The Basis Invariant Flavor Puzzle

Andreas Trautner

based on:

arXiv:2308.00019
arXiv:1812.02614

JHEP 01 (2024) 024 w/ Miguel P. Bento and João P. Silva JHEP 05 (2019) 208

Planck 2024, Lisbon

3-7 JUNE, 2024

03.06.24

The Standard Model Flavor Puzzle

- Why three generations of matter Fermions?
- Why hierarchical masses of Fermions?
- Why small transition probabilities for $q_{i}^{\text {up }} \rightarrow q_{j \neq i}^{\text {down }} ?\left(\propto\left|V_{i j}^{\mathrm{CKM}}\right|^{2}\right)$
- Why large transition probabilities for $\ell_{i} \rightarrow \nu_{j}$? $\left(\propto\left|U_{i j}^{\mathrm{PMNS}}\right|^{2}\right)$

- Why CP violation only in combination with flavor violation?

Parametrization independent measure of CP violation:
[Greenberg '85, Jarlskog '85]

$$
J_{33}=\operatorname{det}\left[M_{u} M_{u}^{\dagger}, M_{d} M_{d}^{\dagger}\right] \propto \operatorname{Im}\left[V_{u d}^{*} V_{c s}^{*} V_{u s} V_{c d}\right]=3.08_{-0.13}^{+0.15} \times 10^{-5} .
$$

The Standard Model Flavor Puzzle

Often underappreciated: Direct confirmation of SM FP at the LHC

And: No hints of New Physics.

The Standard Model Flavor Puzzle

	1	2	3	PERIODIC TABLE OF THE ELEMENTS										13	14	15	16	17	18
	$\begin{aligned} & \hline 1 \\ & \mathrm{H} \end{aligned}$																		2 He
	3	4												5	6	7	8	9	10
	Li	Be												B	C	N	0	F	Ne
	11	12												13	14	15	16	17	18
	Na	Mg			4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
4	19	20	21		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc		Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39		40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y		Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
6	55	56	57	+	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	La		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
7	87	88	89		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Fr	Ra	Ac		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
				*	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			thanides		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				+	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Actinides		Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

The Standard Model Flavor Puzzle

The Standard Model Flavor Puzzle

Why use Basis Invariants (B.I.'s)?

- Flavor puzzle is plagued by unphysical choice of basis and parametrization.
- Physical observables must be given as function of Bls.
- BI necessary and sufficient conditions for CPV in SM.... ... and BSM: Multi-scalar 2/3/NHDM, 4th gen., Dirac vs. Majorana ν 's, ...
[Bernabeau et al. '86], [Branco, Lavoura, Rebelo '86], [Botella, Silva '95], [Davidson, Haber '05], [Yu, Zhou '21],.. .
- Bls and their relations, incl. CP-even Bls, allow to detect symmetries in general.
- BI formulation simplifies RGE's, RGE running, and derivation of RGE invariants.
[Harrison, Krishnan, Scott '10], [Feldmann, Mannel, Schwertfeger '15], [Chiu, Kuo '15], [Bednyakov '18], [Wang, Yu, Zhou '21], ...
However, no quantitative basis invariant analysis of the flavor puzzle exist.
\curvearrowright This allows an entirely new perspective on the flavor puzzle!
Why hasn't it been done? Technically challenging:
How to construct Bl's? When to stop?
general answers and technique based on example of 2HDM [AT '18]

Outline

- Motivation

Disclaimer: I will focus entirely on the quark sector here.
for leptons see talk by Davidson

- Standard Model quark sector flavor covariants
- Construction of the complete ring of quark sector orthogonal basis invariants
- Determine the basis invariants from experimental data
\Rightarrow An entirely basis invariant picture of the quark flavor puzzle.
- CP transformation of invariants \& comments

SM Quark Sector Flavor Invariants - Systematic Construction

$$
\begin{array}{r}
\text { Birdtrack diagrams / "Colorflow" / } \ldots \mathrm{SU}(N) \text { tensors } \\
\left(t^{a}\right)_{j}^{i}=\left[t^{a}, t^{b}\right]=\mathrm{i} f^{a b c} t^{c}, \quad \operatorname{Tr}\left(t^{a} t^{b}\right)=T_{\boldsymbol{r}} \delta^{a b}
\end{array}
$$

Birdtrack diagrams / "Colorflow" / ... SU(N) tensors

$$
\left.\left(t^{a}\right)_{j}^{i}=t^{a}, t^{a}, t^{b}\right]=\mathrm{i} f^{a b c} t^{c}, \quad \operatorname{Tr}\left(t^{a} t^{b}\right)=T_{\boldsymbol{r}} \delta^{a b}
$$

$$
\begin{array}{ccccc}
\boldsymbol{N} \otimes \overline{\mathbf{N}} & = & \mathbf{1} & \oplus & \boldsymbol{a d j} \\
\delta_{n}^{i} \delta_{m}^{j} & = & \frac{1}{N} \delta_{m}^{i} \delta_{n}^{j} & + & \frac{1}{T_{\boldsymbol{r}}}\left(t^{a}\right)_{m}^{i}\left(t^{a}\right)_{n}^{j}
\end{array}
$$

Standard Model Quark Sector Flavor Covariants

$$
-\mathcal{L}_{\text {Yuk. }}=\bar{Q}_{\mathrm{L}} \widetilde{H} \boldsymbol{Y}_{\boldsymbol{u}} u_{\mathrm{R}}+\bar{Q}_{\mathrm{L}} H \boldsymbol{Y}_{\boldsymbol{d}} d_{\mathrm{R}}+\text { h.c. }
$$

Standard Model Quark Sector Flavor Covariants

$$
\begin{aligned}
& \quad-\mathcal{L}_{\text {Yuk. }}=\bar{Q}_{\mathrm{L}} \tilde{H} \boldsymbol{Y}_{\boldsymbol{u}} u_{\mathrm{R}}+\bar{Q}_{\mathrm{L}} H \boldsymbol{Y}_{\boldsymbol{d}} d_{\mathrm{R}}+\text { h.c. }, \\
& \hline Y_{u} \widehat{=}(\overline{\mathbf{3}}, \mathbf{3}, \mathbf{1}) \\
& Y_{d} \widehat{=}(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{3})
\end{aligned} \quad \text { of } \quad \mathrm{SU}(3)_{Q_{\mathrm{L}}} \otimes \mathrm{SU}(3)_{u_{\mathrm{R}}} \otimes \mathrm{SU}(3)_{d_{\mathrm{R}}} .
$$

Standard Model Quark Sector Flavor Covariants

$$
\begin{gathered}
-\mathcal{L}_{\text {Yuk. }}=\bar{Q}_{\mathrm{L}} \widetilde{H} \boldsymbol{Y}_{\boldsymbol{u}} u_{\mathrm{R}}+\bar{Q}_{\mathrm{L}} H \boldsymbol{Y}_{\boldsymbol{d}} d_{\mathrm{R}}+\text { h.c. }, \\
Y_{u} \widehat{=}(\overline{\mathbf{3}}, \mathbf{3}, \mathbf{1}) \\
Y_{d} \widehat{=}(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{3})
\end{gathered} \text { of } \quad \mathrm{SU}(3)_{Q_{\mathrm{L}}} \otimes \mathrm{SU}(3)_{u_{\mathrm{R}}} \otimes \mathrm{SU}(3)_{d_{\mathrm{R}}} .
$$

Standard Model Quark Sector Flavor Covariants

| $-\mathcal{L}_{\text {Yuk. }}=\bar{Q}_{\mathrm{L}} \widetilde{H} \boldsymbol{Y}_{\boldsymbol{u}} u_{\mathrm{R}}+\bar{Q}_{\mathrm{L}} H \boldsymbol{Y}_{\boldsymbol{d}} d_{\mathrm{R}}+$ h.c., |
| :---: | :---: |
| $Y_{u} \widehat{=}(\overline{\mathbf{3}}, \mathbf{3}, \mathbf{1})$ |
| $Y_{d} \hat{=}(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{3})$ | of $\quad \mathrm{SU}(3)_{Q_{\mathrm{L}}} \otimes \mathrm{SU}(3)_{u_{\mathrm{R}}} \otimes \mathrm{SU}(3)_{d_{\mathrm{R}}}$.

Standard Model Quark Sector Flavor Covariants

$$
\begin{gathered}
-\mathcal{L}_{\text {Yuk. }}=\bar{Q}_{\mathrm{L}} \widetilde{H} \boldsymbol{Y}_{\boldsymbol{u}} u_{\mathrm{R}}+\bar{Q}_{\mathrm{L}} H \boldsymbol{Y}_{\boldsymbol{d}} d_{\mathrm{R}}+\text { h.c. }, \\
Y_{u} \hat{=}(\overline{\mathbf{3}, \mathbf{3}, \mathbf{1})} \\
Y_{d} \hat{=}(\overline{\mathbf{3}}, \mathbf{1}, \mathbf{3})
\end{gathered} \text { of } \quad \mathrm{SU}(3)_{Q_{\mathrm{L}}} \otimes \mathrm{SU}(3)_{u_{\mathrm{R}}} \otimes \mathrm{SU}(3)_{d_{\mathrm{R}}},
$$

Orthogonal Covariant Projection Operators

What does orthogonal mean here?
Orthogonality on the level of projection operators!

Projection operators: $P_{i}^{2}=P_{i}, \quad \operatorname{Tr} P_{i}=\operatorname{dim}\left(\boldsymbol{r}_{i}\right)$,
Orthogonality: $P_{i} \cdot P_{j}=0$.
Using orthogonal singlet projectors, we find invariants that are orthogonal to each other!

What is necessary to construct Basis Invariants

$$
\mathbf{8}_{u} \otimes \mathbf{8}_{u} \otimes \ldots \boldsymbol{8}_{d} \otimes \mathbf{8}_{d} \otimes \cdots=\mathbf{8}_{u}^{\otimes k} \otimes \mathbf{8}_{d}^{\otimes \ell}=\sum_{\oplus} \boldsymbol{r}_{i}
$$

Singlet projection operators:

$$
\mathbf{8}_{u}^{\otimes k} \otimes \mathbf{8}_{d}^{\otimes \ell} \supset \mathbf{1}_{(1)} \oplus \mathbf{1}_{(2)} \oplus \ldots
$$

Singlet projection operators are characterized by factorization. For example:

How many independent singlets exist? (here: in contractions $\mathbf{8}_{u}^{\otimes k} \otimes \mathbf{8}_{d}^{\otimes \ell}$ for all k, ℓ)

Jargon of invariant theory

- Algebraic (in-)dependence:

Invariants $\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}, \ldots$ are algebraically dependent if and only if
$\exists \operatorname{Polynomial}\left(\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}, \ldots\right)=0$.
($\Leftrightarrow \mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}, \ldots$ are algebraically independent iff $\nexists \mathrm{Pol}$)

Jargon of invariant theory

- Algebraic (in-)dependence: Invariants $\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}, \ldots$ are algebraically dependent if and only if
$\exists \operatorname{Polynomial}\left(\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}, \ldots\right)=0$.
- Primary invariants: ($\Leftrightarrow \mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}, \ldots$ are algebraically independent iff $\nexists \mathrm{Pol}$)

A maximal set of algebraically independent invariants.
\# of primary invariants = \# of physical parameters.
(a choice of primary invariants is not unique, but the number of invariants is)

Jargon of invariant theory

- Algebraic (in-)dependence: Invariants $\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}, \ldots$ are algebraically dependent if and only if
$\exists \operatorname{Polynomial}\left(\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}, \ldots\right)=0$.
- Primary invariants: ($\Leftrightarrow \mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}, \ldots$ are algebraically independent iff $\nexists \mathrm{Pol}$)

A maximal set of algebraically independent invariants.
\# of primary invariants = \# of physical parameters.
(a choice of primary invariants is not unique, but the number of invariants is)

- Secondary invariants:
all \mathcal{I} 's that cannot be written as polynomial of other invariants,

$$
\mathcal{I}_{i} \neq \operatorname{Polynomial}\left(\mathcal{I}_{j}, \ldots\right) .
$$

Jargon of invariant theory

- Algebraic (in-)dependence:

Invariants $\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}, \ldots$ are algebraically dependent if and only if
$\exists \operatorname{Polynomial}\left(\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}, \ldots\right)=0$.

- Primary invariants: ($\Leftrightarrow \mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}, \ldots$ are algebraically independent iff $\nexists \mathrm{Pol}$)

A maximal set of algebraically independent invariants.
\# of primary invariants = \# of physical parameters.
(a choice of primary invariants is not unique, but the number of invariants is)

- Secondary invariants:
all \mathcal{I} 's that cannot be written as polynomial of other invariants,

$$
\mathcal{I}_{i} \neq \operatorname{Polynomial}\left(\mathcal{I}_{j}, \ldots\right) .
$$

- Generating set of invariants \equiv all primary + secondary invariants.
$\Rightarrow A l l$ invariants can be written as a polynomial in the generating set of invariants.

$$
\mathcal{I}=\operatorname{Polynomial}\left(\mathcal{I}_{1}, \mathcal{I}_{2}, \ldots\right) .
$$

Number and structure of invariants

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?

Number and structure of invariants

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?

Answer: Hilbert series (HS) and Plethystic Logarithm (PL).

Number and structure of invariants

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?

Answer: Hilbert series (HS) and Plethystic Logarithm (PL).
The HS/PL combination is a powerful vehicle.
[Noether 1916; Getzler \& Kapranov '94]

Number and structure of invariants

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants? Answer: Hilbert series (HS) and Plethystic Logarithm (PL).

The HS/PL combination is a powerful vehicle.
[Noether 1916; Getzler \& Kapranov '94]

Number and structure of invariants

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants? Answer: Hilbert series (HS) and Plethystic Logarithm (PL).

The HS/PL combination is a powerful vehicle.
[Noether 1916; Getzler \& Kapranov '94]

Number and structure of invariants

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?

Answer: Hilbert series (HS) and Plethystic Logarithm (PL).

- HS/PL input: covariants are 8_{u} and 8_{d} of $\operatorname{SU}(3)$.

Number and structure of invariants

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?

Answer: Hilbert series (HS) and Plethystic Logarithm (PL).

- HS/PL input: covariants are 8_{u} and 8_{d} of $\mathrm{SU}(3)$.
\curvearrowright HS/PL output:
- \# of primary invariants and their sub-structure (covariant content):
linear $\quad(u) \quad(d)$
quadratic $u^{2} \quad d^{2} u d$ cubic $\quad u^{3} \quad d^{3} \quad u^{2} d \quad u d^{2}$
quartic $\quad \boldsymbol{u}^{2} \boldsymbol{d}^{2} \quad$ (10 primary invariants $\xlongequal[=]{ } 10$ physical parameters).
- 1 secondary invariant of structure: $\boldsymbol{u}^{3} \boldsymbol{d}^{3}$. (Jarlskog invariant)
- Relation (Syzygy) of order $\boldsymbol{u}^{6} \boldsymbol{d}^{6}$ between primaries and the secondary.

Number and structure of invariants

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?

Answer: Hilbert series (HS) and Plethystic Logarithm (PL).

- HS/PL input: covariants are 8_{u} and 8_{d} of $\mathrm{SU}(3)$.
\curvearrowright HS/PL output:
- \# of primary invariants and their sub-structure (covariant content):
linear $\quad(u) \quad(d)$
quadratic $u^{2} \quad d^{2} u d$ cubic $\quad u^{3} \quad d^{3} \quad u^{2} d \quad u d^{2}$
quartic $\quad \boldsymbol{u}^{2} \boldsymbol{d}^{2} \quad$ (10 primary invariants $\xlongequal[=]{ } 10$ physical parameters).
- 1 secondary invariant of structure: $\boldsymbol{u}^{3} \boldsymbol{d}^{3}$. (Jarlskog invariant)
- Relation (Syzygy) of order $\boldsymbol{u}^{6} \boldsymbol{d}^{6}$ between primaries and the secondary.

Projection operators

Note: The HS/PL does not tell us how to construct the invariants or the relations.

Projection operators

Note: The HS/PL does not tell us how to construct the invariants or the relations.
For this we use orthogonal projection operators. (here in adjoint space of $\operatorname{SU}(3)_{Q_{L}}$)
Those can be constructed via birdtrack diagrams
[Cvitanovic '76 '08, Keppeler and Sjödahl '13]

Projection operators

Note: The HS/PL does not tell us how to construct the invariants or the relations.
For this we use orthogonal projection operators. (here in adjoint space of $\operatorname{SU}(3)_{Q_{L}}$)
Those can be constructed via birdtrack diagrams

- $\mathbf{8}^{\otimes 2} \rightarrow \mathbf{1}$
[Cvitanovic '76 '08, Keppeler and Sjödahl '13]

$$
\delta^{a b}=\infty>\infty \infty
$$

Projection operators

Note: The HS/PL does not tell us how to construct the invariants or the relations.
For this we use orthogonal projection operators. (here in adjoint space of $\operatorname{SU}(3)_{Q_{L}}$)
Those can be constructed via birdtrack diagrams

- $\mathbf{8}^{\otimes 2} \rightarrow \mathbf{1}$
- $\mathbf{8}^{\otimes 3} \rightarrow \mathbf{1}$

Projection operators

Note: The HS/PL does not tell us how to construct the invariants or the relations.
For this we use orthogonal projection operators. (here in adjoint space of $\operatorname{SU}(3)_{Q_{\mathrm{L}}}$)
Those can be constructed via birdtrack diagrams

- $\mathbf{8}^{\otimes 2} \rightarrow \mathbf{1}$
- $\mathbf{8}^{\otimes 3} \rightarrow \mathbf{1}$
- $\mathbf{8}^{\otimes 4} \rightarrow \mathbf{1}$

1 :
度

Can understand the different contraction channels from

$$
\mathbf{8}^{\otimes 2}=\mathbf{1} \oplus \mathbf{8}_{\mathrm{S}} \oplus \mathbf{8}_{\mathrm{A}} \oplus \mathbf{1 0} \oplus \overline{\mathbf{1 0}} \oplus \mathbf{2 7}
$$

Projection operators

Note: The HS/PL does not tell us how to construct the invariants or the relations.
For this we use orthogonal projection operators. (here in adjoint space of $\operatorname{SU}(3)_{Q_{L}}$)
Those can be constructed via birdtrack diagrams

- $\mathbf{8}^{\otimes 2} \rightarrow \mathbf{1}$ many operators exist in $\mathbf{8}^{\otimes 6} \rightarrow \mathbf{1}$, we only need one:
- $\mathbf{8}^{\otimes 3} \rightarrow \mathbf{1}$
- $\mathbf{8}^{\otimes 4} \rightarrow \mathbf{1}$
- $\mathbf{8}^{\otimes 6} \rightarrow \mathbf{1}$

Projection operators

Note: The HS/PL does not tell us how to construct the invariants or the relations.
For this we use orthogonal projection operators. (here in adjoint space of $\operatorname{SU}(3)_{Q_{L}}$)
Those can be constructed via birdtrack diagrams

- $\mathbf{8}^{\otimes 2} \rightarrow \mathbf{1} \quad$ many operators exist in $\mathbf{8}^{\otimes 6} \rightarrow \mathbf{1}$, we only need one:
- $\mathbf{8}^{\otimes 3} \rightarrow \mathbf{1}$
- $\mathbf{8}^{\otimes 4} \rightarrow \mathbf{1}$
- $\mathbf{8}^{\otimes 6} \rightarrow \mathbf{1}$

All of these operators are orthogonal to each other. We now use them to construct the orthogonal invariants.

Orthogonal Invariants

The 10 algebraically independent and orthogonal invariants are given by: $I_{\# \text { u's,\#d's }}$

Orthogonal Invariants

The 10 algebraically independent and orthogonal invariants are given by: $I_{\# u ' s, \# d ' s}$

and

$I_{03} \propto$

$I_{21} \propto$

$I_{12} \propto$

Orthogonal Invariants

The 10 algebraically independent and orthogonal invariants are given by: $I_{\# u ' s, \# d ' s}$

and

$I_{20} \propto H_{u} \infty H_{02} \propto H_{H_{d}} \infty H_{H_{d}} \quad I_{11} \propto H_{H_{u}} \infty H_{d}$

$I_{03} \propto$

$I_{21} \propto$

$I_{12} \propto$

Orthogonal Invariants

The 10 algebraically independent and orthogonal invariants are given by: $I_{\# u ' s, \# d ' s}$

and

$I_{03} \propto$

$I_{21} \propto$

Secondary invariant:

Orthogonal Invariants

The 10 algebraically independent and orthogonal invariants are given by:

$$
\begin{aligned}
& I_{10}:=\operatorname{Tr} \widetilde{H}_{u} \quad \text { and } \quad I_{01}:=\operatorname{Tr} \widetilde{H}_{d} . \\
& I_{20}:=\operatorname{Tr}\left(H_{u}^{2}\right), \quad I_{02}:=\operatorname{Tr}\left(H_{d}^{2}\right), \quad I_{11}:=\operatorname{Tr}\left(H_{u} H_{d}\right), \\
& I_{30}:=\operatorname{Tr}\left(H_{u}^{3}\right), \quad I_{03}:=\operatorname{Tr}\left(H_{d}^{3}\right), \quad I_{21}:=\operatorname{Tr}\left(H_{u}^{2} H_{d}\right), \quad I_{12}:=\operatorname{Tr}\left(H_{u} H_{d}^{2}\right), \\
& I_{22}:=3 \operatorname{Tr}\left(H_{u}^{2} H_{d}^{2}\right)-\operatorname{Tr}\left(H_{u}^{2}\right) \operatorname{Tr}\left(H_{d}^{2}\right) .
\end{aligned}
$$

Secondary invariant: exactly the Jarlskog invariant,

$$
J_{33}:=\operatorname{Tr}\left(H_{u}^{2} H_{d}^{2} H_{u} H_{d}\right)-\operatorname{Tr}\left(H_{d}^{2} H_{u}^{2} H_{d} H_{u}\right) \equiv \frac{1}{3} \operatorname{Tr}\left[H_{u}, H_{d}\right]^{3} .
$$

Note: Here $\widetilde{H}_{u} \equiv Y_{u} Y_{u}^{\dagger}, \widetilde{H}_{d} \equiv Y_{d} Y_{d}^{\dagger}$, and $H_{u, d} \equiv \widetilde{H}_{u, d}-\mathbb{1} \operatorname{Tr} \frac{\widetilde{H}_{u, d}}{3}$.

The Syzygy

With our orthogonal invariants, the syzygy is given by

$$
\begin{aligned}
\left(J_{33}\right)^{2}= & -\frac{4}{27} I_{22}^{3}+\frac{1}{9} I_{22}^{2} I_{11}^{2}+\frac{1}{9} I_{22}^{2} I_{02} I_{20}+\frac{2}{3} I_{22} I_{30} I_{03} I_{11}-\frac{2}{3} I_{22} I_{21} I_{12} I_{11}-\frac{1}{9} I_{22} I_{11}^{2} I_{20} I_{02} \\
& +\frac{2}{3} I_{22} I_{21}^{2} I_{02}+\frac{2}{3} I_{22} I_{12}^{2} I_{20}-\frac{2}{3} I_{22} I_{30} I_{12} I_{02}-\frac{2}{3} I_{22} I_{03} I_{21} I_{20} \\
& -\frac{1}{3} I_{30}^{2} I_{03}^{2}+I_{21}^{2} I_{12}^{2}+2 I_{30} I_{03} I_{21} I_{12}-\frac{4}{9} I_{30} I_{03} I_{11}^{3} \\
& +\frac{1}{18} I_{30}^{2} I_{02}^{3}+\frac{1}{18} I_{03}^{2} I_{20}^{3}-\frac{4}{3} I_{30} I_{12}^{2}-\frac{4}{3} I_{03} I_{21}^{2} \\
& -\frac{1}{3} I_{30} I_{21} I_{11} I_{02}^{2}-\frac{1}{3} I_{03} I_{12} I_{11} I_{20}^{2}+\frac{2}{3} I_{30} I_{12} I_{11}^{2} I_{02}+\frac{2}{3} I_{03} I_{21} I_{11}^{2} I_{20} \\
& -\frac{2}{3} I_{21} I_{12} I_{20} I_{02} I_{11}-\frac{1}{108} I_{20}^{3} I_{02}^{3}+\frac{1}{36} I_{20}^{2} I_{02}^{2} I_{11}^{2}+\frac{1}{6} I_{21}^{2} I_{20} I_{02}^{2}+\frac{1}{6} I_{12}^{2} I_{02} I_{20}^{2} .
\end{aligned}
$$

This is the shortest relation ever expressed for the SM quark flavor ring and has 27 terms. (this should be compared to result of [Jenkins\&Manohar'09] with 241 terms using non-orthogonal invariants).

SM Quark Sector Flavor Invariants - Quantitative Analysis

Measuring the Invariants

In order to evaluate the invariants, one can use any parametrization. We use PDG:

$$
\begin{aligned}
& \widetilde{H}_{u}
\end{aligned}=\operatorname{diag}\left(y_{u}^{2}, y_{c}^{2}, y_{t}^{2}\right), ~ \begin{aligned}
& \widetilde{H}_{d}=V_{\mathrm{CKM}} \operatorname{diag}\left(y_{d}^{2}, y_{s}^{2}, y_{b}^{2}\right) V_{\mathrm{CKM}}^{\dagger} \\
& \text { and }
\end{aligned}
$$

1. Explore the possible parameter space: scan $\mathcal{O}\left(10^{7}\right)$ uniform random points

- $s_{12}, s_{13}, s_{23} \in[-1,1]$ and $\delta \in[-\pi, \pi]$ together with:
A) Linear measure: $y_{u, c} \in[0,1] y_{t}, y_{d, s} \in[0,1] y_{b}$.
B) Log measure: $\left(m_{u, c} / \mathrm{MeV}\right) \in 10^{\left[-1, \log \left(m_{t} / \mathrm{MeV}\right)\right]},\left(m_{d, s} / \mathrm{MeV}\right) \in 10^{\left[-1, \log \left(m_{b} / \mathrm{MeV}\right)\right]}$.

Measuring the Invariants

In order to evaluate the invariants, one can use any parametrization. We use PDG:

$$
\begin{aligned}
& \widetilde{H}_{u}=\operatorname{diag}\left(y_{u}^{2}, y_{c}^{2}, y_{t}^{2}\right) \\
& \text { and } \\
& \widetilde{H}_{d}=V_{\text {CKM }} \operatorname{diag}\left(y_{d}^{2}, y_{s}^{2}, y_{b}^{2}\right) V_{\text {CKM }}^{\dagger},
\end{aligned}
$$

1. Explore the possible parameter space: scan $\mathcal{O}\left(10^{7}\right)$ uniform random points

- $s_{12}, s_{13}, s_{23} \in[-1,1]$ and $\delta \in[-\pi, \pi]$ together with:
A) Linear measure: $y_{u, c} \in[0,1] y_{t}, y_{d, s} \in[0,1] y_{b}$.
B) Log measure: $\left(m_{u, c} / \mathrm{MeV}\right) \in 10^{\left[-1, \log \left(m_{t} / \mathrm{MeV}\right)\right]},\left(m_{d, s} / \mathrm{MeV}\right) \in 10^{\left[-1, \log \left(m_{b} / \mathrm{MeV}\right)\right]}$.

2. "Measure" the parameter point realized in Nature.

We use PDG data and errors and evaluate at the EW scale $\mu=M_{Z}$.

Measuring the Invariants

In order to evaluate the invariants, one can use any parametrization. We use PDG:

$$
\begin{aligned}
& \widetilde{H}_{u}
\end{aligned}=\operatorname{diag}\left(y_{u}^{2}, y_{c}^{2}, y_{t}^{2}\right) .
$$

1. Explore the possible parameter space: scan $\mathcal{O}\left(10^{7}\right)$ uniform random points

- $s_{12}, s_{13}, s_{23} \in[-1,1]$ and $\delta \in[-\pi, \pi]$ together with:
A) Linear measure: $y_{u, c} \in[0,1] y_{t}, y_{d, s} \in[0,1] y_{b}$.
B) Log measure: $\left(m_{u, c} / \mathrm{MeV}\right) \in 10^{\left[-1, \log \left(m_{t} / \mathrm{MeV}\right)\right]},\left(m_{d, s} / \mathrm{MeV}\right) \in 10^{\left[-1, \log \left(m_{b} / \mathrm{MeV}\right)\right]}$.

2. "Measure" the parameter point realized in Nature.

We use PDG data and errors and evaluate at the EW scale $\mu=M_{Z}$.
For convenience of the presentation we normalize the invariants as

$$
\hat{I}_{i j}:=\frac{I_{i j}}{\left(y_{t}^{2}\right)^{i}\left(y_{b}^{2}\right)^{j}}
$$

Experimental values of the invariants

Invariant	best fit and error	Normalized invariant	best fit and error
I_{10}	$0.9340(83)$	\hat{I}_{10}	$1.00001358\left({ }_{-88}^{+85}\right)$
I_{01}	$2.660(49) \times 10^{-4}$	\hat{I}_{01}	$1.000351\left({ }_{-71}^{+63}\right)$
I_{20}	$0.582(10)$	\hat{I}_{20}	$0.66665761\left({ }_{-57}^{+59}\right)$
I_{02}	$4.71(17) \times 10^{-8}$	\hat{I}_{02}	$0.666432\left({ }_{-42}^{+47}\right)$
I_{11}	$1.651(45) \times 10^{-4}$	\hat{I}_{11}	$0.664783\left({ }_{-87}^{+91}\right)$
I_{30}	$0.1811(48)$	\hat{I}_{30}	$0.22221769\left({ }_{-28}^{+29}\right)$
I_{03}	$4.18(23) \times 10^{-12}$	\hat{I}_{03}	$0.222105\left({ }_{-21}^{+24}\right)$
I_{21}	$5.14\left({ }_{-19}^{+18}\right) \times 10^{-5}$	\hat{I}_{21}	$0.221593\left({ }_{-29}^{+30}\right)$
I_{12}	$1.463\left({ }_{-68}^{+65}\right) \times 10^{-8}$	\hat{I}_{12}	$0.221555\left({ }_{-36}^{+38}\right)$
I_{22}	$1.366\left({ }_{-76}^{+73}\right) \times 10^{-8}$	\hat{I}_{22}	$0.221554\left({ }_{-36}^{+38}\right)$
J_{33}	$4.47\left({ }_{-1.58}^{+1.23}\right) \times 10^{-24}$	\hat{J}_{33}	$2.92\left({ }_{-0.93}^{+0.74}\right) \times 10^{-13}$
J	$3.08\left({ }_{-0.19}^{+0.16}\right) \times 10^{-5}$		

Table: Experimental values of the quark sector basis invariants evaluated using PDG data. Uncertainties are 1σ. Left: orthogonal invariants at face value. Right: the same invariants normalized to the largest Yukawa couplings.

$$
\begin{aligned}
& \text { Experimental values of the Invariants } \\
& \hat{I}_{10} \approx \hat{I}_{01} \approx 1, \quad \hat{I}_{11} \approx \hat{I}_{20} \approx \hat{I}_{02} \approx \frac{2}{3}, \\
& \hat{I}_{30} \approx \hat{I}_{03} \approx \hat{I}_{21} \approx \hat{I}_{12} \approx \hat{I}_{22} \approx \frac{2}{9} .
\end{aligned} \quad\left(\hat{I}_{i j}:=\frac{I_{i j}}{\left(y_{t}^{2}\right)^{i}\left(y_{b}^{2}\right)^{j}} .\right),
$$

- Deviations from maximal possible values are significant.
- Deviations from each other, e.g. $\hat{I}_{21}-\hat{I}_{12} \neq 0$ and $\hat{I}_{12}-\hat{I}_{22} \neq 0$, are significant.

Parameter space and experimental values

Error bars: $\mathbf{1 \sigma \times 1 0 0 0}$

Parameter space and experimental values

- Experimental value
* $\mathrm{mu}=\mathrm{mc}=\mathrm{mt}, \mathrm{md}=\mathrm{ms}=\mathrm{mb}$
- $C K M=1, m u=m d=m s=m c=0$
* CKM $=$ antiD, $m u=\mathrm{md}=\mathrm{ms}=\mathrm{mc}=0$
- $\mathrm{CKM}=1, \mathrm{mu}=\mathrm{md}=\mathrm{ms}=0, \mathrm{mc}=\mathrm{mt}$
* CKM =antiD, $m u=m d=m s=0, m c=m t$
- $\mathrm{CKM}=1, \mathrm{mu}=\mathrm{md}=\mathrm{mc}=0, \mathrm{~ms}=\mathrm{mb}$
* $C K M=$ antiD, $\mathrm{mu}=\mathrm{md}=\mathrm{mc}=0, \mathrm{~ms}=\mathrm{mb}$

CKM=antiD, $\mathrm{mu}=\mathrm{md}=0, \mathrm{~ms}=\mathrm{mb}, \mathrm{mc}=\mathrm{mt}$

- $\mathrm{CKM}=1, \mathrm{mu}=\mathrm{md}=0, \mathrm{~ms}=\mathrm{mb}, \mathrm{mc}=\mathrm{mt}$
- $\quad \mathrm{s} 13=0,|\mathrm{~s} 23|=1, \mathrm{mu}=\mathrm{md}=\mathrm{ms}=0, \mathrm{mc}=\mathrm{mt} / \mathrm{sqrt}(2)$
- $\mathrm{s} 23=0,|\mathrm{~s} 12|=1, \mathrm{mu}=\mathrm{md}=0, \mathrm{~ms}=\mathrm{mb}, \mathrm{mc}=\mathrm{mt} / \mathrm{sqrt}(2)$ - $\mathrm{s} 13=0,|\mathrm{~s} 23|=1, \mathrm{mu}=\mathrm{md}=\mathrm{mc}=0, \mathrm{~ms}=\mathrm{mb} / \mathrm{sqrt}(2)$ - $\mathrm{s} 23=0,|\mathrm{~s} 12|=1, \mathrm{mu}=\mathrm{md}=0, \mathrm{mc}=\mathrm{mt}, \mathrm{ms}=\mathrm{mb} / \mathrm{sqrt}(2)$

Results and empirics

- Observed primary invariants are very close to maximal - with small but significant deviations.
- Small deviations from max. correspond to 1./2. gen. masses and mixings.
- Explaining the value of the invariants and their misalignment from maximal point amounts to solving the flavor puzzle in the language of invariants.

Results and empirics

- Observed primary invariants are very close to maximal - with small but significant deviations.
- Small deviations from max. correspond to 1./2. gen. masses and mixings.
- Explaining the value of the invariants and their misalignment from maximal point amounts to solving the flavor puzzle in the language of invariants.
- The invariants are strongly correlated (for the observed hierarchical parameters).
linear scan:

log scan:

This is not true for anarchical parameters, or points with increased symmetry.

RGE running of invariants

$$
\begin{array}{rlrl}
\mathcal{D} & :=16 \pi^{2} \mu \frac{\mathrm{~d}}{\mathrm{~d} \mu}, & \mathcal{D} \tilde{H}_{u}=2\left(a_{\Delta}+t_{u d l}\right) \tilde{H}_{u}+3 \tilde{H}_{u}^{2}-\frac{3}{2}\left(\tilde{H}_{d} \tilde{H}_{u}+\tilde{H}_{u} \tilde{H}_{d}\right), \\
a_{\Delta} & :=-8 g_{s}^{2}-\frac{9}{4} g^{2}-\frac{17}{12} g^{\prime 2}, & \mathcal{D} \tilde{H}_{d}=2\left(a_{\Gamma}+t_{u d l}\right) \tilde{H}_{d}+3 \tilde{H}_{d}^{2}-\frac{3}{2}\left(\tilde{H}_{d} \tilde{H}_{u}+\tilde{H}_{u} \tilde{H}_{d}\right), \\
a_{\Gamma} & :=-8 g_{s}^{2}-\frac{9}{4} g^{2}-\frac{5}{12} g^{\prime 2}, & \mathcal{D} \tilde{H}_{\ell}=2\left(a_{\Pi}+t_{u d l}\right) \tilde{H}_{\ell}+3 \tilde{H}_{\ell}^{2}, \\
a_{\Pi} & :=-\frac{9}{4} g^{2}-\frac{15}{4} g^{\prime 2}, & & \mathcal{D} g_{s}=-7 g_{s}^{3}, \quad \mathcal{D} g=-\frac{19}{6} g^{3}, \quad \mathcal{D} g^{\prime}=\frac{41}{6} g^{\prime 3} . \\
t_{u d l} & :=3 \operatorname{Tr} \tilde{H}_{u}+3 \operatorname{Tr} \tilde{H}_{d}+\operatorname{Tr} \tilde{H}_{\ell} . & & \mathcal{D}
\end{array}
$$

CP transformation of covariants and invariants

CP is trafo under $\operatorname{Out}(\mathrm{SU}(N))=\mathbb{Z}_{2}$.
Covariants:

$$
\begin{aligned}
& \boldsymbol{u}^{a} \mapsto-R^{a b} \boldsymbol{u}^{b}, \\
& \boldsymbol{d}^{a} \mapsto-R^{a b} \boldsymbol{d}^{b},
\end{aligned}
$$

e.g. in Gell-Mann basis for the generators:
$R=\operatorname{diag}(-1,+1,-1,-1,+1,-1,+1,-1)$.
$\mathrm{SU}(3)$ tensors (projection ops.):

$$
\begin{aligned}
& f^{a b c} \mapsto R^{a a^{\prime}} R^{b b^{\prime}} R^{c c^{\prime}} f^{a^{\prime} b^{\prime} c^{\prime}}=f^{a b c} \\
& d^{a b c} \mapsto R^{a a^{\prime}} R^{b b^{\prime}} R^{c c^{\prime}} d^{a^{\prime} b^{\prime} c^{\prime}}=-d^{a b c}
\end{aligned}
$$

CP trafo of invariants is easily read-off from birdtrack projection operator:
Invariants are CP even / CP odd iff their projection operator contains and even / odd \# of f tensors.

CP transformation of covariants and invariants

CP is trafo under $\operatorname{Out}(\mathrm{SU}(N))=\mathbb{Z}_{2}$.
Covariants:

$$
\begin{aligned}
& \boldsymbol{u}^{a} \mapsto-R^{a b} \boldsymbol{u}^{b}, \\
& \boldsymbol{d}^{a} \mapsto-R^{a b} \boldsymbol{d}^{b},
\end{aligned}
$$

\Rightarrow Only CP-odd in SM: $J_{33} \propto$

e.g. in Gell-Mann basis for the generators:
$R=\operatorname{diag}(-1,+1,-1,-1,+1,-1,+1,-1)$.
$\mathrm{SU}(3)$ tensors (projection ops.):

$$
\begin{aligned}
f^{a b c} \mapsto R^{a a^{\prime}} R^{b b^{\prime}} R^{c c^{\prime}} f^{a^{\prime} b^{\prime} c^{\prime}}=f^{a b c} \\
d^{a b c} \mapsto R^{a a^{\prime}} R^{b b^{\prime}} R^{c c^{\prime}} d^{a^{\prime} b^{\prime} c^{\prime}}=-d^{a b c}
\end{aligned}
$$

BSM: CPV at order 3?
${ }_{\mathrm{i}} f^{a b c} \operatorname{Tr}\left[t^{a} H_{u}\right] \operatorname{Tr}\left[t^{b} H_{d}\right] \operatorname{Tr}\left[t^{c} \boldsymbol{H}_{\boldsymbol{\ell}}\right]$

CP trafo of invariants is easily read-off from birdtrack projection operator:
Invariants are CP even / CP odd iff their projection operator contains and even / odd \# of f tensors.

Comments

- $I_{01}, I_{02}, I_{03}, I_{10}, I_{20}, I_{30}$ correspond to masses.
- CP-even $I_{11}, I_{21}, I_{12}, I_{22}$ correspond to mixings.
- CPV requires interplay of 8 CP-even primary invariants (all besides the "trivial" invariants I_{10}, I_{01}).
- Non-trivial $\hat{I}_{i j}$'s being close to maximal forces the Jarlskog invariant to be small.
- Any reduction of \# of parameters corresponds to relation between invariants.
- All flavor observables can be expressed as

$$
\mathcal{O}_{\text {flavor }}=\operatorname{Polynomial}_{1}\left(I_{i j}\right)+J_{33} \times \operatorname{Polynomial}_{2}\left(I_{i j}\right) .
$$

This is guaranteed since our primary and secondary invariants form a "Hironaka decomposition" of the ring.

- Our invariants provide easy targets for fits of any BSM model to SM flavor structure.
- Our procedure is completely general, can be applied to all BSM scenarios.

Outlook

- Ambiguity in choice of I_{22} needs to be clarified. Contributions to different contraction channels could be very relevant to decipher flavor puzzle.
- Relative alignments of 8-plet covariants are in 1:1 relation with invariant relations.
see other examples [Merle, Zwicky '12], [Bento, Boto, Silva, AT '20]
- Maximization and strong correlation of invariants could point to possible information theoretic argument to set parameters! \rightarrow should be done.
see e.g. [Bousso, Harnik, Kribs, Perez '07], [Beane, Kaplan, Klco, Savage '19], [Carena, Low, Wagner, Xiao '23]
- Extension to lepton sector with orthogonal invariants \rightarrow should be done. for HS/PL and non-orthogonal invariants see [Hanany, Jenkins, Manhoar, Torri '10], [Wang, Yu, Zhou '21], [Yu, Zhou '21].
- Using orthogonal BIs in $\mathrm{SU}(3)_{Q_{\mathrm{L}}}$ fundamental space \rightarrow should be done.
- RGE's directly in terms of invariants \rightarrow should be done.
- Investigation of $u \leftrightarrow d$ custodial flavor symmetry \rightarrow should be done.
- General relation of Bl's to observables \rightarrow should be done.

Conclusion

- We have for the first time obtained a quantitative analysis of the flavor puzzle exclusively in terms of basis invariants.
- This uncovers an entirely new angle on the flavor puzzle.
- The (quark) flavor puzzle in invariants amounts to explaining:
- Why are the invariants very close to maximal?
- What explains their tiny deviations from the maximal values?
- Why are the (orthogonal, a priori independent) invariants so strongly correlated?
- Any explanation of the flavor structure will have to answer these questions.

This is just the beginning of an entirely new exploration of the flavor puzzle.

Thank You!

Backup slides

General Procedure / Algorithm

for the construction of basis invariants.

Three steps:

1. Construction of basis covariant objects: "building blocks".

- Determine CP transformation behavior of the building blocks.

2. Derive Hilbert series \& Plethystic logarithm.
\Rightarrow \# and order of primary invariants.
\Rightarrow \# and structure of generating set of invariants.
\Rightarrow interrelations between invariants (\equiv syzygies).
3. Construct all invariants and interrelations explicitly.

Application here:
Characterize SM flavor sector invariants.

Hilbert Series and Plethystic Logarithm

Covariant building blocks as input for the ring:

$$
\boldsymbol{8}_{u} \widehat{=} u, \quad 8_{d} \widehat{=} d
$$

From input, compute Hilbert series (HS) and Plethystic logarithm (PL):
introduced in math: [Getzler, Kapranov '94], physics [Benvenuti, Feng, Hanany, He '06]

$$
\begin{gathered}
\mathfrak{H}(u, d)=\int_{\mathrm{SU}(3)} d \mu_{\mathrm{SU}(3)} \mathrm{PE}\left[z_{1}, z_{2} ; u ; \boldsymbol{8}\right] \operatorname{PE}\left[z_{1}, z_{2} ; d ; \boldsymbol{8}\right], \\
\mathrm{PL}[\mathfrak{H}(u, d)]:=\sum_{k=1}^{\infty} \frac{\mu(k) \ln \mathfrak{H}\left(u^{k}, d^{k}\right)}{k} . \\
\mathfrak{H}(u, d)=\frac{1+u^{3} d^{3}}{\left(1-u^{2}\right)\left(1-d^{2}\right)(1-u d)\left(1-u^{3}\right)\left(1-d^{3}\right)\left(1-u d^{2}\right)\left(1-u^{2} d\right)\left(1-u^{2} d^{2}\right)} .
\end{gathered}
$$

$$
\operatorname{PL}[\mathfrak{H}(u, d)]=u^{2}+u d+d^{2}+u^{3}+d^{3}+u^{2} d+u d^{2}+u^{2} d^{2}+u^{3} d^{3}-u^{6} d^{6} .
$$

Möbius function $\mu(n)= \begin{cases}\left({ }_{-}^{+} 1,\right. & \text { if } n \text { is square free with even(odd) \# number of prime factors, } \\ 0, & \text { else. }\end{cases}$

CKM in PDG parametrization

$V_{\mathrm{CKM}}:=V_{u, \mathrm{~L}}^{\dagger} V_{d, \mathrm{~L}}$ is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In PDG parametrization

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-\mathrm{i} \delta} \\
0 & 1 & 0 \\
-s_{13} e^{\mathrm{i} \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Explicit expressions for Invariants in physical basis

In "physical parameters" of SM the normalized invariants can be approximated using the (empirically observed) parametric hierarchies $y_{t} \gg y_{c, u}, y_{b} \gg y_{s, d}$ and $\lambda \ll 1$,

$$
\begin{aligned}
\hat{I}_{20} & =\frac{2}{3}-2 \frac{y_{c}^{2}+y_{u}^{2}}{y_{t}^{2}}+\text { h.o. }, & \hat{I}_{02}=\frac{2}{3}-2 \frac{y_{s}^{2}+y_{d}^{2}}{y_{b}^{2}}+\text { h.o. }, \\
\hat{I}_{30} & =\frac{2}{9}-\frac{y_{c}^{2}+y_{u}^{2}}{y_{t}^{2}}+\text { h.o. }, & \hat{I}_{03}=\frac{2}{9}-\frac{y_{s}^{2}+y_{d}^{2}}{y_{b}^{2}}+\text { h.o. }, \\
\hat{I}_{11} & =\frac{2}{3}-A^{2} \lambda^{4}-\frac{y_{c}^{2}+y_{u}^{2}}{y_{t}^{2}}-\frac{y_{s}^{2}+y_{d}^{2}}{y_{b}^{2}}+\text { h.o. }, & \\
3 \hat{I}_{21} & =\frac{2}{3}-A^{2} \lambda^{4}-2 \frac{y_{c}^{2}+y_{u}^{2}}{y_{t}^{2}}-\frac{y_{s}^{2}+y_{d}^{2}}{y_{b}^{2}}+\text { h.o. }, & \\
3 \hat{I}_{12} & =\frac{2}{3}-A^{2} \lambda^{4}-\frac{y_{c}^{2}+y_{u}^{2}}{y_{t}^{2}}-2 \frac{y_{s}^{2}+y_{d}^{2}}{y_{b}^{2}}+\text { h.o. }, & \\
3 \hat{I}_{22} & =\frac{2}{3}-A^{2} \lambda^{4}-2 \frac{y_{c}^{2}+y_{u}^{2}}{y_{t}^{2}}-2 \frac{y_{s}^{2}+y_{d}^{2}}{y_{b}^{2}}+\text { h.o. } &
\end{aligned}
$$

h.o. here refers to higher order corrections in λ or higher powers of the Yukawa coupling ratios. This shows that the values $2 / 3$ and $2 / 9^{\prime}$ 'ths become exact in the limit of zero mixing and zero 1st and 2nd-generation fermion masses.

Correlation of "mass" invariants $I_{10}, I_{20}, I_{30}, I_{01}, I_{02}, I_{03}$

- Experimental value
$\mathrm{mu}=\mathrm{mc}=\mathrm{mt}, \mathrm{md}=\mathrm{ms}=\mathrm{mb}$
$\mathrm{CKM}=1, \mathrm{mu}=\mathrm{md}=\mathrm{ms}=\mathrm{mc}=$
* CKM-antiD, mu=md=ms=mc=0
- $C K M=1, m u=m d=m s=0, m c=m t$
- CKM $=$ antid, $\mathrm{mu}=m \mathrm{md}=\mathrm{ms}=0, \mathrm{mc}=\mathrm{m}$

CKM $=1, m u=m d=m c=0, m s=m b$
. $C K M=a n t i D, m u=m d=m c=0, m s=m b$

1. CKM $\mathrm{CK}=$ antidiD, $m u=m d=m \mathrm{mc}=0, \mathrm{~ms}=\mathrm{mb}$

- $C K M=1, m u=m d=0, m s=m b, m c=m t$
- $s 13=0,|s 23|=1$, mu $=m d=m s=0, \mathrm{mc}=\mathrm{mt} /$ sqrt(2)
* $s 23=0,|s 12|=1, m u=m d=0, m s=m b, m c=m t / s a r t(2)$
$s 13=0,|123|=1, \mathrm{mu}=\mathrm{md}=\mathrm{mc}=0, \mathrm{~ms}=\mathrm{mb} / \mathrm{sqrt}(2)$
$\mathrm{s} 23=0,|\mathrm{~s} 12|=1, \mathrm{mu}=\mathrm{md}=0, \mathrm{mc}=\mathrm{mt}, \mathrm{ms}=\mathrm{mb} / \mathrm{sqq}$

- Experimental value

CKM=1, mu=md=ms=mc=0

* CKM $=$ antid, mu=md=ms=mc=0
- $\mathrm{CKM}=1, \mathrm{mu}=\mathrm{md}=\mathrm{ms}=0, \mathrm{mc}=\mathrm{mt}$
$\mathrm{CKM}=1, \mathrm{mu}=\mathrm{md}=\mathrm{mc}=0, \mathrm{~ms}=\mathrm{mb}$
CKM=antiD, mu=mdemc $=0, \mathrm{~ms}=$
CKM=antio, $m u=m d=0, m s=m b, m c=m t$
* $\mathrm{CKM}=1, \mathrm{mu}=\mathrm{md}=0, \mathrm{~ms}=\mathrm{mb}, \mathrm{mc}=\mathrm{mt}$
- $s 13=0,|s 23|=1, \mathrm{mu}=\mathrm{md}=\mathrm{ms}=0, \mathrm{mc}=\mathrm{mt} / \mathrm{sqrt}(2)$
$523=0,|512|=1, m u=m d=0, \mathrm{~ms}=m \mathrm{mb}, \mathrm{mc}=m \mathrm{mt} / \mathrm{sqrtt}(2)$
- $513=0,|523|=1, m u=m d=m c=0, \mathrm{~ms}=\mathrm{mb} / \mathrm{sqrt}(2)$

Parameter space and experimental values

Arguably even "more basis invariant" alternative choice of normalization:

$$
\hat{I}_{i j}^{\text {att }}:=\frac{I_{i j}}{I_{10}^{i} I_{01}^{j}} .
$$

Birdtrack Identities

We mostly use the conventions of [Keppeler '17] with the following identities

with

$$
T_{\boldsymbol{r}} \delta^{a b}=\operatorname{Tr}\left[t^{a} t^{b}\right]
$$

with

$$
C_{D}=\frac{N^{2}-4}{N}
$$

with

$$
C_{A}=2 T_{r} N
$$

with

$$
C_{F}=T_{r} \frac{N^{2}-1}{N}
$$

