The Basis Invariant Flavor Puzzle

Andreas Trautner

based on:

arXiv:1812.02614 JHEP 05 (2019) 208

Planck 2024, Lisbon

03.06.24

- Why three generations of matter Fermions?
- Why hierarchical masses of Fermions?
- Why small transition probabilities for $q_i^{
 m up} o q_{j
 eq i}^{
 m down}$? $\left(\propto |V_{ij}^{
 m CKM}|^2
 ight)$
- Why large transition probabilities for $\ell_i o
 u_j$? $\left(\propto |U_{ij}^{ ext{PMNS}}|^2
 ight)$

• Why CP violation only in combination with flavor violation?

Parametrization independent measure of CP violation:

Greenberg '85, Jarlskog '85]

$$J_{33} = \det \left[M_u M_u^{\dagger}, M_d M_d^{\dagger} \right] \propto \operatorname{Im} \left[V_{ud}^* V_{cs}^* V_{us} V_{cd} \right] = 3.08_{-0.13}^{+0.15} \times 10^{-5} .$$

Often underappreciated: Direct confirmation of SM FP at the LHC

And: No hints of New Physics.

see talk by Martinelli

	1																		18
1	1																		2
	Н	2			SEDIA	ODIC	TAD	150	с ты		N/EN	ITC		13	14	15	16	17	He
2	3	4		•	EKI	טועכ	IAD	LE O	r 1111	C CLC	IVIEI	113		5	6	7	8	9	10
	Li	Be												В	С	N	0	F	Ne
3	11	12												13	14	15	16	17	18
B	Na	Mg	3		4	5	6	7	8	9	10	11	12	Al	Si	Р	S	CI	Ar
Period 4	19	20	21		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc		Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	37	38	39		40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Υ		Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
6	55	56	57	*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	La		Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
7	87	88	89	+	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Fr	Ra	Ac		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
																			1
Lanthanides *					58	59	60	61	62	63	64	65	66	67	68	69	70	71	
					Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			Actinides	, †	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
					Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Why use Basis Invariants (B.I.'s)?

- Flavor puzzle is plagued by unphysical choice of basis and parametrization.
- Physical observables <u>must</u> be given as function of Bls.
- BI necessary and sufficient conditions for CPV in SM.... [Greenberg '85; Jarlskog '85]
 ... and BSM: Multi-scalar 2/3/NHDM, 4th gen., Dirac vs. Majorana ν's, ...
- BIs and their relations, incl. CP-even BIs, allow to detect symmetries in general.
 [Ivanov, Nishi, Silva, AT '19], [de Meideiros Varzielas, Ivanov '19], [Bento, Boto, Silva, AT '20]
- BI formulation simplifies RGE's, RGE running, and derivation of RGE invariants.
 [Harrison, Krishnan, Scott '10]. [Feldmann, Mannel, Schwertfeger '15]. [Chiu, Kuo '15]. [Bednyakov '18]. [Wang, Yu. Zhou '21]. . . .

However, no quantitative basis invariant analysis of the flavor puzzle exist.

This allows an entirely new perspective on the flavor puzzle!

[Bernabeau et al. '86], [Branco, Lavoura, Rebelo '86], [Botella, Silva '95], [Davidson, Haber '05], [Yu, Zhou '21],...

Why hasn't it been done? Technically challenging:

How to construct BI's? When to stop?

general answers and technique based on example of 2HDM [AT '18]

Outline

Motivation

Disclaimer: I will focus entirely on the quark sector here.

for leptons see talk by Davidson

- Standard Model quark sector flavor covariants
- Construction of the complete ring of quark sector orthogonal basis invariants
- Determine the basis invariants from experimental data
- ⇒ An entirely basis invariant picture of the quark flavor puzzle.
- CP transformation of invariants & comments

SM Quark Sector Flavor Invariants – Systematic Construction

Birdtrack diagrams / "Colorflow" / ... SU(N) tensors

$$(t^a)^i_j = \bigcup_{i = 0}^{a + b} S$$

$$\left[t^a,t^b\right] \;=\; \mathrm{i} f^{abc} t^c \;, \quad \; \mathrm{Tr} \left(t^a \, t^b\right) \;=\; T_{\pmb{r}} \, \delta^{ab}$$

Birdtrack diagrams / "Colorflow" / ... SU(N) tensors

$$(t^{a})_{j}^{i} = \bigotimes_{i}^{j} \qquad \begin{bmatrix} t^{a}, t^{b} \end{bmatrix} = if^{abc}t^{c}, \quad \operatorname{Tr}\left(t^{a}t^{b}\right) = T_{r}\delta^{ab}$$

$$N \otimes \overline{N} = 1 \qquad \oplus \qquad adj$$

$$\delta_{n}^{i}\delta_{m}^{j} = \frac{1}{N}\delta_{m}^{i}\delta_{n}^{j} + \frac{1}{T_{r}}(t^{a})_{m}^{i}(t^{a})_{n}^{j}$$

$$= \frac{1}{N} \qquad \downarrow \qquad \qquad + \frac{1}{T_{r}}$$

References for introduction to Birdtracks: [Cvitanovic Book '08, Keppeler and Sjödahl '13, Keppeler '17]

$$-\mathcal{L}_{\text{Yuk.}} = \overline{Q}_{\text{L}} \widetilde{H} Y_{u} u_{\text{R}} + \overline{Q}_{\text{L}} H Y_{d} d_{\text{R}} + \text{h.c.},$$

$$\begin{array}{cccc} -\mathcal{L}_{\mathrm{Yuk.}} &=& \overline{Q}_{\mathrm{L}} \, \widetilde{H} \, \boldsymbol{Y_u} \, u_{\mathrm{R}} \, + \, \overline{Q}_{\mathrm{L}} \, H \, \boldsymbol{Y_d} \, d_{\mathrm{R}} \, + \, \mathrm{h.c.} \, , \\ \hline Y_u & \widehat{=} \, (\overline{\mathbf{3}}, \mathbf{3}, \mathbf{1}) \\ Y_d & \widehat{=} \, (\overline{\mathbf{3}}, \mathbf{1}, \mathbf{3}) \end{array} \quad \text{of} \quad \mathrm{SU}(3)_{Q_{\mathrm{L}}} \otimes \mathrm{SU}(3)_{u_{\mathrm{R}}} \otimes \mathrm{SU}(3)_{d_{\mathrm{R}}} \\ \end{array}$$

$$\begin{aligned} -\mathcal{L}_{\mathrm{Yuk.}} &= \overline{Q}_{\mathrm{L}} \, \widetilde{H} \, \boldsymbol{Y_u} \, u_{\mathrm{R}} \, + \, \overline{Q}_{\mathrm{L}} \, H \, \boldsymbol{Y_d} \, d_{\mathrm{R}} \, + \, \mathrm{h.c.} \, , \\ Y_u & = (\overline{\mathbf{3}}, \mathbf{3}, \mathbf{1}) \\ Y_d & = (\overline{\mathbf{3}}, \mathbf{1}, \mathbf{3}) \end{aligned} \qquad \text{of} \qquad \mathrm{SU}(3)_{Q_{\mathrm{L}}} \otimes \mathrm{SU}(3)_{u_{\mathrm{R}}} \otimes \mathrm{SU}(3)_{d_{\mathrm{R}}}$$

 $H_u:=Y_uY_u^\dagger,\quad H_d:=Y_dY_d^\dagger$ both transform as $\ \overline{f 3}\otimes {f 3}$ of $\mathrm{SU}(3)_{Q_\mathrm{L}}$.

$$-\mathcal{L}_{\mathrm{Yuk.}} = \overline{Q}_{\mathrm{L}} \, \widetilde{H} \, \boldsymbol{Y}_{\boldsymbol{u}} \, u_{\mathrm{R}} \, + \, \overline{Q}_{\mathrm{L}} \, H \, \boldsymbol{Y}_{\boldsymbol{d}} \, d_{\mathrm{R}} \, + \, \mathrm{h.c.} \, ,$$

$$Y_{u} \, \widehat{=} \, (\overline{\mathbf{3}}, \mathbf{3}, \mathbf{1}) \quad \text{of} \quad \mathrm{SU}(3)_{Q_{\mathrm{L}}} \otimes \mathrm{SU}(3)_{u_{\mathrm{R}}} \otimes \mathrm{SU}(3)_{d_{\mathrm{R}}}$$

$$H_{u} := Y_{u} Y_{u}^{\dagger} \, , \quad H_{d} := Y_{d} Y_{d}^{\dagger} \quad \text{both transform as} \quad \overline{\mathbf{3}} \otimes \mathbf{3} \quad \text{of} \quad \mathrm{SU}(3)_{Q_{\mathrm{L}}} \, .$$

$$\overline{\mathbf{3}} \otimes \mathbf{3} \quad = \quad \mathbf{1} \quad \oplus \quad \mathbf{8} \, .$$

$$H_{u} = \frac{1}{N} \quad H_{u} + \frac{1}{T_{r}} \quad \mathcal{H}_{u} \quad .$$

$$-\mathcal{L}_{\mathrm{Yuk.}} = \overline{Q}_{\mathrm{L}} \widetilde{H} \, \boldsymbol{Y}_{\boldsymbol{u}} \, u_{\mathrm{R}} \, + \, \overline{Q}_{\mathrm{L}} \, H \, \boldsymbol{Y}_{\boldsymbol{d}} \, d_{\mathrm{R}} \, + \, \mathrm{h.c.} \, ,$$

$$Y_{u} \, \widehat{=} \, (\overline{\mathbf{3}}, \mathbf{3}, \mathbf{1}) \quad \text{of} \quad \mathrm{SU}(3)_{Q_{\mathrm{L}}} \otimes \mathrm{SU}(3)_{u_{\mathrm{R}}} \otimes \mathrm{SU}(3)_{d_{\mathrm{R}}}$$

$$Y_{d} \, \widehat{=} \, (\overline{\mathbf{3}}, \mathbf{1}, \mathbf{3})$$

$$H_u:=Y_uY_u^\dagger\,,\quad H_d:=Y_dY_d^\dagger\quad ext{ both transform as } \ \overline{f 3}\otimes {f 3} \quad ext{of } \ \mathrm{SU}(3)_{Q_\mathrm{L}} \;.$$

$$\overline{3} \otimes 3 = 1 \oplus 8.$$

$$H_u = \frac{1}{N} \longrightarrow H_u + \frac{1}{T_r} \longrightarrow H_u .$$

$$u^a = \operatorname{Tr} [t^a H_u] = a \operatorname{max} \left(H_u \right) d^a = \operatorname{Tr} [t^a H_d] = a \operatorname{max} \left(H_d \right)$$

9/29

Orthogonal Covariant Projection Operators

What does orthogonal mean here?

Orthogonality on the level of **projection operators**!

Projection operators: $P_i^2 = P_i$, $\operatorname{Tr} P_i = \dim(\boldsymbol{r}_i)$,

Orthogonality: $P_i \cdot P_j = 0$.

Using orthogonal **singlet** projectors, we find <u>invariants</u> that are orthogonal to each other!

What is necessary to construct Basis Invariants

$$\mathbf{8}_u \otimes \mathbf{8}_u \otimes \ldots \mathbf{8}_d \otimes \mathbf{8}_d \otimes \cdots = \mathbf{8}_u^{\otimes k} \otimes \mathbf{8}_d^{\otimes \ell} = \sum_{\oplus} r_i$$

Singlet projection operators:

$$\mathbf{8}_{u}^{\otimes k}\otimes\mathbf{8}_{d}^{\otimes \ell}\supset\mathbf{1}_{(1)}\oplus\mathbf{1}_{(2)}\oplus\ldots$$

Singlet projection operators are characterized by *factorization*. For example:

How many *independent* singlets exist? (here: in contractions $\mathbf{8}_{u}^{\otimes k} \otimes \mathbf{8}_{d}^{\otimes \ell}$ for all k, ℓ)

• Algebraic (in-)dependence:

Invariants $\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots$ are **algebraically dependent** if and only if

$$\exists$$
 Polynomial $(\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots) = 0$.

 $(\Leftrightarrow \mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots \text{ are algebraically } \underline{\text{in}} \text{dependent iff } \nexists \mathrm{Pol})$

• Algebraic (in-)dependence:

Invariants $\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots$ are **algebraically dependent** if and only if

$$\exists$$
 Polynomial $(\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots) = 0$.

• Primary invariants:

$$(\Leftrightarrow \mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots \text{ are algebraically } \underline{\text{in}} \text{dependent iff } \nexists \mathrm{Pol})$$

A maximal set of algebraically independent invariants.

of primary invariants = # of physical parameters.

(a choice of primary invariants is *not unique*, but the number of invariants is)

• Algebraic (in-)dependence:

Invariants $\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots$ are **algebraically dependent** if and only if

$$\exists$$
 Polynomial $(\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots) = 0$.

• Primary invariants:

$$(\Leftrightarrow \mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots \text{ are algebraically } \underline{\text{in}} \text{dependent iff } \nexists \mathrm{Pol})$$

A maximal set of algebraically independent invariants.

of primary invariants = # of physical parameters.

(a choice of primary invariants is not unique, but the number of invariants is)

• Secondary invariants:

all \mathcal{I} 's that *cannot* be written as polynomial of other invariants,

$$\mathcal{I}_i \neq \text{Polynomial}(\mathcal{I}_j, \dots)$$
.

• Algebraic (in-)dependence:

Invariants $\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots$ are **algebraically dependent** if and only if

$$\exists$$
 Polynomial $(\mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots) = 0$.

• Primary invariants:

$$(\Leftrightarrow \mathcal{I}_1, \mathcal{I}_2, \mathcal{I}_3, \dots \text{ are algebraically } \underline{\text{in}} \text{dependent iff } \nexists \mathrm{Pol})$$

A maximal set of algebraically independent invariants.

of primary invariants = # of physical parameters.

(a choice of primary invariants is *not unique*, but the number of invariants is)

Secondary invariants:

all \mathcal{I} 's that *cannot* be written as polynomial of other invariants,

$$\mathcal{I}_i \neq \text{Polynomial}(\mathcal{I}_i, \dots)$$
.

- Generating set of invariants
 ≡ all primary + secondary invariants.
 - ⇒ All invariants can be written as a polynomial in the *generating set* of invariants.

$$\mathcal{I} = \text{Polynomial}(\mathcal{I}_1, \mathcal{I}_2, \dots)$$
.

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?

Answer: Hilbert series (HS) and Plethystic Logarithm (PL).

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?

Answer: Hilbert series (HS) and Plethystic Logarithm (PL).

The HS/PL combination is a powerful vehicle.

[Noether 1916; Getzler & Kapranov '94]

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?

Answer: Hilbert series (HS) and Plethystic Logarithm (PL).

The HS/PL combination is a powerful vehicle.

[Noether 1916; Getzler & Kapranov '94]

13/29

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?

Answer: Hilbert series (HS) and Plethystic Logarithm (PL).

The HS/PL combination is a powerful vehicle.

[Noether 1916; Getzler & Kapranov '94]

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?
 Answer: Hilbert series (HS) and Plethystic Logarithm (PL).
- HS/PL input: covariants are $\mathbf{8}_u$ and $\mathbf{8}_d$ of SU(3).

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?
 Answer: Hilbert series (HS) and Plethystic Logarithm (PL).
- HS/PL input: covariants are $\mathbf{8}_u$ and $\mathbf{8}_d$ of SU(3).

→ HS/PL output:

[Jenkins & Manohar '09]

- # of primary invariants and their sub-structure (covariant content):

```
linear (u) (d) quadratic u^2 d^2 ud cubic u^3 d^3 u^2d ud^2 quartic u^2d^2 (10 primary invariants \hat{=} 10 physical parameters).
```

- 1 secondary invariant of structure: u^3d^3 . (Jarlskog invariant)
- Relation (**Syzygy**) of order u^6d^6 between primaries and the secondary.

- How to find the number of primary / secondary invariants?
- How to find their structure in terms of covariants?
 Answer: Hilbert series (HS) and Plethystic Logarithm (PL).
- HS/PL input: covariants are $\mathbf{8}_u$ and $\mathbf{8}_d$ of SU(3).

→ HS/PL output:

[Jenkins & Manohar '09]

- # of primary invariants and their sub-structure (covariant content):

```
linear (u) (d) quadratic u^2 d^2 ud cubic u^3 d^3 u^2d ud^2 quartic u^2d^2 (10 primary invariants \hat{=} 10 physical parameters).
```

- 1 secondary invariant of structure: u^3d^3 . (Jarlskog invariant)
- Relation (**Syzygy**) of order u^6d^6 between primaries and the secondary.

Note: The HS/PL does **not** tell us **how** to construct the invariants or the relations.

Note: The HS/PL does **not** tell us **how** to construct the invariants or the relations.

For this we use $\it orthogonal\ projection\ operators$. (here in adjoint space of ${\rm SU}(3)_{Q_{\rm L}}$)

Those can be constructed via birdtrack diagrams

[Cvitanovic '76 '08, Keppeler and Sjödahl '13]

Note: The HS/PL does **not** tell us **how** to construct the invariants or the relations.

For this we use *orthogonal projection operators*. (here in adjoint space of $SU(3)_{Q_L}$)

Those can be constructed via birdtrack diagrams

[Cvitanovic '76 '08, Keppeler and Sjödahl '13]

• $\mathbf{8}^{\otimes 2} \rightarrow \mathbf{1}$

$$\delta^{ab} = 00000000000$$

Note: The HS/PL does **not** tell us **how** to construct the invariants or the relations.

For this we use *orthogonal projection operators*. (here in adjoint space of $SU(3)_{Q_L}$)

[AT '18]

Those can be constructed via birdtrack diagrams

[Cvitanovic '76 '08, Keppeler and Sjödahl '13]

- $8^{\otimes 2} \rightarrow 1$
- $8^{\otimes 3} \rightarrow 1$

Note: The HS/PL does **not** tell us **how** to construct the invariants or the relations.

For this we use *orthogonal projection operators*. (here in adjoint space of $SU(3)_{Q_L}$)

Those can be constructed via **birdtrack** diagrams

[Cvitanovic '76 '08, Keppeler and Siödahl '13]

- $8^{\otimes 2} \rightarrow 1$
- $8^{\otimes 3} \rightarrow 1$
- $8^{\otimes 4} \rightarrow 1$

Can understand the different contraction channels from

$$\mathbf{8}^{\otimes 2} = \mathbf{1} \oplus \mathbf{8}_{S} \oplus \mathbf{8}_{A} \oplus \mathbf{10} \oplus \overline{\mathbf{10}} \oplus \mathbf{27}$$
.

Note: The HS/PL does **not** tell us **how** to construct the invariants or the relations.

For this we use *orthogonal projection operators*. (here in adjoint space of $SU(3)_{Q_L}$)

[AT '18]

Those can be constructed via birdtrack diagrams

[Cvitanovic '76 '08, Keppeler and Sjödahl '13]

- $\mathbf{8}^{\otimes 2} \to \mathbf{1}$ many operators exist in $\mathbf{8}^{\otimes 6} \to \mathbf{1}$, we only need one:
- $\mathbf{8}^{\otimes 3} \rightarrow \mathbf{1}$
- ullet 8 $^{\otimes 4}
 ightarrow \mathbf{1}$
- ullet 8 $^{\otimes 6}
 ightarrow 1$

Projection operators

Note: The HS/PL does **not** tell us **how** to construct the invariants or the relations.

For this we use *orthogonal projection operators*. (here in adjoint space of $\mathrm{SU}(3)_{Q_{\mathrm{L}}}$)

Those can be constructed via birdtrack diagrams

[Cvitanovic '76 '08, Keppeler and Sjödahl '13]

- $\mathbf{8}^{\otimes 2} \to \mathbf{1}$ many operators exist in $\mathbf{8}^{\otimes 6} \to \mathbf{1}$, we only need one:
- $8^{\otimes 3} \rightarrow 1$
- ullet 8 $^{\otimes 4}
 ightarrow \mathbf{1}$
- $ullet 8^{\otimes 6}
 ightarrow 1$

All of these operators are **orthogonal** to each other. We now use them to construct the orthogonal invariants.

The 10 algebraically independent and orthogonal invariants are given by:

$$\begin{split} I_{10} := \operatorname{Tr} \widetilde{H}_u &\quad \text{and} \quad I_{01} := \operatorname{Tr} \widetilde{H}_d \;. \\ I_{20} := \operatorname{Tr}(H_u^2) \,, \quad I_{02} := \operatorname{Tr}(H_d^2) \,, \quad I_{11} := \operatorname{Tr}(H_u H_d) \,, \\ I_{30} := \operatorname{Tr}(H_u^3) \,, \quad I_{03} := \operatorname{Tr}(H_d^3) \,, \quad I_{21} := \operatorname{Tr}(H_u^2 H_d) \,, \quad I_{12} := \operatorname{Tr}(H_u H_d^2) \,, \\ I_{22} := 3 \operatorname{Tr}(H_u^2 H_d^2) - \operatorname{Tr}(H_u^2) \operatorname{Tr}(H_d^2) \,. \end{split}$$

Secondary invariant: exactly the Jarlskog invariant,

$$J_{33} := \text{Tr}(H_u^2 H_d^2 H_u H_d) - \text{Tr}(H_d^2 H_u^2 H_d H_u) \equiv \frac{1}{3} \text{Tr} [H_u, H_d]^3.$$

Note: Here
$$\widetilde{H}_u \equiv Y_u Y_u^\dagger$$
, $\widetilde{H}_d \equiv Y_d Y_d^\dagger$, and $H_{u,d} \equiv \widetilde{H}_{u,d} - \mathbb{1}\operatorname{Tr} \frac{\widetilde{H}_{u,d}}{3}$.

"Traces of traceless matrices"

The Syzygy

With our orthogonal invariants, the syzygy is given by

$$\begin{split} (J_{33})^2 &= -\frac{4}{27}I_{22}^3 + \frac{1}{9}I_{22}^2I_{11}^2 + \frac{1}{9}I_{22}^2I_{02}I_{20} + \frac{2}{3}I_{22}I_{30}I_{03}I_{11} - \frac{2}{3}I_{22}I_{21}I_{12}I_{11} - \frac{1}{9}I_{22}I_{11}^2I_{20}I_{02} \\ &+ \frac{2}{3}I_{22}I_{21}^2I_{02} + \frac{2}{3}I_{22}I_{12}^2I_{20} - \frac{2}{3}I_{22}I_{30}I_{12}I_{02} - \frac{2}{3}I_{22}I_{03}I_{21}I_{20} \\ &- \frac{1}{3}I_{30}^2I_{03}^2 + I_{21}^2I_{12}^2 + 2I_{30}I_{03}I_{21}I_{12} - \frac{4}{9}I_{30}I_{03}I_{11}^3 \\ &+ \frac{1}{18}I_{30}^2I_{02}^3 + \frac{1}{18}I_{03}^2I_{20}^3 - \frac{4}{3}I_{30}I_{12}^2 - \frac{4}{3}I_{03}I_{21}^2 \\ &- \frac{1}{3}I_{30}I_{21}I_{11}I_{02}^2 - \frac{1}{3}I_{03}I_{12}I_{11}I_{20}^2 + \frac{2}{3}I_{30}I_{12}I_{11}^2I_{02} + \frac{2}{3}I_{03}I_{21}I_{11}^2I_{20} \\ &- \frac{2}{3}I_{21}I_{12}I_{20}I_{02}I_{11} - \frac{1}{108}I_{20}^3I_{02}^3 + \frac{1}{36}I_{20}^2I_{02}^2I_{11}^2 + \frac{1}{6}I_{21}^2I_{20}I_{02}^2 + \frac{1}{6}I_{12}^2I_{02}I_{20}^2 \,. \end{split}$$

This is the **shortest relation ever** expressed for the SM quark flavor ring and has 27 terms. (this should be compared to result of [Jenkins&Manohar'09] with 241 terms using non-orthogonal invariants).

SM Quark Sector Flavor Invariants – Quantitative Analysis

Measuring the Invariants

In order to evaluate the invariants, one can use *any* parametrization. We use PDG:

$$\begin{split} \widetilde{H}_u \; &= \; \mathrm{diag}(\,y_u^2 \,,\, y_c^2 \,,\, y_t^2 \,) \\ \mathrm{and} \qquad \widetilde{H}_d \; &= \; V_{\mathrm{CKM}} \; \mathrm{diag}(\,y_d^2 \,,\, y_s^2 \,,\, y_b^2 \,) \; V_{\mathrm{CKM}}^\dagger \;, \end{split}$$

- 1. Explore the *possible* parameter space: scan $\mathcal{O}(10^7)$ uniform random points
 - $s_{12}, s_{13}, s_{23} \in [-1, 1]$ and $\delta \in [-\pi, \pi]$ together with:
 - A) Linear measure: $y_{u,c} \in [0,1]y_t, y_{d,s} \in [0,1]y_b$.
 - B) Log measure: $(m_{u,c}/\text{MeV}) \in 10^{[-1,\log(m_t/\text{MeV})]}, (m_{d,s}/\text{MeV}) \in 10^{[-1,\log(m_b/\text{MeV})]}.$

Measuring the Invariants

In order to evaluate the invariants, one can use *any* parametrization. We use PDG:

$$\begin{split} \widetilde{H}_u \; &= \; \mathrm{diag}(\,y_u^2 \,,\, y_c^2 \,,\, y_t^2 \,) \\ \mathrm{and} \qquad \widetilde{H}_d \; &= \; V_{\mathrm{CKM}} \; \mathrm{diag}(\,y_d^2 \,,\, y_s^2 \,,\, y_b^2 \,) \; V_{\mathrm{CKM}}^\dagger \;, \end{split}$$

- 1. Explore the *possible* parameter space: scan $\mathcal{O}(10^7)$ uniform random points
 - $s_{12}, s_{13}, s_{23} \in [-1, 1]$ and $\delta \in [-\pi, \pi]$ together with:
 - A) Linear measure: $y_{u,c} \in [0,1]y_t, y_{d,s} \in [0,1]y_b$.
 - B) Log measure: $(m_{u,c}/\text{MeV}) \in 10^{[-1,\log(m_t/\text{MeV})]}, (m_{d,s}/\text{MeV}) \in 10^{[-1,\log(m_b/\text{MeV})]}.$
- 2. "Measure" the parameter point realized in Nature.

We use PDG data and errors and evaluate at the EW scale $\mu=M_Z$. see e.g. [Huang, Zhou '21]

Measuring the Invariants

In order to evaluate the invariants, one can use *any* parametrization. We use PDG:

$$\begin{split} \widetilde{H}_u \; &= \; \mathrm{diag}(\,y_u^2 \,,\, y_c^2 \,,\, y_t^2 \,) \\ \mathrm{and} \qquad \widetilde{H}_d \; &= \; V_{\mathrm{CKM}} \; \mathrm{diag}(\,y_d^2 \,,\, y_s^2 \,,\, y_b^2 \,) \; V_{\mathrm{CKM}}^\dagger \;, \end{split}$$

- 1. Explore the *possible* parameter space: scan $\mathcal{O}(10^7)$ uniform random points
 - $s_{12}, s_{13}, s_{23} \in [-1, 1]$ and $\delta \in [-\pi, \pi]$ together with:
 - A) Linear measure: $y_{u,c} \in [0,1]y_t, y_{d,s} \in [0,1]y_b$.
 - B) Log measure: $(m_{u,c}/\text{MeV}) \in 10^{[-1,\log(m_t/\text{MeV})]}, (m_{d,s}/\text{MeV}) \in 10^{[-1,\log(m_b/\text{MeV})]}.$
- 2. "Measure" the parameter point realized in Nature.

We use PDG data and errors and evaluate at the EW scale $\mu=M_Z$. see e.g. [Huang, Zhou '21]

For convenience of the presentation we normalize the invariants as

$$\hat{I}_{ij} := \frac{I_{ij}}{\left(y_t^2\right)^i \left(y_b^2\right)^j} .$$

Experimental values of the invariants

Invariant	best fit and error	Normalized invariant	best fit and error
I_{10}	0.9340(83)	\hat{I}_{10}	$1.00001358(^{+85}_{-88})$
I_{01}	$2.660(49) \times 10^{-4}$	\hat{I}_{01}	$1.000351(^{+63}_{-71})$
I_{20}	0.582(10)	\hat{I}_{20}	$0.66665761(^{+59}_{-57})$
I_{02}	$4.71(17) \times 10^{-8}$	\hat{I}_{02}	$0.666432(^{+47}_{-42})$
I_{11}	$1.651(45) \times 10^{-4}$	\hat{I}_{11}	$0.664783(^{+91}_{-87})$
I_{30}	0.1811(48)	\hat{I}_{30}	$0.22221769(^{+29}_{-28})$
I_{03}	$4.18(23) \times 10^{-12}$	\hat{I}_{03}	$0.222105(^{+24}_{-21})$
I_{21}	$5.14(^{+18}_{-19}) \times 10^{-5}$	\hat{I}_{21}	$0.221593(^{+30}_{-29})$
I_{12}	$1.463(^{+65}_{-68}) \times 10^{-8}$	\hat{I}_{12}	$0.221555(^{+38}_{-36})$
I_{22}	$1.366(^{+73}_{-76}) \times 10^{-8}$	\hat{I}_{22}	$0.221554(^{+38}_{-36})$
J_{33}	$4.47(^{+1.23}_{-1.58}) \times 10^{-24}$	\hat{J}_{33}	$2.92(^{+0.74}_{-0.93}) \times 10^{-13}$
J	$3.08(^{+0.16}_{-0.19}) \times 10^{-5}$		

Table: Experimental values of the quark sector basis invariants evaluated using PDG data. Uncertainties are 1σ . Left: orthogonal invariants at face value. Right: the same invariants normalized to the largest Yukawa couplings.

Experimental values of the Invariants

$$\hat{I}_{10} \approx \hat{I}_{01} \approx 1, \qquad \hat{I}_{11} \approx \hat{I}_{20} \approx \hat{I}_{02} \approx \frac{2}{3},$$

$$\hat{I}_{30} \approx \hat{I}_{03} \approx \hat{I}_{21} \approx \hat{I}_{12} \approx \hat{I}_{22} \approx \frac{2}{6}.$$

$$\left(\hat{I}_{ij} := \frac{I_{ij}}{(y_t^2)^i (y_b^2)^j}.\right)$$

- Deviations from maximal possible values are significant.
- Deviations from each other, e.g. $\hat{I}_{21} \hat{I}_{12} \neq 0$ and $\hat{I}_{12} \hat{I}_{22} \neq 0$, are significant.

Parameter space and experimental values

Error bars: $1\sigma imes 1000$

Parameter space and experimental values

The Basis Invariant Flavor Puzzle, 03.06.24

Results and empirics

- Observed primary invariants are very close to maximal with small but significant deviations.
- Small deviations from max. correspond to 1./2. gen. masses and mixings.
- Explaining the value of the invariants and their misalignment from maximal point amounts to solving the flavor puzzle in the language of invariants.

Results and empirics

- Observed primary invariants are very close to maximal with small but significant deviations.
- Small deviations from max. correspond to 1./2. gen. masses and mixings.
- Explaining the value of the invariants and their misalignment from maximal point amounts to solving the flavor puzzle in the language of invariants.
- The invariants are **strongly correlated** (for the observed hierarchical parameters).

log scan:

This is **not** true for anarchical parameters, or points with increased symmetry.

RGE running of invariants

$$\begin{split} \mathcal{D} &:= 16\pi^2 \mu \frac{\mathrm{d}}{\mathrm{d}\mu} \;, \\ a_{\Delta} &:= -8\,g_s^2 - \frac{9}{4}g^2 - \frac{17}{12}{g'}^2 \;, \\ a_{\Gamma} &:= -8\,g_s^2 - \frac{9}{4}g^2 - \frac{5}{12}{g'}^2 \;, \\ a_{\Pi} &:= -\frac{9}{4}g^2 - \frac{15}{4}{g'}^2 \;, \\ t_{udl} &:= 3\,\mathrm{Tr}\tilde{H}_u + 3\,\mathrm{Tr}\tilde{H}_d + \mathrm{Tr}\tilde{H}_\ell \;. \end{split}$$

$$\begin{split} \mathcal{D}\tilde{H}_{u} &= 2 \left(a_{\Delta} + t_{udl} \right) \, \tilde{H}_{u} + 3 \, \tilde{H}_{u}^{2} - \frac{3}{2} \left(\tilde{H}_{d} \tilde{H}_{u} + \tilde{H}_{u} \tilde{H}_{d} \right) \,, \\ \mathcal{D}\tilde{H}_{d} &= 2 \left(a_{\Gamma} + t_{udl} \right) \, \tilde{H}_{d} + 3 \, \tilde{H}_{d}^{2} - \frac{3}{2} \left(\tilde{H}_{d} \tilde{H}_{u} + \tilde{H}_{u} \tilde{H}_{d} \right) \,, \\ \mathcal{D}\tilde{H}_{\ell} &= 2 \left(a_{\Pi} + t_{udl} \right) \, \tilde{H}_{\ell} + 3 \, \tilde{H}_{\ell}^{2} \,, \end{split}$$

 $\mathcal{D}g_s = -7 g_s^3$, $\mathcal{D}g = -\frac{19}{c} g^3$, $\mathcal{D}g' = \frac{41}{c} g'^3$.

Scale µ/GeV

CP transformation of covariants and invariants

CP is trafo under $\mathrm{Out}\left(\mathrm{SU}(N)\right)=\mathbb{Z}_{2}.$ Covariants:

$$\mathbf{u}^a \mapsto -R^{ab} \mathbf{u}^b,$$

 $\mathbf{d}^a \mapsto -R^{ab} \mathbf{d}^b.$

e.g. in Gell-Mann basis for the generators:

$$R = diag(-1, +1, -1, -1, +1, -1, +1, -1).$$

SU(3) tensors (projection ops.):

$$\begin{split} f^{abc} \; &\mapsto \; R^{aa'} \, R^{bb'} \, R^{cc'} \, f^{a'b'c'} \; = \; f^{abc} \, , \\ d^{abc} \; &\mapsto \; R^{aa'} \, R^{bb'} \, R^{cc'} \, d^{a'b'c'} \; = \; -d^{abc} \, . \end{split}$$

CP trafo of invariants is easily read-off from birdtrack projection operator:

Invariants are CP even / CP odd iff their projection operator contains and even / odd # of f tensors.

CP transformation of covariants and invariants

CP is trafo under $Out(SU(N)) = \mathbb{Z}_2$. Covariants:

$$egin{aligned} oldsymbol{u}^a & \mapsto & -R^{ab} \, oldsymbol{u}^b \,, \ oldsymbol{d}^a & \mapsto & -R^{ab} \, oldsymbol{d}^b \,, \end{aligned}$$

Only CP-odd in SM: $J_{33} \propto$

e.g. in Gell-Mann basis for the generators:

$$R = diag(-1, +1, -1, -1, +1, -1, +1, -1).$$

SU(3) tensors (projection ops.):

$$f^{abc} \mapsto R^{aa'} R^{bb'} R^{cc'} f^{a'b'c'} = f^{abc}, \qquad \text{i} f^{abc} \operatorname{Tr}[t^a H_u] \operatorname{Tr}[t^b H_d] \operatorname{Tr}[t^c \mathbf{H}_{\ell}]$$

$$d^{abc} \mapsto R^{aa'} R^{bb'} R^{cc'} d^{a'b'c'} = -d^{abc}.$$

BSM: CPV at order 3?

CP trafo of invariants is easily read-off from birdtrack projection operator:

Invariants are CP even / CP odd iff their projection operator contains and even / odd # of f tensors.

Comments

- I_{01} , I_{02} , I_{03} , I_{10} , I_{20} , I_{30} correspond to masses.
- CP-even I_{11} , I_{21} , I_{12} , I_{22} correspond to mixings.
- CPV requires interplay of 8 CP-even primary invariants (all besides the "trivial" invariants I_{10} , I_{01}).
- Non-trivial \hat{I}_{ij} 's being close to maximal forces the Jarlskog invariant to be **small**.
- Any reduction of # of parameters corresponds to relation between invariants.
- All flavor observables can be expressed as

$$\mathcal{O}_{\text{flavor}} = \text{Polynomial}_1(I_{ij}) + J_{33} \times \text{Polynomial}_2(I_{ij}).$$

This is guaranteed since our primary and secondary invariants form a "Hironaka decomposition" of the ring.

27/29

- Our invariants provide easy targets for fits of any BSM model to SM flavor structure.
- Our procedure is completely general, can be applied to all BSM scenarios.

Outlook

- Ambiguity in choice of I_{22} needs to be clarified. Contributions to different contraction channels could be very relevant to decipher flavor puzzle.
- Relative alignments of 8-plet covariants are in 1:1 relation with invariant relations.
 see other examples [Merle, Zwicky '12], [Bento, Boto, Silva, AT '20]
- Maximization and strong correlation of invariants could point to possible information theoretic argument to set parameters! → should be done.
 see e.g. [Bousso, Harnik, Kribs, Perez '07], [Beane, Kaplan, Klco, Savage '19], [Carena, Low, Wagner, Xiao '23]
- Extension to lepton sector with orthogonal invariants → should be done.
 for HS/PL and non-orthogonal invariants see [Hanany, Jenkins, Manhoar, Torri 10], [Wang, Yu, Zhou '21]. [Yu, Zhou '21].
- Using orthogonal Bls in $SU(3)_{Q_L}$ fundamental space \rightarrow should be done.
- RGE's directly in terms of invariants → should be done.
- Investigation of $u \leftrightarrow d$ custodial flavor symmetry \rightarrow should be done.
- General relation of BI's to observables → should be done.

Conclusion

- We have for the first time obtained a quantitative analysis of the flavor puzzle exclusively in terms of basis invariants.
- This uncovers an entirely new angle on the flavor puzzle.
- The (quark) flavor puzzle in invariants amounts to explaining:
 - Why are the invariants very close to maximal?
 - What explains their tiny deviations from the maximal values?
 - Why are the (orthogonal, a priori independent) invariants so strongly correlated?
- Any explanation of the flavor structure will have to answer these questions.

This is just the beginning of an entirely new exploration of the flavor puzzle.

Thank You!

Backup slides

31/29

General Procedure / Algorithm

for the construction of basis invariants.

Three steps:

- 1. Construction of basis covariant objects: "building blocks".
 - Determine CP transformation behavior of the building blocks.
- 2. Derive Hilbert series & Plethystic logarithm.
 - ⇒ # and order of primary invariants.
 - ⇒ # and structure of generating set of invariants.
 - ⇒ interrelations between invariants (≡ syzygies).
- 3. Construct all invariants and interrelations explicitly.

Application here:

Characterize SM flavor sector invariants.

Hilbert Series and Plethystic Logarithm

Covariant building blocks as **input** for the ring:

$$\mathbf{8}_u \, \widehat{=} \, u \,, \quad \mathbf{8}_d \, \widehat{=} \, d.$$

From input, compute Hilbert series (HS) and Plethystic logarithm (PL):

introduced in math: [Getzler, Kapranov '94], physics [Benvenuti, Feng, Hanany, He '06]

$$\mathfrak{H}(u,d) = \int_{\mathrm{SU}(3)} d\mu_{\mathrm{SU}(3)} \operatorname{PE}\left[z_{1}, z_{2}; u; \mathbf{8}\right] \operatorname{PE}\left[z_{1}, z_{2}; d; \mathbf{8}\right],$$

$$\operatorname{PL}\left[\mathfrak{H}\left(u, d\right)\right] := \sum_{k=1}^{\infty} \frac{\mu(k) \ln \mathfrak{H}\left(u^{k}, d^{k}\right)}{k}.$$

$$\mathfrak{H}(u,d) = \frac{1 + u^3 d^3}{(1 - u^2)(1 - d^2)(1 - u^2)(1 - u^3)(1 - u^3)(1 - u^2)(1 - u^2)(1 - u^2)}.$$

$$PL\left[\mathfrak{H}(u,d)\right] = u^2 + ud + d^2 + u^3 + d^3 + u^2d + ud^2 + u^2d^2 + u^3d^3 - u^6d^6.$$

Möbius function $\mu(n) = \begin{cases} \binom{+}{(-)}1, & \text{if } n \text{ is square free with even(odd) # number of prime factors,} \\ 0, & \text{else.} \end{cases}$

CKM in PDG parametrization

 $V_{
m CKM}:=V_{u,{
m L}}^{\dagger}V_{d,{
m L}}$ is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In PDG parametrization

$$V_{\text{CKM}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

Explicit expressions for Invariants in physical basis

In "physical parameters" of SM the normalized invariants can be approximated using the (empirically observed) parametric hierarchies $y_t \gg y_{c,u}$, $y_b \gg y_{s,d}$ and $\lambda \ll 1$,

$$\hat{I}_{20} = \frac{2}{3} - 2\frac{y_c^2 + y_u^2}{y_t^2} + \text{h.o.}, \qquad \qquad \hat{I}_{02} = \frac{2}{3} - 2\frac{y_s^2 + y_d^2}{y_b^2} + \text{h.o.},$$

$$\hat{I}_{30} = \frac{2}{9} - \frac{y_c^2 + y_u^2}{y_t^2} + \text{h.o.}, \qquad \qquad \hat{I}_{03} = \frac{2}{9} - \frac{y_s^2 + y_d^2}{y_b^2} + \text{h.o.},$$

$$\hat{I}_{11} = \frac{2}{3} - A^2 \lambda^4 - \frac{y_c^2 + y_u^2}{y_t^2} - \frac{y_s^2 + y_d^2}{y_b^2} + \text{h.o.},$$

$$3\hat{I}_{21} = \frac{2}{3} - A^2 \lambda^4 - 2\frac{y_c^2 + y_u^2}{y_t^2} - 2\frac{y_s^2 + y_d^2}{y_b^2} + \text{h.o.},$$

$$3\hat{I}_{12} = \frac{2}{3} - A^2 \lambda^4 - 2\frac{y_c^2 + y_u^2}{y_t^2} - 2\frac{y_s^2 + y_d^2}{y_b^2} + \text{h.o.},$$

$$3\hat{I}_{22} = \frac{2}{3} - A^2 \lambda^4 - 2\frac{y_c^2 + y_u^2}{y_t^2} - 2\frac{y_s^2 + y_d^2}{y_b^2} + \text{h.o.}.$$

h.o. here refers to higher order corrections in λ or higher powers of the Yukawa coupling ratios. This shows that the values 2/3 and 2/9'ths become exact in the limit of zero mixing and zero 1st and 2nd-generation fermion masses.

Correlation of "mass" invariants I_{10} , I_{20} , I_{30} , I_{01} , I_{02} , I_{03}

Parameter space and experimental values

Arguably even "more basis invariant" alternative choice of normalization:

$$\hat{I}_{ij}^{\text{alt}} := \frac{I_{ij}}{I_{10}^i I_{01}^j} \ .$$

Andreas Trautner The Basis Invariant Flavor Puzzle, 03.06.24 37/29

Birdtrack Identities

We mostly use the conventions of [Keppeler '17] with the following identities

