### ALPs coupling to fermions: CP-even and CP-odd

Planck 2024

Lisbon, 3-7 2024

Belén Gavela Univ. Autónoma de Madrid and IFT







H2020

AS

nmetrv

Essential Asymmetries of Nature

## Why CP-violation ?

# Why CP-violation ?

Why 3 generations of quarks and leptons,

with mixing and CP-violation....

for ``nothing"?

# Why CP-violation ?

# CP-violation is a fantastic window to BSM



#### Observable

D. Aloni, A. Dery, M.B. Gavela, Y. Nir



#### Observable

D. Aloni, A. Dery, M.B. Gavela, Y. Nir

**European Strategy for Particle Physics 2020** 

### **Electric dipole moments** $d\vec{\sigma}\cdot\vec{E}$



Fig. 5.3: Summary of current EDM limits (empty circles) and short/mid-term planned sensitivities (full circles) for light quarks, strange and charm quarks, electron, muon and tau [257].

### In the SM the quark EDM is 3-loop suppressed



SM quark EDMs  $d_n \sim 10^{-34}$  e·cm Experiment:  $d_n < 3.6 \times 10^{-26}$  e·cm at 95% CL

# In the SM the neutron EDM is very suppressed





``penguin dominated''

(80's: Gavela at al., Khriplovich+Zhitnitsky)

SM predicts  $d_n \sim 10^{-30} - 10^{-32} \text{ e} \cdot \text{cm}$ Experiment:  $d_n < 3.6 \times 10^{-26} \text{ e} \cdot \text{cm}$  at 95% CL



# Why ALPs ?



Rocio del Rey

The nature of DM is unknown

It may be a (SM singlet) scalar S the "Higgs portal"

### $\delta \mathcal{L} = \Phi^+ \Phi S^2$

### S has polynomial couplings

Silveira+Zee; Veltman+Yndurain; Patt+Wilczek...



Rocio del Rey



Rocio del Rey

The nature of DM is unknown

It may be a (SM singlet) scalar S the "Higgs portal"

### $\delta \mathcal{L} = \Phi^+ \Phi S^2$

### S has polynomial couplings

Silveira+Zee; Veltman+Yndurain; Patt+Wilczek...

The nature of DM is unknown

The strong CP problem

Why is the QCD θ parameter so small?

 $\mathcal{L}_{QCD} \supset \Theta G_{\mu\nu} G^{\mu\nu}$ 

It may be a (SM singlet) scalar S the "Higgs portal"

### $\delta \mathcal{L} = \Phi^+ \Phi S^2$

### S has polynomial couplings

Silveira+Zee; Veltman+Yndurain; Patt+Wilczek...

The nature of DM is unknown

It may be a (SM singlet) scalar S the "Higgs portal"

### $\delta \mathcal{L} = \Phi^+ \Phi S^2$

### S has polynomial couplings

Silveira+Zee; Veltman+Yndurain; Patt+Wilczek...

### The strong CP problem

Why is the QCD  $\theta$  parameter so small?

Ĺ<sub>QCD</sub>⊃θG<sub>µv</sub>Ĝµv

A dynamical  $U(1)_A$  solution

The nature of DM is unknown

It may be a (SM singlet) scalar S the "Higgs portal"

 $\delta \mathcal{L} = \Phi^+ \Phi S^2$ 

S has polynomial couplings

Silveira+Zee; Veltman+Yndurain; Patt+Wilczek...

### The strong CP problem

Why is the QCD  $\theta$  parameter so small?

£<sub>QCD</sub>⊃<mark>a</mark>G<sub>µv</sub>Ĝµv

A dynamical  $U(1)_A$  solution

 $\rightarrow$  the axion a

The nature of DM is unknown

It may be a (SM singlet) scalar S the "Higgs portal"

### $\delta \mathcal{L} = \Phi^+ \Phi \mathbf{S^2}$

### S has polynomial couplings

Silveira+Zee; Veltman+Yndurain; Patt+Wilczek...

### The strong CP problem

Why is the QCD  $\theta$  parameter so small?

£<sub>QCD</sub>⊃<mark>a</mark>G<sub>µv</sub>Ĝµv

A dynamical  $U(1)_A$  solution

 $\rightarrow$  the axion a

It is a pGB: ~ derivative couplings

 $\sim \partial_{\mu} a$ 

Also excellent DM candidate

Peccei+Quinn; Wilczek...

### (Pseudo)Goldstone Bosons appear in many BSM theories

\* e.g. Extra-dim Kaluza-Klein: 5d gauge field compactified to 4d The Wilson line around the circle is a GB, which behaves as an axion in 4d



- \* Majorons, for dynamical neutrino masses
- \* From string models
- \* The Higgs itself may be a pGB ! ("composite Higgs" models)
- \* Axions *(*athat solve the strong CP problem, and ALPs (axion-like particles)

Because they are (pseudo)Goldstone bosons,

### Axions and ALPs a

### are the tell-tale of hidden

### symmetries

### awaiting discovery

### Think of the pions...

### and of the massive W and Z...

ALPs (axion-like-particles)

#### with derivative couplings to SM particles



### with derivative couplings to SM particles



### with derivative couplings to SM particles

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{\partial_{\mu}a}{f_a} \times SM^{\mu} - \frac{1}{2}m_a^2a^2 + C_{i}a X_{\mu\nu}\widetilde{X}^{\mu\nu} + .$$
  
general effective couplings  $X^{\mu\nu} = F^{\mu\nu}, G^{\mu\nu}, Z^{\mu\nu}, W^{\mu\nu}...$ 

### with derivative couplings to SM particles

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{\partial_{\mu}a}{f_a} \times SM^{\mu} - \frac{1}{2}m_a^2a^2 + C_{i}a X_{\mu\nu}\widetilde{X}^{\mu\nu} + .$$
  
general effective couplings  $X^{\mu\nu} = F^{\mu\nu}, G^{\mu\nu}, Z^{\mu\nu}, W^{\mu\nu}...$ 

$$\left\{ \mathbf{m}_{a}, \frac{\mathbf{C}_{i}}{\mathbf{f}_{a}} \right\}$$

**SM EFT** Complete basis (bosons+fermions):

$$\begin{aligned} \mathscr{L}_{\text{eff}} &= \mathscr{L}_{\text{SM}} + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) + \sum_{i}^{\text{total}} c_{i} \mathbf{O}_{i}^{d=5} - \frac{1}{2} m_{a}^{2} a^{2} \\ \mathbf{O}_{\tilde{B}} &= -B_{\mu\nu} \tilde{B}^{\mu\nu} \frac{a}{f_{a}} \qquad \mathbf{O}_{\tilde{G}} &= -G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} \frac{a}{f_{a}} \\ \mathbf{O}_{\tilde{W}} &= -W_{\mu\nu}^{a} \tilde{W}^{a\mu\nu} \frac{a}{f_{a}} \qquad \frac{\partial_{\mu} a}{f_{a}} \sum_{\substack{\psi = Q_{L}, Q_{R}, \\ L_{L}, L_{R}}} \bar{\psi} \gamma_{\mu} X_{\psi} \psi \end{aligned}$$

where  $X_{\psi}$  is a general 3x3 matrix in flavour space

**SM EFT** Complete basis (bosons+fermions):

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) + \sum_{i}^{\text{total}} c_{i} \mathbf{O}_{i}^{d=5} - \frac{1}{2} m_{a}^{2} a^{2}$$
$$\mathbf{O}_{\tilde{B}} = -B_{\mu\nu} \tilde{B}^{\mu\nu} \frac{a}{f_{a}} \qquad \mathbf{O}_{\tilde{G}} = -G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} \frac{a}{f_{a}}$$
$$\mathbf{O}_{\tilde{W}} = -W_{\mu\nu}^{a} \tilde{W}^{a\mu\nu} \frac{a}{f_{a}} \qquad \frac{\partial_{\mu} a}{f_{a}} \sum_{\substack{\psi = Q_{L}, Q_{R}, \\ L_{L}, L_{R}}} \bar{\psi} \gamma_{\mu} X_{\psi} \psi$$

where  $X_{\psi}$  is a general 3x3 matrix in flavour space

$$\left\{ \mathbf{m}_{a}, \frac{\mathbf{C}_{i}}{\mathbf{f}_{a}} \right\}$$

SM EFT Complete basis (bosons+fermions):

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM}} + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) + \sum_{i}^{\text{total}} c_{i} \mathbf{O}_{i}^{d=5} - \frac{1}{2} m_{a}^{2} a^{2}$$

**Difference between and ALP and a true axion:** 

an ALP does not intend to solve the strong CP problem

otherwise, the phenomenology is alike (even for DM)

$$\left\{ \mathbf{m}_{a}, \frac{\mathbf{C}_{i}}{\mathbf{f}_{a}} \right\}$$

SM EFT Complete basis (bosons+fermions):

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM}} + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) + \sum_{i}^{\text{total}} c_{i} \mathbf{O}_{i}^{d=5} - \frac{1}{2} m_{a}^{2} a^{2}$$

### For an ALP:

$$\left[ \mathbf{m}_{a}, \mathbf{f}_{a} \right]$$

are independent parameters

 $a \cdots \tilde{G}^{G} a G_{\mu\nu} \tilde{G}^{\mu\nu}$ 

 $a = S_{\mu\nu} \tilde{F}^{\mu\nu}$ ,  $a F^{\mu\nu} \tilde{F}^{\mu\nu}$ ,  $a F^{\mu\nu} \tilde{Z}_{\mu\nu}$ ,  $a Z^{\mu\nu} \tilde{Z}_{\mu\nu}$ ,  $a W^{\mu\nu} \tilde{W}_{\mu\nu}$ 

 $a \cdots \sqrt{\frac{1}{\psi}} \frac{\partial_{\mu} a}{\partial_{\mu} \psi} \overline{\psi} \gamma_{\mu} \psi$ 



 $a \cdots \tilde{\zeta}^{\nu} \tilde{r}^{\nu} a F_{\mu\nu} \tilde{F}^{\mu\nu}, a F^{\mu\nu} \tilde{Z}_{\mu\nu}, a Z^{\mu\nu} \tilde{Z}_{\mu\nu}, a W^{\mu\nu} \tilde{W}_{\mu\nu}$ 

 $\partial_{\mu}a\, ar{\psi}\gamma_{\mu}\psi$ ψ

neutron, proton, top, electron, muon...



 $a F_{\mu\nu} \tilde{F}^{\mu\nu}$ ,  $a F^{\mu\nu} \tilde{Z}_{\mu\nu}$ ,  $a Z^{\mu\nu} \tilde{Z}_{\mu\nu}$ ,  $a W^{\mu\nu} \tilde{W}_{\mu\nu}$ **a** . .

ψ

neutron, proton, top, electron, muon...

neutrinos ? Bonilla, B.G, Machado [arXiv:2309.15910] **a-neutrino couplings** 

### Neutrinos are excellent messengers onto the dark sectors of the universe

### What about *a*-neutrino couplings ?

Bonilla, Gavela, Machado [arXiv:2309.15910] Phys.Rev.D 109 (2024)












$$L_L \equiv \left( \begin{array}{c} e_L \\ \nu_L \end{array} \right) \sum \text{ connected by gauge invariance}$$

$$\mathscr{L}_{ALP} \supset \frac{\partial_{\mu}a}{f_a} \overline{L}_L \gamma^{\mu} c_L L_L + \frac{\partial_{\mu}a}{f_a} \overline{e}_R \gamma^{\mu} c_E e_R$$

#### **CLASSICAL EOM**

$$\frac{\partial_{\mu}a}{f_a}\bar{e}_R\gamma^{\mu}c_E e_R = -\left(i\frac{a}{f_a}\bar{e}_L\mathbf{M}_E c_E e_R + \text{h.c.}\right)$$

$$\frac{\partial_{\mu}a}{f_a}\bar{e}_L\gamma^{\mu}c_Le_L = \left(i\frac{a}{f_a}\bar{e}_L\mathbf{M}_Ec_Le_R + \mathrm{h.c.}\right)$$

$$\frac{\partial_{\mu}a}{f_a}\bar{\nu}_L\gamma^{\mu}c_L\nu_L = \left(i\frac{a}{f_a}\bar{\nu}_L\mathbf{M}_{\nu}c_L\nu_R + \text{h.c.}\right)$$

• -

. .

Mass-suppressed

M. Chala *et al*, Eur. Phys. J. C 81 (2021), no. 2 181 M. Bauer *et al*, JHEP 04 (2021) 063 J. Bonilla *et al*, JHEP 11 (2021) 168

$$\begin{aligned} \mathcal{L}_{L} = \begin{pmatrix} e_{L} \\ \nu_{L} \end{pmatrix} \qquad \text{connected by gauge invariance} \\ \\ \hline \mathcal{L}_{ALP} \supset \frac{\partial_{\mu}a}{f_{a}} \overline{L}_{L} \gamma^{\mu} c_{L} L_{L} + \frac{\partial_{\mu}a}{f_{a}} \overline{e}_{R} \gamma^{\mu} c_{E} e_{R} \\ \hline \mathcal{L}_{ALP} \supset \frac{\partial_{\mu}a}{f_{a}} \overline{L}_{L} \gamma^{\mu} c_{L} L_{L} + \frac{\partial_{\mu}a}{f_{a}} \overline{e}_{R} \gamma^{\mu} c_{E} e_{R} \\ \hline \mathbf{CLASSICAL EOM} \qquad \mathbf{ONE-LOOP EFFECT} \\ \frac{\partial_{\mu}a}{f_{a}} \overline{e}_{R} \gamma^{\mu} c_{E} e_{R} = -\left(i\frac{a}{f_{a}} \overline{e}_{L} M_{E} c_{E} e_{R} + h.c.\right) + \operatorname{Tr} [c_{E}] \frac{a}{f_{a}} \frac{g^{\prime 2}}{f_{a} 16\pi^{2}} B_{\mu\nu} \overline{B}^{\mu\nu} \\ \frac{\partial_{\mu}a}{f_{a}} \overline{e}_{L} \gamma^{\mu} c_{L} e_{L} = \left(i\frac{a}{f_{a}} \overline{e}_{L} M_{E} c_{E} e_{R} + h.c.\right) - \operatorname{Tr} [c_{L}] \frac{a}{f_{a}} \left[\frac{g^{\prime 2}}{64\pi^{2}} B_{\mu\nu} \overline{B}^{\mu\nu} + \frac{g^{2}}{64\pi^{2}} W_{\mu\nu} \overline{W}^{\mu\nu}\right] \\ \frac{\partial_{\mu}a}{f_{a}} \overline{v}_{L} \gamma^{\mu} c_{L} \nu_{L} = \left(i\frac{a}{f_{a}} \overline{e}_{L} M_{\nu} c_{L} \nu_{R} + h.c.\right) - \operatorname{Tr} [c_{L}] \frac{a}{f_{a}} \left[\frac{g^{\prime 2}}{64\pi^{2}} B_{\mu\nu} \overline{B}^{\mu\nu} + \frac{g^{2}}{64\pi^{2}} W_{\mu\nu} \overline{W}^{\mu\nu}\right] \\ \frac{\partial_{\mu}a}{f_{a}} \overline{v}_{L} \gamma^{\mu} c_{L} \nu_{L} = \left(i\frac{a}{f_{a}} \overline{v}_{L} M_{\nu} c_{L} \nu_{R} + h.c.\right) - \operatorname{Tr} [c_{L}] \frac{a}{f_{a}} \left[\frac{g^{\prime 2}}{64\pi^{2}} B_{\mu\nu} \overline{B}^{\mu\nu} + \frac{g^{2}}{64\pi^{2}} W_{\mu\nu} \overline{W}^{\mu\nu}\right] \\ \frac{\partial_{\mu}a}{f_{a}} \overline{v}_{L} \gamma^{\mu} c_{L} \nu_{L} = \left(i\frac{a}{f_{a}} \overline{v}_{L} M_{\nu} c_{L} \nu_{R} + h.c.\right) - \operatorname{Tr} [c_{L}] \frac{a}{f_{a}} \left[\frac{g^{\prime 2}}{64\pi^{2}} B_{\mu\nu} \overline{B}^{\mu\nu} + \frac{g^{2}}{64\pi^{2}} W_{\mu\nu} \overline{W}^{\mu\nu}\right] \\ \text{Mass-suppressed} \qquad \text{Mass-independent} \\ \frac{\partial_{\mu}a}{\partial_{\mu}a} \overline{v}_{L} \mathcal{H}^{\mu} p \, \mathcal{H}^{\mu$$

 $Tr(\mathbf{c}_{vv}/f_a)$  vs.  $Tr(\mathbf{c}_{ee}/f_a)$ 

#### **Bounds on ALP-neutrino coupling**



# Lots of space to explore by LHC and future colliders

ALPs (axion-like-particles)

# **CP-violation**

 $m_a > 1 \text{ GeV}$ 



 $a \dots \tilde{Z}^{\nu\nu}_{\nu\nu} a F^{\mu\nu} \tilde{F}^{\mu\nu}, a F^{\mu\nu} \tilde{Z}_{\mu\nu}, a Z^{\mu\nu} \tilde{Z}_{\mu\nu}, a W^{\mu\nu} \tilde{W}_{\mu\nu}$ 

$$\mathcal{L}_a \supset \frac{\partial_\mu a}{f_a} \left( \bar{Q}_L \gamma^\mu \mathbf{C}_Q Q_L + \bar{u}_R \gamma^\mu \mathbf{C}_{u_R} u_R + \bar{d}_R \gamma^\mu \mathbf{C}_{d_R} d_R \right)$$

**CP-violation in flavor-nondiagonal entries** 

It will source CP-violation observables, e.g. EDMs... at one loop!

$$\mathcal{L}_{a} \supset \frac{\partial_{\mu}a}{f_{a}} \left( \bar{Q}_{L} \gamma^{\mu} \boldsymbol{C}_{\boldsymbol{Q}} Q_{L} + \bar{u}_{R} \gamma^{\mu} \boldsymbol{C}_{\boldsymbol{u}_{R}} u_{R} + \bar{d}_{R} \gamma^{\mu} \boldsymbol{C}_{\boldsymbol{d}_{R}} d_{R} \right)$$

**CP-violation in flavor-nondiagonal entries** 

It will source CP-violation observables, e.g. EDMs... at one loop!



[Di Luzio et al., 2010.13760]

$$\mathcal{L}_{a} \supset \frac{\partial_{\mu}a}{f_{a}} \left( \bar{Q}_{L} \gamma^{\mu} \boldsymbol{C}_{\boldsymbol{Q}} Q_{L} + \bar{u}_{R} \gamma^{\mu} \boldsymbol{C}_{\boldsymbol{u}_{R}} u_{R} + \bar{d}_{R} \gamma^{\mu} \boldsymbol{C}_{\boldsymbol{d}_{R}} d_{R} \right)$$

**CP-violation in flavor-nondiagonal entries** 

It will source CP-violation observables, e.g. EDMs... at one loop!



[Di Luzio et al., 2010.13760]

$$\mathcal{L}_a \supset \frac{1}{2} \partial_\mu a \partial^\mu a - \frac{1}{2} m_a^2 a^2$$

 $+ \left( \bar{u}_L \boldsymbol{M}_u u_R + \bar{d}_L \boldsymbol{M}_d d_R + \text{h.c.} \right) + \boldsymbol{\theta} \, \frac{\alpha_s}{8\pi} G_{\mu\nu} \widetilde{G}^{\mu\nu}$ 

 $+\frac{\partial_{\mu}a}{f_{\alpha}}\left(\bar{Q}_{L}\gamma^{\mu}\boldsymbol{C}_{\boldsymbol{Q}}Q_{L}+\bar{u}_{R}\gamma^{\mu}\boldsymbol{C}_{\boldsymbol{u}_{R}}u_{R}+\bar{d}_{R}\gamma^{\mu}\boldsymbol{C}_{\boldsymbol{d}_{R}}d_{R}\right)$ 



 $\mathcal{L}_a \supset \frac{1}{2} \partial_\mu a \partial^\mu a - \frac{1}{2} m_a^2 a^2$ 

 $+ \left( \bar{u}_L \boldsymbol{M}_u u_R + \bar{d}_L \boldsymbol{M}_d d_R + \text{h.c.} \right) + \boldsymbol{\theta} \, \frac{\alpha_s}{8\pi} G_{\mu\nu} \widetilde{G}^{\mu\nu}$ 



Related by the  $U_A(1)$  anomaly

physical  $\theta = \theta + \operatorname{Arg} \det(M_u M_d)$ 

nEDM data imply  $\theta < \sim 10^{-10}$ 

$$\mathcal{L}_a \supset \frac{1}{2} \partial_\mu a \partial^\mu a - \frac{1}{2} m_a^2 a^2$$

 $+ \left( \bar{u}_L \boldsymbol{M}_u u_R + \bar{d}_L \boldsymbol{M}_d d_R + \text{h.c.} \right) + \boldsymbol{\theta} \, \frac{\alpha_s}{8\pi} G_{\mu\nu} \widetilde{G}^{\mu\nu}$ 

 $+\frac{\partial_{\mu}a}{f_{\alpha}}\left(\bar{Q}_{L}\gamma^{\mu}\boldsymbol{C}_{\boldsymbol{Q}}Q_{L}+\bar{u}_{R}\gamma^{\mu}\boldsymbol{C}_{\boldsymbol{u}_{R}}u_{R}+\bar{d}_{R}\gamma^{\mu}\boldsymbol{C}_{\boldsymbol{d}_{R}}d_{R}\right)$ 

$$\mathcal{L}_a \supset \frac{1}{2} \partial_\mu a \partial^\mu a - \frac{1}{2} m_a^2 a^2$$

 $+ \left( \bar{u}_L \boldsymbol{M}_u u_R + \bar{d}_L \boldsymbol{M}_d d_R + \text{h.c.} \right) + \boldsymbol{\theta} \, \frac{\alpha_s}{8\pi} G_{\mu\nu} \widetilde{G}^{\mu\nu}$ 

$$+ \frac{\partial_{\mu}a}{f_a} \left( \bar{Q}_L \gamma^{\mu} \boldsymbol{C}_{\boldsymbol{Q}} Q_L + \bar{u}_R \gamma^{\mu} \boldsymbol{C}_{\boldsymbol{u}_R} u_R + \bar{d}_R \gamma^{\mu} \boldsymbol{C}_{\boldsymbol{d}_R} d_R \right)$$

ALPs contribute at one-loop to the quark mass terms, i.e. ALPs contribute to  $\overline{\theta}$ 

physical 
$$\theta = \theta + \operatorname{Arg} \det(M_u M_d)$$

# **ALP contribution to** $\mathbf{\bar{\theta}}$





\* Factor mt for chirality flip

\* Factor  $p_{\mu^2}$  from vertices







V. Enguita, M.B. Gavela, B. Grinstein, P. Quilez, arXiv: 2403.13133





Bounds many orders of magnitude stronger

$$X_q^{ij} = \operatorname{Im}(C_L^{ij}C_{q_R}^{*ij})/f_a^2 \left(\operatorname{GeV}^{-2}\right)$$



Bounds many orders of magnitude stronger



$$X_q^{ij} = \operatorname{Im}(C_L^{ij}C_{q_R}^{*ij})/f_a^2 \left(\operatorname{GeV}^{-2}\right)$$



|              | Combination                                                                       | $\overline{	heta}$ -bounds (GeV <sup>-2</sup> ) | $\begin{array}{c} {\rm qEDM \ \& \ cEDM} \\ {\rm (GeV^{-2})} \end{array}$ |
|--------------|-----------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------|
| $X_u^{13}$   | $\left \mathrm{Im}[oldsymbol{C}_Q^{13}oldsymbol{C}_{u_R}^{*13}]/f_a^2 ight $      | $1.8 \times 10^{-17}$                           | $3.7 \times 10^{-12}$                                                     |
| $X_{u}^{23}$ | $\left \mathrm{Im}[oldsymbol{C}_Q^{23}oldsymbol{C}_{u_R}^{*23}]/f_a^2 ight $      | $1.1 \times 10^{-14}$                           | $8.3 \times 10^{-8}$                                                      |
| $X_d^{13}$   | $\left \mathrm{Im}[\boldsymbol{C}_Q^{13}\boldsymbol{C}_{d_R}^{*13}]/f_a^2\right $ | $1.1\times10^{-12}$                             | $1.9 \times 10^{-9}$                                                      |
| $X_u^{12}$   | $\left \mathrm{Im}[oldsymbol{C}_Q^{12}oldsymbol{C}_{u_R}^{*12}]/f_a^2 ight $      | $2.7\times10^{-12}$                             | $2.3 \times 10^{-9}$                                                      |
| $X_d^{23}$   | $\left \mathrm{Im}[oldsymbol{C}_Q^{23}oldsymbol{C}_{d_R}^{*23}]/f_a^2 ight $      | $2.3\times10^{-11}$                             | $8.7 \times 10^{-9}$                                                      |
| $X_d^{12}$   | $\left \mathrm{Im}[\boldsymbol{C}_Q^{12}\boldsymbol{C}_{d_R}^{*12}]/f_a^2\right $ | $8.6\times10^{-11}$                             | $1.2 \times 10^{-5}$                                                      |
|              |                                                                                   |                                                 |                                                                           |

m<sub>a</sub>= 5 GeV

$$oldsymbol{X_q^{ij}} = \mathrm{Im}(oldsymbol{C_L^{ij}}oldsymbol{C_{q_R}^{*ij}})/f_a^2 \left(\mathrm{GeV}^{-2}
ight)$$



#### As a function of ma

$$\begin{aligned} \mathbf{X}_{u}^{1} & \operatorname{Im}[\mathbf{C}_{Q}^{13}\mathbf{C}_{u_{R}}^{*13}]/f_{a}^{2} < \left(\frac{m_{t}^{2}}{m_{a}^{2}+m_{t}^{2}}\right) \ 2 \times 10^{-17} \\ \mathbf{X}_{u}^{2} & \operatorname{Im}[\mathbf{C}_{Q}^{23}\mathbf{C}_{u_{R}}^{*23}]/f_{a}^{2} < \left(\frac{m_{t}^{2}}{m_{a}^{2}+m_{t}^{2}}\right) \ 1 \times 10^{-14} \\ \mathbf{X}_{d}^{1} & \operatorname{Im}[\mathbf{C}_{Q}^{13}\mathbf{C}_{d_{R}}^{*13}]/f_{a}^{2} < \left(\frac{m_{b}^{2}}{m_{a}^{2}+m_{b}^{2}}\right) \ 3 \times 10^{-12} \\ \mathbf{X}_{u}^{1} & \operatorname{Im}[\mathbf{C}_{Q}^{12}\mathbf{C}_{u_{R}}^{*12}]/f_{a}^{2} < \left(\frac{m_{c}^{2}}{m_{a}^{2}+m_{c}^{2}}\right) \ 5 \times 10^{-11} \\ \mathbf{X}_{d}^{2} & \operatorname{Im}[\mathbf{C}_{Q}^{23}\mathbf{C}_{d_{R}}^{*23}]/f_{a}^{2} < \left(\frac{m_{b}^{2}}{m_{a}^{2}+m_{c}^{2}}\right) \ 6 \times 10^{-11} \\ \mathbf{X}_{d}^{1} & \operatorname{Im}[\mathbf{C}_{Q}^{12}\mathbf{C}_{d_{R}}^{*12}]/f_{a}^{2} < \left(\frac{m_{b}^{2}}{m_{a}^{2}+m_{b}^{2}}\right) \ 3 \times 10^{-7} \end{aligned}$$

Bounds on  $\text{Im}[C_Q^{ij}C_{q_R}^{*ij}]/f_a^2$  in  $\text{GeV}^{-2}$ obtained from the  $\bar{\theta}$  correction.

$$\mathcal{L}_{a} \supset \frac{\partial_{\mu}a}{f_{a}} \left( \bar{Q}_{L} \gamma^{\mu} \boldsymbol{C}_{Q} Q_{L} + \bar{u}_{R} \gamma^{\mu} \boldsymbol{C}_{u_{R}} u_{R} + \bar{d}_{R} \gamma^{\mu} \boldsymbol{C}_{d_{R}} d_{R} \right)$$
Chiral rot.:
$$\begin{cases}
u_{L} \longrightarrow e^{i\frac{a}{f_{a}}\boldsymbol{C}_{Q}} u_{L}, & d_{L} \longrightarrow e^{i\frac{a}{f_{a}}\boldsymbol{C}_{Q}} d_{L}, \\
u_{R} \longrightarrow e^{i\frac{a}{f_{a}}\boldsymbol{C}_{u_{R}}} u_{R}, & d_{R} \longrightarrow e^{i\frac{a}{f_{a}}\boldsymbol{C}_{d_{R}}} d_{R}
\end{cases}$$

$$\mathcal{L}_{a} \supset \frac{\partial_{\mu}a}{f_{a}} \left( \bar{Q}_{L} \gamma^{\mu} \boldsymbol{C}_{\boldsymbol{Q}} Q_{L} + \bar{u}_{R} \gamma^{\mu} \boldsymbol{C}_{u_{R}} u_{R} + \bar{d}_{R} \gamma^{\mu} \boldsymbol{C}_{d_{R}} d_{R} \right)$$
Chiral rot.:
$$\begin{cases} u_{L} \longrightarrow e^{i\frac{a}{f_{a}}} \boldsymbol{C}_{\boldsymbol{Q}} u_{L}, & d_{L} \longrightarrow e^{i\frac{a}{f_{a}}} \boldsymbol{C}_{\boldsymbol{Q}} d_{L}, \\ u_{R} \longrightarrow e^{i\frac{a}{f_{a}}} \boldsymbol{C}_{u_{R}} u_{R}, & d_{R} \longrightarrow e^{i\frac{a}{f_{a}}} \boldsymbol{C}_{d_{R}} d_{R} \end{cases}$$

$$\sim \mathcal{L} \supset \bar{u}_{L} v \left[ i\frac{a}{f_{a}} \boldsymbol{K}_{u} + \frac{a^{2}}{f_{a}^{2}} \boldsymbol{F}_{u} \right] u_{R} + \bar{d}_{L} v \left[ i\frac{a}{f_{a}} \boldsymbol{K}_{d} + \frac{a^{2}}{f_{a}^{2}} \boldsymbol{F}_{d} \right] d_{R} + \text{h.c.} + \dots$$

$$\begin{split} \mathcal{L}_{a} \supset \frac{\partial_{\mu}a}{f_{a}} \big( \bar{Q}_{L} \gamma^{\mu} \boldsymbol{C}_{Q} Q_{L} + \bar{u}_{R} \gamma^{\mu} \boldsymbol{C}_{u_{R}} u_{R} + \bar{d}_{R} \gamma^{\mu} \boldsymbol{C}_{d_{R}} d_{R} \big] \\ \text{Chiral rot.:} & \begin{cases} u_{L} \longrightarrow e^{i\frac{a}{f_{a}} \boldsymbol{C}_{Q}} u_{L}, & d_{L} \longrightarrow e^{i\frac{a}{f_{a}} \boldsymbol{C}_{Q}} d_{L}, \\ u_{R} \longrightarrow e^{i\frac{a}{f_{a}} \boldsymbol{C}_{u_{R}}} u_{R}, & d_{R} \longrightarrow e^{i\frac{a}{f_{a}} \boldsymbol{C}_{d_{R}}} d_{R} \end{cases} \\ \text{Chiral rot.:} & \begin{cases} u_{L} \longrightarrow e^{i\frac{a}{f_{a}} \boldsymbol{C}_{Q}} u_{L}, & d_{L} \longrightarrow e^{i\frac{a}{f_{a}} \boldsymbol{C}_{Q}} d_{L}, \\ u_{R} \longrightarrow e^{i\frac{a}{f_{a}} \boldsymbol{C}_{u_{R}}} u_{R}, & d_{R} \longrightarrow e^{i\frac{a}{f_{a}} \boldsymbol{C}_{d_{R}}} d_{R} \end{cases} \\ \text{Chiral rot.:} & \\ \boldsymbol{L} \supset \bar{u}_{L} v \left[ i\frac{a}{f_{a}} \boldsymbol{K}_{u} + \frac{a^{2}}{f_{a}^{2}} \boldsymbol{F}_{u} \right] u_{R} \\ & + \bar{d}_{L} v \left[ i\frac{a}{f_{a}} \boldsymbol{K}_{d} + \frac{a^{2}}{f_{a}^{2}} \boldsymbol{F}_{d} \right] d_{R} + \text{h.c.} + \dots \end{aligned} \\ \text{where} & \begin{bmatrix} v \, \boldsymbol{K}_{q} \equiv \boldsymbol{C}_{Q} \boldsymbol{M}_{q} - \boldsymbol{M}_{q} \boldsymbol{C}_{q_{R}}, \\ 2 v \, \boldsymbol{F}_{q} \equiv 2 \boldsymbol{C}_{Q} \boldsymbol{M}_{q} \boldsymbol{C}_{q_{R}} - \boldsymbol{C}_{Q}^{2} \boldsymbol{M}_{q} - \boldsymbol{M}_{q} \boldsymbol{C}_{q_{R}}^{2} \end{bmatrix} \end{split}$$

$$\begin{split} \mathcal{L}_{a} \supset \frac{\partial_{\mu}a}{f_{a}} \big( \bar{Q}_{L} \gamma^{\mu} \boldsymbol{C}_{Q} Q_{L} + \bar{u}_{R} \gamma^{\mu} \boldsymbol{C}_{u_{R}} u_{R} + \bar{d}_{R} \gamma^{\mu} \boldsymbol{C}_{d_{R}} d_{R} \\ \text{Chiral rot.:} & \begin{array}{c} u_{L} \longrightarrow e^{i\frac{a}{f_{a}}} C_{Q} u_{L}, & d_{L} \longrightarrow e^{i\frac{a}{f_{a}}} C_{Q} d_{L}, \\ u_{R} \longrightarrow e^{i\frac{a}{f_{a}}} C_{u_{R}} u_{L}, & d_{R} \longrightarrow e^{i\frac{a}{f_{a}}} C_{d_{R}} d_{R} \\ \end{array} \\ \mathcal{L} \supset \bar{u}_{L} v \left[ i\frac{a}{f_{a}} \boldsymbol{K}_{u} + \frac{a^{2}}{f_{a}^{2}} \boldsymbol{F}_{u} \right] u_{R} u_{L} \\ & + \bar{d}_{L} v \left[ i\frac{a}{f_{a}} \boldsymbol{K}_{d} + \frac{a^{2}}{f_{a}^{2}} \boldsymbol{F}_{d} \right] d_{R} + \text{h.c.} + \dots \\ \end{array} \\ \text{where} \begin{array}{c} v \, \boldsymbol{K}_{q} \equiv \boldsymbol{C}_{Q} \boldsymbol{M}_{q} - \boldsymbol{M}_{q} \boldsymbol{C}_{q_{R}}, \\ 2 \, v \, \boldsymbol{F}_{q} \equiv 2 \boldsymbol{C}_{Q} \boldsymbol{M}_{q} \boldsymbol{C}_{q_{R}} - \boldsymbol{C}_{Q}^{2} \boldsymbol{M}_{q} - \boldsymbol{M}_{q} \boldsymbol{C}_{q_{R}}^{2} \end{array}$$

# There are two diagrams in the ``chirality-flip" basis:



General Scalar

 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{S}$ 

# **CP-violation**

General Scalar

 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{S}$ 

# **CP-violation**

#### $\overline{\Theta}$ -> bounds also improved by orders of magnitude

see talk by Victor Enguita tomorrow afternoon

What happens if there is a PQ symmetry (in addition)?

# either for ALPs or generic scalars
# With a PQ symmetry present:

# $\mathbf{\overline{\theta}}$ disappears but a residual $\mathbf{\overline{\theta}}$ induced remains:

Vafa-Witten theorem does not apply with extra explicit CP sources and

$$\bar{\theta}_{\text{ind}} = \frac{m_0^2}{2} \sum_{q=u,d,s} \frac{\tilde{d}_q}{m_q}$$

#### we have updated the bounds in this case

M. Pospelov, arXiv: hep-ph/9707431, Phys. Re. D 58 (1998) 097703

Without a PQ mechanism:

$$d_n = 0.6(3) \times 10^{-16} \overline{\theta} [e \cdot \text{cm}] - 0.204(11)d_u + 0.784(28)d_d - 0.0028(17)d_s - 0.32(15) e \tilde{d}_u + 0.32(15) e \tilde{d}_d - 0.014(7)e\tilde{d}_s.$$

In the presence of a PQ mechanism:

$$d_n^{PQ} = -0.204(11)d_u + 0.784(28)d_d - 0.0028(17)d_s$$
$$-0.31(15)e\tilde{d}_u + 0.62(31)e\tilde{d}_d$$

M. Pospelov, A. Ritz, J. Hisano et al., hep-ph/0504321, arXiv:1205.2212 073015 Without a PQ mechanism:

$$\begin{aligned} d_n &= 0.6(3) \times 10^{-16} \bar{\theta} [e \cdot \text{cm}] \\ &- 0.204(11) d_u + 0.784(28) d_d - 0.0028(17) d_s \\ &- 0.32(15) \text{ e } \tilde{d}_u + 0.32(15) \text{ e } \tilde{d}_d - 0.014(7) e \tilde{d}_s. \end{aligned}$$

In the presence of a PQ mechanism:

$$d_n^{PQ} = -0.204(11)d_u + 0.784(28)d_d - 0.0028(17)d_s$$
$$-0.31(15)e\tilde{d}_u + 0.62(31)e\tilde{d}_d$$
chromo-electric EDMs



In the presence of a PQ mechanism:

$$d_n^{PQ} = -0.204(11)d_u + 0.784(28)d_d - 0.0028(17)d_s$$
$$-0.31(15)e\tilde{d}_u + 0.62(31)e\tilde{d}_d$$



**TABLE IV:** ALP case. Comparison of bounds w/o the presence of a PQ symmetry. All bounds are in units of  $\text{GeV}^{-2}$ , and  $m_a = 5$  GeV has been assumed for illustration.

#### **CONCLUSIONS**

\* ALP couplings to fermions induce one-loop corrections to  $\overline{\Theta}$  —> to the nEDM

\* We have improved the bounds on CP-odd ALP-fermion couplings by ~ 4 orders of magnitude

- \* The same kind of improvement applies to generic singlet scalars
  - \* Novel bounds on ALP-neutrino couplings

# **Backup**

$$oldsymbol{M}_{u,d}^{1\, ext{loop}} = oldsymbol{M}_{u,d} + \Delta oldsymbol{M}_{u,d}$$

$$egin{aligned} \Delta ar{ heta}_{ ext{ALP}}(\mu) &= \sum_{q=u,d} rg\left[ \det \left( oldsymbol{M}_q \left( 1 + oldsymbol{M}_q^{-1} \Delta oldsymbol{M}_q 
ight) 
ight) 
ight] \ &\simeq \sum_{q=u,d} \operatorname{Im} \operatorname{Tr} \left( oldsymbol{M}_q^{-1} \Delta oldsymbol{M}_q 
ight) \end{aligned}$$

$$\Delta \bar{\theta}_{ALP}(\mu) \simeq rac{1}{f_a^2} \sum_{q=u,d} \operatorname{Im} \operatorname{Tr} \left[ \boldsymbol{M}_q^{-1} \mathbf{C}_Q \boldsymbol{L} \mathbf{C}_{q_R} \right]$$

$$\begin{split} \boldsymbol{L} &\equiv \text{diag}(L_1, L_2, L_3) \\ L_k &= \frac{m_{q_k}}{16\pi^2} \left[ \left( m_a^2 + m_{q_k}^2 \right) \, \left( 1 + \log \frac{\mu^2}{m_a^2} \right) \right. \\ &\left. + \frac{m_{q_k}^4}{m_{q_k}^2 - m_a^2} \log \frac{m_a^2}{m_{q_k}^2} \right] \end{split}$$

$$egin{aligned} &rac{dar{ heta}}{d\mu} = \sum_{q=u,d} \operatorname{Im} rac{d}{d\mu} \ln \det \mathcal{M}_q = \sum_{q=u,d} \operatorname{Im} rac{d}{d\mu} \operatorname{Tr} \ln \mathcal{M}_q \ &= \sum_{q=u,d} \operatorname{Im} \operatorname{Tr} \left( \mathcal{M}_q^{-1} rac{d}{d\mu} \mathcal{M}_q 
ight) \ \end{split}$$

$$\mu \frac{dar{ heta}}{d\mu} \simeq rac{1}{f_a^2} \sum_{q=u,d} \operatorname{Im} \operatorname{Tr} \left[ \boldsymbol{M}_q^{-1} \mathbf{C}_Q \mathcal{L} \mathbf{C}_{q_R} 
ight]$$

$$\mathcal{L}_k = \frac{m_{q_k}}{8\pi^2} \left( m_a^2 + m_{q_k}^2 \right)$$

# Neglecting threshold corrections

### For an ALP:

$$\begin{split} \bar{\theta} \left( \mu_{\mathrm{IR}} \right) &\simeq \bar{\theta}_{0} + \\ &\sum_{u_{i} = \{u, c, t\}} \frac{m_{u_{k}} \left( m_{a}^{2} + \widehat{m}_{u_{k}}^{2} \right)}{16\pi^{2} f_{a}^{2} m_{u_{i}}} \operatorname{Im} \left( \boldsymbol{C}_{Q}^{ik} \boldsymbol{C}_{u_{R}}^{*ik} \right) \log \frac{f_{a}^{2}}{\max \left( m_{a}^{2}, m_{u_{k}}^{2} \right)} \\ &+ \sum_{d_{i} = \{d, s, b\}} \frac{m_{d_{k}} \left( m_{a}^{2} + \widehat{m}_{d_{k}}^{2} \right)}{16\pi^{2} f_{a}^{2} m_{d_{i}}} \operatorname{Im} \left( \boldsymbol{C}_{Q}^{ik} \boldsymbol{C}_{d_{R}}^{*ik} \right) \log \frac{f_{a}^{2}}{\max \left( m_{a}^{2}, m_{d_{k}}^{2} \right)} \end{split}$$

# Neglecting threshold corrections

# For a generic scalar:

$$\begin{split} \bar{\theta}\left(\mu_{IR}\right) \simeq \bar{\theta}_{0} + \frac{v^{2}}{16\pi^{2}\Lambda^{2}} \times \left(\sum_{i,k} \left[\frac{m_{u_{k}}\operatorname{Im}\left(\boldsymbol{K}_{u}^{ik}\boldsymbol{K}_{u}^{ki}\right)}{m_{u_{i}}} - \frac{m_{\phi}^{2}\operatorname{Im}\left(\boldsymbol{F}_{u}^{ik}\right)}{m_{u_{i}}}\right] \log \frac{\Lambda^{2}}{\max(m_{\phi}^{2}, m_{u_{k}}^{2})} \\ + \sum_{i,k} \left[\frac{m_{d_{k}}\operatorname{Im}\left(\boldsymbol{K}_{d}^{ik}\boldsymbol{K}_{d}^{ki}\right)}{m_{d_{i}}} - \frac{m_{\phi}^{2}\operatorname{Im}\left(\boldsymbol{F}_{d}^{ik}\right)}{m_{d_{i}}}\right] \log \frac{\Lambda^{2}}{\max(m_{\phi}^{2}, m_{d_{k}}^{2})} \end{split}$$



#### Observable

**10**<sup>7</sup>

**10**<sup>6</sup>

**10<sup>5</sup>** 

**10<sup>4</sup>** 

**10<sup>3</sup>** 

**10<sup>2</sup>** 

**10<sup>1</sup>** 

**10**<sup>0</sup>

EW precision

direct reach

#### D. Aloni, A. Dery, M.B. Gavela, Y. Nir

Fig. 5.1: Reach in new physics scale of present and future facilities, from generic dimension six operators. Colour coding of observables is: green for mesons, blue for leptons, yellow for EDMs, red for Higgs flavoured couplings and purple for the top quark. The grey columns illustrate the reach of direct flavour-blind searches and EW precision measurements. The operator coefficients are taken to be either  $\sim 1$  (plain coloured columns) or suppressed by MFV factors (hatch filled surfaces). Light (dark) colours correspond to present data (mid-term prospects, including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS).

### e.g. Casper electric

### $\{m_a, 1/f_a\}$ : direct **a - gluon coupling**







# **Axions and ALPs can explain Dark Matter**



*a* - photon coupling

within the blueish bands axions/ALPs would account for all the DM





Figure 4: Coupling to EW gauge bosons. A two-operator framework is used: each panel assumes the existence of the corresponding electroweak coupling plus the axion-gluon coupling. The



Package X, arXiv:1612.00009
FeynCalc, arXiv:2001.04407

In collaboration with J. Bonilla and J. Machado [2309.15910]

#### **Bounds on ALP-neutrino coupling**



In collaboration with J. Bonilla and J. Machado [arXiv:2309.15910]



figure from cajohare.github.io

 $m_a$  [eV]

#### a-proton coupling

 $\boldsymbol{a}$ 

p



#### a-top coupling

 $\boldsymbol{a}$ 



#### **a-electron coupling**

е

е

 $\boldsymbol{a}$ 



#### **Generic scalar**

$$egin{aligned} \mathcal{L} \supset ar{u}_L \, v \, \left[ i \, oldsymbol{K}_u rac{oldsymbol{S}}{oldsymbol{\Lambda}} \, + oldsymbol{F}_u rac{oldsymbol{S}^2}{oldsymbol{\Lambda}^2} 
ight] u_R \ &+ ar{d}_L \, v \, \left[ i rac{oldsymbol{S}}{oldsymbol{\Lambda}} \, oldsymbol{K}_d + rac{oldsymbol{S}^2}{oldsymbol{\Lambda}^2} oldsymbol{F}_d 
ight] d_R + ext{h.c.} \end{aligned}$$

**K** and **F** arbitrary: more parameters than for ALPs e.g. CP-violation in flavour-diagonal couplings

$$\begin{split} \mathbf{\mathcal{L}} \supset \bar{u}_L \, v \, \left[ i \, \mathbf{K}_u \frac{\mathbf{S}}{\mathbf{\Lambda}} \, + \mathbf{F}_u \frac{\mathbf{S}^2}{\mathbf{\Lambda}^2} \right] u_R \\ &+ \bar{d}_L \, v \, \left[ i \frac{\mathbf{S}}{\mathbf{\Lambda}} \, \mathbf{K}_d + \frac{\mathbf{S}^2}{\mathbf{\Lambda}^2} \mathbf{F}_d \right] d_R + \text{h.c.} \end{split}$$

**K** and **F** arbitrary: more parameters than for ALPs e.g. CP-violation in flavour-diagonal couplings

#### **Generic scalar**

$$egin{aligned} \mathcal{L} \supset ar{u}_L \, v \, \left[ i \, oldsymbol{K}_u rac{oldsymbol{S}}{oldsymbol{\Lambda}} \, + oldsymbol{F}_u rac{oldsymbol{S}^2}{oldsymbol{\Lambda}^2} 
ight] u_R \ &+ ar{d}_L \, v \, \left[ i rac{oldsymbol{S}}{oldsymbol{\Lambda}} \, oldsymbol{K}_d + rac{oldsymbol{S}^2}{oldsymbol{\Lambda}^2} oldsymbol{F}_d 
ight] d_R + ext{h.c.} \end{aligned}$$

K and F arbitrary: more parameters than for ALPs

**Contribution to**  $\overline{\mathbf{\theta}}$  **from:** 





# bounds also improved by orders of magnitude

#### **Generic scalar**



**FIG. 5:** General scalar. Upper bounds on  $W_q^{ij} \equiv \text{Im}(K_q^{ij}K_q^{ji})/\Lambda^2$  stemming from the contributions of  $\bar{\theta}$  (solid regions) and from the sum of qEDMs and cEDMs (dashed lines) to the nEDM. The red dotted line shows the projected bounds on  $W_u^{13}$  from future nEDM and pEDM experiments [44, 45]. The grey shaded area is as described in Fig. 2.



**FIG. 6:** General scalar. Upper bounds on  $V_q^{ij} \equiv \text{Im}(F_q^{ij})/\Lambda^2$  stemming from the contributions of  $\bar{\theta}$  (solid regions) to the nEDM. The red dotted line shows the projected bounds on  $V_u^{11}$  from future nEDM and pEDM experiments [44, 45]. The grey shaded area is as described in previous plots.



V. Enguita, M.B. Gavela, B. Grinstein, P. Quilez, arXiv: 2403.13133

**TABLE V:** General scalar. Comparison of bounds w/o the presence of a PQ symmetry. All bounds are in units of GeV<sup>-2</sup>, and for  $m_{\phi} = 5$  GeV.

\* Other contributions to  $\overline{\mathbf{\Theta}}$  ?

General scalar, toy model, Fock-Schwinger gauge



Figure 2: The one-loop and two-loop babble diagrams which contribute to the radiative corrections to the QCD  $\theta$  parameter. The one-loop diagram gives a simple result  $\delta \theta|_{1L} = -\text{Im}(m_q)/\text{Re}(m_q)$ . For the two-loop diagrams, the first one generates  $I_{(2;2)}$  loop function in Eq. (3.4), while the others  $2\bar{I}_{(3;1)}$  in total.

Banno, Hisano, Kitahara, Osatura, 2311.07817