0.33 \text{ GeV}$

Best top quark mass measurement up-to-date

- Precision < 0.2%</p>
- improvement of 31% in the total uncertainty relative to the most precise input measurement

W-boson mass and Width

Combined measurement of the W boson mass and width

Using Run 1, 7 TeV data

- re-analysis with an extensive list of updates to reduce the uncertainties
 - Including PDF updates, improved $p_{T}^{W} \operatorname{modelling}$ and improved fit
- $m_W = 80360 \pm 5(\text{stat}) \pm 15(\text{syst}) = 80360 \pm 16 \text{ MeV}$
 - Even closer to Standard Model expectations
- $\Gamma_W = 2195.8 \pm 32.2$ (stat.) ± 34.1 (syst.) $= 2195.8 \pm 46.8$ MeV

- Most precise Γ_W measurement

2100

80320

80340

80 80400 m_w [MeV]

95% CL

80380

(80355, 2088

80360

Becoming12 years old

The Higgs Boson

Couplings, mass, width, invisible decays, Higgs potencial

The Standard Model is a very successful theory, but there are many questions that have not yet have an answer....

Is the Higgs boson potential as expected?

Why is there more matter than anti-matter? Are the Higgs coupling to SM particles as expected? Is there CP-violation in the Higgs sector?

What is Dark Matter? Is the Higgs coupling to Dark Matter? Are there new decay modes of the Higgs boson?

SM Higgs Lagrangian after symmetry breaking

$$\mathscr{L}_{SM} = D_{\mu}H^{\dagger}D_{\mu}H - (y_{ij}H\bar{\psi}_{i}\psi_{j} + h.c.) + \mu^{2}H^{\dagger}H - \frac{\lambda}{2}(H^{\dagger}H)^{2}$$

Fermions

Bosons

Higgs Boson Mass

Fundamental parameter in the theory

Measured in the $H\to\gamma\gamma$ and $H\to ZZ^*\to 4\ell$ decay channels

- Considerable effort to improve the $e/\gamma/\mu$ calibrations in Run 2
- e/γ calibration uncertainty reduced by a factor of 2–3
- μ momentum (resolution) precision down to 0.05% (0.1%)

Currently, most precise measurement:

 $m_H = 125.11 \pm 0.09(\text{stat.}) \pm 0.06(\text{syst.}) = 125.11 \pm 0.11 \text{ GeV}$

Uncertainty < per-mill level (0.09%)

arXiv:2403.15085

ATLAS Top-quark, W and Higgs Bosons mass compatibility

Electroweak fit without m_W and m_t masses (grey) compared to the ATLAS measurements of m_W , m_t and m_H

Higgs Boson Width

SM prediction: $\Gamma_H = 4.1 \text{ MeV}$

Indirect measurement through the on-shell and off-shell

 $H \rightarrow ZZ^* \rightarrow 4\ell$ production cross-section:

$$\frac{d\sigma_{pp \to H \to ZZ}}{dM_{4l}^2} \sim \frac{g_{Hgg}^2 g_{HZZ}^2}{(M_{4l}^2 - m_H^2)^2 + m_H^2 \Gamma_H^2} \sim \frac{\frac{g_{Hgg}^2 g_{HZZ}^2}{m_H^2 \Gamma_H^2}}{\frac{g_{Hgg}^2 g_{HZZ}^2}{(M_{4l}^2)^2}} \quad \text{On-shell}$$

Assumes that Higgs production follows SM prediction

New off-shell Higgs production cross-section measurement

- Signal/background interference requires very good MC modelling
- Observed (expected) significance: $3.3\sigma~(2.2\sigma)$

$$\Gamma_H = 4.5^{+3.3}_{-2.5} \text{ MeV}$$

Observed (expected) 95% CL limits:

 $0.5(0.1) < \Gamma_H < 10.5(10.9) \; MeV$

Higgs boson couplings combination

Direct measurement of $\sigma imes BR$

Good agreement with SM expectations (p-value 72%) Improved precision: Cross section: 7-12% Branching fractions:10-12%

Eur. Phys. J. C 84 (2024) 78

Recent cross section measurements

Total and differential cross-section measurements performed in different decay channels and for different variables

Overall agreement with expectations within uncertainties

Relative sign of the HWW and HZZ couplings

Vector boson fusion production of WH pairs disfavoured by the SM due to cancellation of two different contributions

Could be enhanced with opposite relative sign

ATLAS Search for VBF WH production with H
ightarrow bb

18

Higgs self coupling

- Determine the shape of the Higgs potential
- Di-Higgs production

$$\sigma^{SM}_{ggF}(pp \rightarrow HH) = 31.05 \stackrel{+1.9}{_{-7.1}} fb$$

 $\frac{1}{2}m_h^2h^2 + \lambda_3vh^3 + \frac{1}{4}\lambda_4h^4$

(Destructive interference in the SM)

 $\sigma_{VBF}^{SM}(pp \rightarrow HH) = 1.72 \pm 0.4 fb$

ATLAS-CONF-2024-006

Di-Higgs production

Updated results in some channels:

- $b\bar{b}\gamma\gamma$: obs (exp) 95% CL limit on μ_{HH} : $4\sigma~(5\sigma)$
- $b\bar{b}\tau^+\tau^-$: obs (exp) 95% CL limit on μ_{HH} : 5.9 σ (3.2 σ)

ATLAS di-Higgs search combination with Run 2 data:

• Using $b\bar{b}b\bar{b}, \, b\bar{b}\gamma\gamma, \, b\bar{b}\tau\tau$, multilepton and $b\bar{b}\ell\ell\ell + E_T^{miss}$

Observed 95% CL constraints

Best expected sensitivity in κ_{λ}

 $-1.2 < \kappa_{\lambda} < 7.2$ $0.57 < k_{2V} < 1.48$

EFT interpretations of the Higgs measurements

Effective Field Theory interpretation

Extend the SM Lagrangian with additional operators

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d=6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d=8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots,$$

 c_i = Wilson coefficients $\mathcal{O}^{(n)}$ = operator of dimension n Λ = new physics scale

• Calculate cross-sections: $\sigma_{\text{SMEFT}} = \sigma_{\text{SM}} + \sigma_{\text{int}} + \sigma_{\text{BSM}}$,

To reduce perturbative QCD uncertainties, use ratios:

$$\sigma_{\rm SMEFT}^{i} = \sigma_{\rm SM}^{i,((N)N)NLO} \times \left(1 + \frac{\sigma_{\rm int}^{i,(N)LO}}{\sigma_{\rm SM}^{i,(N)LO}} + \frac{\sigma_{\rm BSM}^{i,(N)LO}}{\sigma_{\rm SM}^{i,(N)LO}}\right)$$

ATLAS EFT interpretation:

- Measurements from 17 different papers from all channels used in the combination
- Using ~50 dimension-6 CP-even dominant coefficients

ATLAS EFT Higgs interpretation

Linearised model

Compatibility with the SM = 94.5% Most parameters still dominated by statistical uncertainties

 But systematics might go up to 50% in some cases

Searching for CP Violation in the Higgs sector

Barion asymmetry of the Universe: still a mystery Combined results demonstrated H to be mainly CP-even scalar

There is still room for CP violation in the Higgs couplings

Searching for CP-odd components in the Higgs couplings

- Using CP-sensitive observables
 - Angular variables
 - Optimal observable:

$$OO = \frac{2Re(\mathcal{M}_{SM}^* \mathcal{M}_{CP-odd})}{|\mathcal{M}_{SM}|^2}$$

$$\sigma \sim |\mathcal{M}_{SM} + \mathcal{M}_{CP-odd}|^2 = |\mathcal{M}_{SM}|^2 + |\mathcal{M}_{CP-odd}|^2 + 2Re(\mathcal{M}_{SM}^*\mathcal{M}_{CP-odd})^2 +$$

Searching for CP Violation in the Higgs sector

Couplings involving vector bosons

Typically parameterized with a mixing angle

ATL-PHYS-PUB-2023-025

ATLAS Preliminary

ATLAS SUSY Searches* - 95% CL Lower Limits

Searches for SUSY Particles

Nothing observed up to now...

	Model	Signature)£ dt [fb	1 Mass limit	Reference
clusive Searches	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$	0 e, µ 2-6 jets mono-iet 1-3 iets	E ^{miss} 140 E ^{miss} 140	(⁷ / ₄ [1×, 8× Degen.] 1.0 1.85 m(⁵ / ₄).≤400 GeV	2010.14293
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$	0 <i>e</i> , μ 2-6 jets	E_T^{miss} 140	ž 2.3 m(t^3)=0 GeV ž Eablidden 1.15-1.95 m(t^3)=0 GeV	2010.14293 2010.14293
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} W \tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} (\ell \ell) \tilde{\chi}_1^0$	$1 e, \mu$ 2-6 jets $ee, \mu\mu$ 2 jets	140 <i>E</i> ^{miss} _{<i>T</i>} 140	ž 2.2 m(t ²)<600 GeV ž 2.2 m(t ²)<700 GeV	2101.01629 2204.13072
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & \ 7-11 \ { m jets} \\ { m SS} \ e, \mu & \ 6 \ { m jets} \end{array}$	E _T ^{miss} 140 140	ž 1.97 m(ℓ ²) <600 GeV ž 1.15 m(ξ)→(ℓ)→(ℓ)→(ℓ)→(ℓ)→(ℓ)→(ℓ)→(ℓ)→(ℓ)→(ℓ)→(ℓ	2008.06032 2307.01094
5	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_{1}^{0}$	0-1 <i>e</i> , μ 3 <i>b</i> SS <i>e</i> , μ 6 jets	E _T ^{miss} 140 140	ž 2.45 m(t_1^0)<500 GeV ž 1.25 m(z)-m(x) 300 GeV	2211.08028 1909.08457
	$\tilde{b}_1 \tilde{b}_1$	0 e, µ 2 b	$E_T^{\rm miss}$ 140	δ1 1.255 m(k1) < 400 GeV δ1 0.68 10 GeV < Am(b ₁ X1) < 20 GeV	2101.12527 2101.12527
arks stion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\chi}^0_2 {\rightarrow} b h \tilde{\chi}^0_1$	$\begin{array}{ccc} 0 \ e, \mu & 6 \ b \\ 2 \ \tau & 2 \ b \end{array}$	$\begin{array}{cc} E_T^{ m miss} & 140 \\ E_T^{ m miss} & 140 \end{array}$	δ1 Forbidden 0.23-1.35 Δm(k ₂ ⁰ , k ₁ ⁰) = 130 GeV, m(k ₁ ⁰) = 100 GeV δ1 0.13-0.85 Δm(k ₂ ⁰ , k ₁ ⁰) = 130 GeV, m(k ₁ ⁰) = 0 GeV	1908.03122 2103.08189
nbs	$\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 $e, \mu \ge 1$ jet	E_T^{miss} 140	\tilde{t}_1 1.25 m(\tilde{t}_1^0)=1 GeV	2004.14060, 2012.03799
pro	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	1 e, µ 3 jets/1 b	E_T^{miss} 140	<i>ī</i> ₁ Forbidden 1.05 m(<i>i</i> ⁰ ₁)=500 GeV	2012.03799, ATLAS-CONF-2023-043
3 rd ge direct	$t_1 t_1, t_1 \rightarrow \tau_1 b v, \tau_1 \rightarrow \tau G$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 e,μ 2 c 0 e,μ mono-iet	E_T^{miss} 140 E_T^{miss} 36.1 E_T^{miss} 140	Γι Γοτρίασεη 1.4 m(r.) = 500 GeV č 0.65 m(t ⁰) = 0 GeV m(t ⁰) = 0 GeV μ 0.55 m(t ⁰) = 5 GeV GeV	2108.07665 1805.01649 2102.10874
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$	1-2 e, µ 1-4 b	E_T^{miss} 140	<i>ī</i> ₁ 0.067-1.18 m(<i>λ</i> ⁰ ₂)=500 GeV	2006.05880
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, µ 1 b	E_T^{miss} 140	\tilde{t}_2 Forbidden 0.86 $m(\tilde{x}_1^0)=360 \text{ GeV}, m(\tilde{t}_1)-m(\tilde{x}_1^0)=40 \text{ GeV}$	2006.05880
	${\tilde \chi}_1^\pm {\tilde \chi}_2^0$ via WZ	$\begin{array}{ll} \text{Multiple } \ell/\text{jets} \\ ee, \mu\mu & \geq 1 \text{ jet} \end{array}$	$\begin{array}{cc} E_T^{ m miss} & 140 \\ E_T^{ m miss} & 140 \end{array}$	$ \begin{array}{ccc} \chi_{1}^{*}/\chi_{2}^{0} & & & & & & & & & & & & & & & & & & &$	2106.01676, 2108.07586 1911.12606
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW	2 e, µ	E_T^{miss} 140	\tilde{X}_{1}^{\pm} 0.42 m(\tilde{X}_{1}^{0})=0, wino-bino	1908.08215
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	Multiple <i>l</i> /jets	E _T ^{miss} 140	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Forbidden 1.06 m($\tilde{\chi}_1^0$)=70 GeV, wino-bino	2004.10894, 2108.07586
5 ,	$\chi_1 \chi_1$ via $\ell_L / \tilde{\nu}$	2 e,µ	E_T^{miss} 140 E^{miss} 140	χ_1^- 1.0 $m(\ell,\bar{\nu})=0.5(m(\chi_1^-)+m(\chi_1^-))$	1908.08215
EV	$\tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	$2 e, \mu$ 0 jets $ee, \mu\mu \ge 1$ jet	E_T 140 E_T^{miss} 140 E_T^{miss} 140	ℓ 0.34 0.46 m(r,)=0 ℓ 0.7 m(ℓ) [*] m(ℓ) [*] =0 ℓ 0.26 m(ℓ) [*] m(ℓ) [*] =10 GeV	1908.08215 1911.12606
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	$\begin{array}{ccc} 0 & e, \mu & \geq 3 & b \\ 4 & e, \mu & & 0 & \text{jets} \end{array}$	E_T^{miss} 140 E_T^{miss} 140	$\frac{\tilde{H}}{\tilde{H}}$ 0.94 $\frac{BR(k_1^0 \to h \tilde{C}) = 1}{BR(k_1^0 \to Z \tilde{C}) = 1}$	To appear 2103.11684
		$0 e, \mu \ge 2$ large jets $2 e, \mu \ge 2$ iets	E_T^{miss} 140 E_T^{miss} 140	H 0.45-0.93 $BR(X_1^0 \rightarrow ZG)=1$ \tilde{H} 0.77 $BR(\tilde{X}_1^0 \rightarrow ZG)=Rg(\tilde{X}_1^0 \rightarrow hG)=0$	2108.07586 2204.13072
			57 110		
p s	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk 1 jet	E_T^{miss} 140	X [±] ₁ 0.66 Pure Wino X [±] ₁ 0.21 Pure higgsino	2201.02472 2201.02472
live cle:	Stable g R-hadron	pixel dE/dx	E_T^{miss} 140	ž 2.05	2205.06013
ng- arti	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq\chi_1^0$	pixel dE/dx	E_T^{miss} 140 E^{miss} 140	g [r(g) =10 ns] 2.2 m(x ₁ ^o)=100 GeV	2205.06013
р Б	$\iota\iota, \iota \rightarrow \iota G$	pixel dE/dx	E_T 140 E_T^{miss} 140	$\vec{\tau}$ 0.34 $\tau(\vec{\ell}) = 0.1$ Ins $\vec{\tau}$ 0.36 $\tau(\vec{\ell}) = 10$ ns	2011.07812 2011.07812 2205.06013
	V+V+V+1V0 V+ 76 666	3.0.11	140	²⁷ / ²⁰ (DD/2-) 1 DD/2-) 11 0.695 1.05 Due Μθα	2011 10542
	$\chi_1 \chi_1 / \chi_1 , \chi_1 \rightarrow Z \ell \rightarrow \ell \ell \ell$ $\tilde{\chi}^{\pm}_{+} \tilde{\chi}^{\mp}_{+} / \tilde{\chi}^0_{-} \rightarrow W W / Z \ell \ell \ell \ell \eta \gamma$	4 e.μ 0 iets	Emiss 140	$\tilde{\chi}_1^{+}/\tilde{\chi}_1^0$ [BH(ZT)=1, BH(ZE)=1] 0.025 1.05 Pore Wind $\tilde{\chi}_1^{\pm}/\tilde{\chi}_1^0$ [$d_{121} \pm 0, d_{122} \pm 0$] 0.95 1.55 m $(\tilde{\chi}_1^0)$ =200 GeV	2103.11684
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow ga\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow gag$	≥8 jets	140	\tilde{g} [m($\tilde{\chi}_{1}^{0}$)=50 GeV, 1250 GeV] 1.6 2.25 Large $\chi_{112}^{\prime\prime}$	To appear
>	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}^0_1, \tilde{\chi}^0_1 \rightarrow tbs$	Multiple	36.1	<i>τ</i> [<i>X</i> ₃₃₃ =2e-4, 1e-2] 0.55 1.05 m(<i>x</i> ₁ ⁰)=200 GeV, bino-like	ATLAS-CONF-2018-003
d H	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$	$\geq 4b$	140	Ĩ Forbidden 0.95 m(X1)=500 GeV	2010.01015
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$	2 jets + 2 b	36.7	i_1 [iqq, bs] 0.42 0.61 i 0.41.45 PP/i (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(1710.07171
	$i_1i_1, i_1 \rightarrow qi$	$1 \mu DV$	136	$\frac{t_1}{t_1} = \frac{0.4 + 1.45}{1.6} = \frac{0.4 + 1.45}{$	2003.11956
	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^{\pm} \rightarrow bbs$	1-2 $e, \mu \ge 6$ jets	140	X ⁰ ₁ 0.2-0.32 Pure higgsino	2106.09609
Only	a selection of the available ma	ss limits on new states	or ·	0 ⁻¹ Mass scale [TeV]	27
pnen simp	omena is snown. Many of the lified models, c.f. refs. for the a	nmus are based on Assumptions made.			21

Selected Summary Results from SUSY Searches

Limits from simplified models featuring the decay of the gluino to the lightest supersymmetric particle

Searches for top squark (stop) pair production

ATLAS Exotics Summar Plots

 $\int f dt - (3.2 - 139) \text{ fb}^{-1}$

ATLAS Preliminary $\sqrt{5} = 8$ 13 TeV

Search for Exotic Particles

Nothing either...

	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[ft	^{b-1}] Limit	j~ (Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell\gamma\alpha$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ e, \mu \\ 2 \ \gamma \\ \hline \\ 2 \ \gamma \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} 1-4j\\ -\\ 2j\\ \geq 2j\\ =3j\\ -\\ 2j/1J\\ \geq 1b, \geq 1J,\\ \geq 2b, \geq 3\end{array}$	Yes - - - - Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Мо Ms Min Min Min G _{KK} mass G _{KK} mass G _{KK} mass g _{KK} mass KK mass KK mass	7.7 TeV 8.6 TeV 8.9 TeV 8.9 TeV 8.2 TeV 9.55 TeV 2.3 TeV 2.0 TeV 3.8 TeV 1.8 TeV	$\begin{array}{l} n=2 \\ n=3 \; \text{HLZ NLO} \\ n=6 \\ m=6, M_D=3 \; \text{TeV, rot BH} \\ n=6, M_D=3 \; \text{TeV, rot BH} \\ k/\overline{M}_{PI}=0.1 \\ k/\overline{M}_{PI}=1.0 \\ k/\overline{M}_{PI}=1.0 \\ r/m=15\% \\ \text{Tier}\; (1,1), \mathcal{B}(A^{(1,1)} \rightarrow tt)=1 \end{array}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02280 2004.14636 1804.10823 1803.08678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{HYT } W' \to WZ \to \ell\nu qq \text{ mm} \\ \text{HYT } V' \to WV \to qqq \text{ mm} \\ \text{HYT } V' \to WH \text{ and } H \\ \text{HYT } V' \to WH \text{ and } H \\ \text{HYT } W' \to WH \text{ model } B \\ \text{LRSM } W_R \to tb \\ \text{LRSM } \psi_R \to \mu \mu_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ r \\ \text{odel B} 0 \ e, \mu \\ \text{B} \text{multi-channe} \\ 0 \ e, \mu \\ \text{multi-channe} \\ 2 \ \mu \end{array}$	$\begin{array}{c} - \\ 2 b \\ \geq 1 b, \geq 2 \\ - \\ 2 j / 1 J \\ 2 J \\ \geq 1 b, \geq 2 \\ e \\ 1 J \end{array}$	_ J Yes Yes Yes J J	139 36.1 36.1 139 36.1 139 36.1 139 36.1 139 36.1 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass V' mass War mass War mass	5.1 TeV 2.42 TeV 4.1 TeV 6.0 TeV 3.7 TeV 4.3 TeV 3.8 TeV 2.03 TeV 3.2 TeV 3.2 TeV 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1806.09299 2005.05138 1906.05609 1801.066992 2004.14636 1906.08589 1712.06518 CERN-EP-2020-073 1807.10473 1804.12679
CI	Cl qqqq Cl ℓℓqq Cl tttt		2 j 	– – Yes	37.0 139 36.1	Λ Λ Λ	2.57 TeV	$\begin{array}{c c} \textbf{21.8 TeV} & \eta_{LL}^- \\ \hline \textbf{35.8 TeV} & \eta_{LL}^- \\ C_{4t} = 4\pi \end{array}$	1703.09127 CERN-EP-2020-066 1811.02305
MQ	Axial-vector mediator (Dirac Colored scalar mediator (Dir $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac	DM) 0 e, μ rac DM) 0 e, μ 0 e, μ :DM) 0-1 e, μ	1 - 4 j 1 - 4 j $1 J, \le 1 j$ 1 b, 0-1 J	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{med} 1. m _{ked} 1 M. 700 GeV m _e 1	55 TeV .67 TeV 3.4 TeV	$\begin{array}{l} g_q{=}0.25, g_{\chi}{=}1.0, m(\chi) = 1 {\rm GeV} \\ g_{=}1.0, m(\chi) = 1 {\rm GeV} \\ m(\chi) < 150 {\rm GeV} \\ y = 0.4, \lambda = 0.2, m(\chi) = 10 {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
ГO	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass 1.4 LQ mass 1. LQ [*] mass 1.03 TeV LQ ³ mass 970 GeV	1 TeV 56 TeV	$\begin{split} \beta &= 1 \\ \beta &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^u \to b\tau) &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy	$\begin{array}{c} VLQ \ TT \rightarrow Ht/Zt/Wb + \lambda \\ VLQ \ BB \rightarrow Wt/Zb + \lambda \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + \lambda \\ VLQ \ Y \rightarrow Wb + \lambda \\ VLQ \ B \rightarrow Hb + \lambda \\ VLQ \ QQ \rightarrow WqWq \end{array}$	$ \begin{array}{c} \text{multi-channe} \\ \text{multi-channe} \\ \text{multi-channe} \\ X 2(SS)/\geq 3 e_{,j} \\ 1 e, \mu \\ 0 e, \mu, 2 \gamma \\ 1 e, \mu \end{array} $	$\begin{array}{l} \\ \\ \\ \\ \geq 1 \ b, \geq 1 \\ \geq 1 \ b, \geq 1 \\ \geq 1 \ b, \geq 1 \\ \\ \geq 4 \ j \end{array}$	Yes j Yes j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 B mass 1.34 Ts ₁₂ mass 1 Y mass 1 B mass 1.21 Q mass 690 GeV	TeV TeV 64 TeV 1.85 TeV 9V	$\begin{array}{l} & \text{SU(2) doublet} \\ & \text{SU(2) doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3}Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ & \kappa_B = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $p^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton v^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j –	- - - -	139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass c* mass y* mass	6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$ \begin{array}{r} 1 \ e, \mu \\ 2\mu \\ 2,3,4 \ e, \mu (S3 \\ 3 \ e, \mu, \tau \\ - \\ \sqrt{s} = 13 \ TeV \end{array} $	≥ 2 j 2 j - - - - -	Yes 3 TeV	79.8 36.1 36.1 20.3 36.1 34.4	N° mass 560 GeV Na mass 100 GeV H** mass 400 GeV H** mass 400 GeV multi-charged particle mass 1,22 Te monopole mass 1,22 Te	3.2 TeV eV 2.37 TeV	$\begin{split} m(W_R) &= 4.1 \text{ TeV}, g_L = g_R \\ DY \text{ production} \\ DY \text{ production}, \mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1 \\ DY \text{ production}, q = 5e \\ DY \text{ production}, g = 1g_D, \text{ spin } 1/2 \end{split}$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
	,	partial data	full d	ata		10 ⁻¹ 1	10	Mass scale [TeV]	29

*Only a selection of the available mass limits on new states or phenomena is shown.

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: May 2020

†Small-radius (large-radius) jets are denoted by the letter j (J).

Search for Dark Matter

There is compelling cosmological evidence for the existence of Dark Matter

- Yet, we don't know anything about it
- Searches at colliders are complementary to direct/indirect observations Simplified models
 - DM accumed to be a Dirac formi
 - DM assumed to be a Dirac fermion WIMP χ
 - New particle mediator coupling χ to the SM
 - Minimal set of parameters $\{M_{med}, m_{\chi}, g_{\chi}, g_{q}, g_{\ell}\}$

30

Dark matter searches

Few selected results

Higgs Portal WIMP 90% CL limits from $H \rightarrow invisible$ decays

Summary and conclusions

ATLAS is exploiting the Run 1, Run 2 and Run 3 pp collisions data with a comprehensive physics programme

- Standard Model measurements
- Searches for new physics

Measurements of the Higgs Boson are probing the Standard Model prediction and constraining new physics modelsDirect searches for new physics have not yet shown any evidence for new particlesHowever the HL-LHC period will provide a 10 fold increase in statistics

Increased precision and sensitivity to new physics

Thanks!

Acknowledgments:

ATLAS Search for low mass $\gamma\gamma$ resonances

