

PLANCK2024

Lisbon, Portugal, 3-7 June, 2024

Minimal U(1) two-Higgs-doublet models for quark and lepton flavour

José Rebelo Rocha

CFTP/IST, U. Lisbon jose.r.rocha@tecnico.ulisboa.pt

In collaboration with: H. B. Câmara, F. R. Joaquim and R. G. Felipe

arXiv: 2406.03331 [hep-ph]

Introduction

The **Standard Model** of Particle Physics:

- Quark mixing is encoded in the CKM matrix;
- ✓ This flavour structure is the only known source of CP violation;
- ✓ The CKM parameters have been determined with extreme precision.

Introduction

The **Standard Model** of Particle Physics:

- Quark mixing is encoded in the CKM matrix;
- ✓ This flavour structure is the only known source of CP violation;
- ✓ The CKM parameters have been determined with extreme precision.

Oscillations Ve

Introduction

The **Standard Model** of Particle Physics:

- Quark mixing is encoded in the CKM matrix;
- ✓ This flavour structure is the only known source of CP violation;
- ✓ The CKM parameters have been determined with extreme precision.

Neutrino Oscillations

The SM must be extended!

EFFECTIVE THEORY with SM fields

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \delta \mathcal{L}^{d=5} + \delta \mathcal{L}^{d=6} + ..., \quad \delta \mathcal{L}^{D=d} \equiv \sum_{k} \frac{\mathcal{O}_{k}^{(d)}}{\Lambda^{d-4}}$$

EFFECTIVE THEORY with SM fields

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \delta \mathcal{L}^{d=5} + \delta \mathcal{L}^{d=6} + ..., \quad \delta \mathcal{L}^{D=d} \equiv \sum_{k} \frac{\mathcal{O}_{k}^{(d)}}{\Lambda^{d-4}}$$

The lowest d > 4 operator is unique (Weinberg Operator)

$$\delta \mathcal{L}^{d=5} = \frac{1}{2\Lambda} \kappa_{\alpha\beta} \left(\overline{\ell_{\alpha_L}^C} \widetilde{\Phi}^* \right) \left(\widetilde{\Phi}^{\dagger} \ell_{\beta_L} \right) + \text{ H.c.}$$

(Weinberg, 1979)

EFFECTIVE THEORY with SM fields

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \delta \mathcal{L}^{d=5} + \delta \mathcal{L}^{d=6} + ..., \quad \delta \mathcal{L}^{D=d} \equiv \sum_{k} \frac{\mathcal{O}_{k}^{(d)}}{\Lambda^{d-4}}$$

The lowest d > 4 operator is unique (Weinberg Operator)

(Weinberg, 1979)

$$\begin{split} \delta \mathcal{L}^{d=5} &= \frac{1}{2\Lambda} \boldsymbol{\kappa}_{\alpha\beta} \left(\overline{\ell_{\alpha_L}^C} \widetilde{\Phi}^* \right) \left(\widetilde{\Phi}^\dagger \ell_{\beta_L} \right) + \text{ H.c.} \\ & \quad \text{EWSB} \quad \downarrow \\ \mathcal{L}_m^{\mathrm{Majorana}} &= -\frac{1}{2} \mathbf{M}_{\nu\alpha\beta} \overline{\nu_{\alpha_L}^C} \nu_{\beta_L} + \text{ H.c.} \end{split}$$

EFFECTIVE THEORY with SM fields

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \delta \mathcal{L}^{d=5} + \delta \mathcal{L}^{d=6} + ..., \quad \delta \mathcal{L}^{D=d} \equiv \sum_{k} \frac{\mathcal{O}_{k}^{(d)}}{\Lambda^{d-4}}$$

The lowest d > 4 operator is unique (Weinberg Operator)

(Weinberg, 1979)

$$\delta \mathcal{L}^{d=5} = \frac{1}{2\Lambda} \kappa_{\alpha\beta} \left(\overline{\ell_{\alpha_L}^C} \widetilde{\Phi}^* \right) \left(\widetilde{\Phi}^\dagger \ell_{\beta_L} \right) + \text{ H.c.}$$

$$\mathbf{EWSB} \qquad \qquad \mathbf{L}_{m}^{\text{Majorana}} = -\frac{1}{2} \mathbf{M}_{\nu\alpha\beta} \overline{\nu_{\alpha_L}^C} \nu_{\beta_L} + \text{ H.c.}$$

Majorana Mass Eigenstates

$$\nu_{\alpha_L} \to (\mathbf{U}_L^{\nu})_{\alpha j} \nu_{j_L}$$
$$\mathbf{U}_L^{\nu T} \mathbf{M}_{\nu} \mathbf{U}_L^{\nu} = \operatorname{diag}(m_1, m_2, m_3)$$

Lepton Mixing Matrix
$$U_\ell = \mathbf{U}_L^{e\dagger} \mathbf{U}_L^{
u}$$
 V_{jL} V_{jL} V_{jL}

The **SM** does not allow for the implementation of **Abelian** flavour symmetries

(Branco, et al., 2012) **2HDM**
$$\Phi_{1,2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\phi_{1,2}^+ \\ v_{1,2} + \rho_{1,2} + i\eta_{1,2} \end{pmatrix}$$

The SM does not allow for the implementation of Abelian flavour symmetries

(Branco, et al., 2012) **2HDM**
$$\Phi_{1,2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\phi_{1,2}^+ \\ v_{1,2} + \rho_{1,2} + i\eta_{1,2} \end{pmatrix}$$

Imposing a global U(1) symmetry (softly broken) the scalar potential reads:

$$V = \mu_{11}^{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) + \mu_{22}^{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \mu_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right)$$
$$+ \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2}$$
$$+ \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right)$$

The **SM** does not allow for the implementation of **Abelian** flavour symmetries

(Branco, et al., 2012) **2HDM**
$$\Phi_{1,2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\phi_{1,2}^+ \\ v_{1,2} + \rho_{1,2} + i\eta_{1,2} \end{pmatrix}$$

Imposing a global U(1) symmetry (softly broken) the scalar potential reads:

$$V = \mu_{11}^{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) + \mu_{22}^{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \mu_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right)$$

$$+ \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2}$$

$$+ \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right)$$

Mass Eigenstates

$$m_h m_I m_{H^\pm}$$

Alignment Limit

$$\beta - \alpha = \pi/2$$

The SM does not allow for the implementation of Abelian flavour symmetries

(Branco, et al., 2012) **2HDM** $\Phi_{1,2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\phi_{1,2}^+ \\ v_{1,2} + \rho_{1,2} + i\eta_{1,2} \end{pmatrix}$

Imposing a global U(1) symmetry (softly broken) the scalar potential reads:

$$V = \mu_{11}^{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) + \mu_{22}^{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \mu_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \Phi_{2}^{\dagger} \Phi_{1} \right)$$

$$+ \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2}$$

$$+ \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right)$$

Mass Eigenstates

 $egin{array}{ccc} m_h & m_I \ m_H & m_{H^\pm} \end{array}$

Alignment Limit

$$\beta - \alpha = \pi/2$$

Expanding the Yukawa Lagrangian in the mass eigenstates:

FCNC f_i f_j H, I

FCCC

GOAL

Reduce the number of free parameters in the mass matrices and make the theory more predictive

Introduce flavour charges

GOAL

Reduce the number of free parameters in the mass matrices and make the theory more predictive

Introduce flavour charges

GOAL

Reduce the number of free parameters in the mass matrices and make the theory more predictive

Introduce flavour charges

Example:

$$\Phi_{1,2} \to q_{1L} + d_{2R}$$

GOAL

Reduce the number of free parameters in the mass matrices and make the theory more predictive

Introduce flavour charges

Example:

$$\Phi_{1,2} \to q_{1L} + d_{2R} \longrightarrow$$

Flavour charge is not conserved

$$Q_{\Phi_{1,2}} - Q_{q_{1L}} + Q_{d_{2R}} \neq 0$$

Procedure

Equivalence classes with the maximum number of zeros

Procedure

Equivalence classes with the maximum number of zeros

Solve system of equations for the field charges

Procedure

Equivalence classes with the maximum number of zeros

Solve system of equations for the field charges

Test compatibility at the 1σ CL for all observables

Experimental Data

Parameter	Best fit $\pm 1\sigma$
$m_d(\times \text{MeV})$	$4.67^{+0.48}_{-0.17}$
$m_s(\times { m MeV})$	$93.4^{+8.6}_{-3.4}$
$m_b(\times \mathrm{GeV})$	$4.18^{+0.03}_{-0.02}$
$m_u(\times \text{MeV})$	$2.16^{+0.49}_{-0.26}$
$m_c(\times \mathrm{GeV})$	1.27 ± 0.02
$m_t(\times \mathrm{GeV})$	172.69 ± 0.30
$ heta_{12}^q(^\circ)$	13.04 ± 0.05
$ heta_{23}^q(^\circ)$	2.38 ± 0.06
$ heta_{13}^q(^\circ)$	0.201 ± 0.011
$\delta^q(^\circ)$	68.75 ± 4.5

		_
Parameter	Best Fit $\pm 1\sigma$	_
$m_e(\times \text{ keV})$	$510.99895000 \pm 0.00000015$	-
$m_{\mu}(\times { m MeV})$	$105.6583755 \pm 0.0000023$	
$m_{\tau}(\times \mathrm{GeV})$	1.77686 ± 0.00012	
$\Delta m_{21}^2 \left(\times 10^{-5} \text{ eV}^2 \right)$	$7.50^{+0.22}_{-0.20}$	
$ \Delta m_{31}^2 \left(\times 10^{-3} \text{ eV}^2 \right) [\text{NO}]$	$2.55^{+0.02}_{-0.03}$	<u>0</u>
$ \Delta m_{31}^2 \left(\times 10^{-3} \text{ eV}^2 \right) [\text{IO}]$	$2.45^{+0.02}_{-0.03}$	ptons
$ heta_{12}^\ell(^\circ)$	34.3 ± 1.0	0
$ heta_{23}^\ell(^\circ)[ext{NO}]$	49.26 ± 0.79	S
$ heta_{23}^\ell(^\circ)[\mathrm{IO}]$	$49.46^{+0.60}_{-0.97}$	
$\theta_{13}^{\ell}(^{\circ})[\mathrm{NO}]$	$8.53^{+0.13}_{-0.12}$	
$\theta_{13}^{\ell}(^{\circ})[\mathrm{IO}]$	$8.58^{+0.12}_{-0.14}$	
$\delta^\ell(^\circ)[ext{NO}]$	194^{+24}_{-22}	
$\delta^\ell(^\circ)[\mathrm{IO}]$	284^{+26}_{-28}	

Quarks

Procedure

Equivalence classes with the maximum number of zeros

Solve system of equations for the field charges

Test compatibility at the 1σ CL for all observables

Add nonzero entry

Experimental Data

Parameter	Best fit $\pm 1\sigma$
$m_d(\times \text{MeV})$	$4.67^{+0.48}_{-0.17}$
$m_s(\times { m MeV})$	$93.4^{+8.6}_{-3.4}$
$m_b(\times \mathrm{GeV})$	$4.18^{+0.03}_{-0.02}$
$m_u(\times \text{MeV})$	$2.16^{+0.49}_{-0.26}$
$m_c(\times \mathrm{GeV})$	1.27 ± 0.02
$m_t(\times \mathrm{GeV})$	172.69 ± 0.30
$ heta_{12}^q(^\circ)$	13.04 ± 0.05
$ heta_{23}^q(^\circ)$	2.38 ± 0.06
$ heta_{13}^q(^\circ)$	0.201 ± 0.011
$\delta^q(^\circ)$	68.75 ± 4.5

		_
Parameter	Best Fit $\pm 1\sigma$	
$m_e(\times \text{keV})$	$510.99895000 \pm 0.00000015$	-
$m_{\mu}(\times { m MeV})$	$105.6583755 \pm 0.0000023$	
$m_{\tau}(\times \mathrm{GeV})$	1.77686 ± 0.00012	
$\Delta m_{21}^2 \left(\times 10^{-5} \text{ eV}^2 \right)$	$7.50^{+0.22}_{-0.20}$	
$ \Delta m_{31}^2 \left(\times 10^{-3} \text{ eV}^2 \right) [\text{NO}]$	$2.55^{+0.02}_{-0.03}$	P
$ \Delta m_{31}^2 \left(\times 10^{-3} \text{ eV}^2 \right) [\text{IO}]$	$2.45^{+0.02}_{-0.03}$	2
$ heta_{12}^\ell(^\circ)$	34.3 ± 1.0	ptons
$\theta_{23}^{\ell}(^{\circ})[\mathrm{NO}]$	49.26 ± 0.79	35
$\theta_{23}^{\ell}(^{\circ})[\mathrm{IO}]$	$49.46^{+0.60}_{-0.97}$	0,
$\theta_{13}^{\ell}(^{\circ})[\mathrm{NO}]$	$8.53^{+0.13}_{-0.12}$	
$\theta_{13}^{\ell}(^{\circ})[\mathrm{IO}]$	$8.58^{+0.12}_{-0.14}$	
$\delta^\ell(^\circ)[\mathrm{NO}]$	194^{+24}_{-22}	
$\delta^\ell(^\circ)[\mathrm{IO}]$	284^{+26}_{-28}	

Quarks

Add

nonzero

entry

Procedure

Equivalence classes with the maximum number of zeros

Solve system of equations for the field charges

Test compatibility at the 1σ CL for all observables

Maximally-restrictive textures and U(1) charges

Experimental Data

Parameter	Best fit $\pm 1\sigma$
$m_d(\times \text{MeV})$	$4.67^{+0.48}_{-0.17}$
$m_s(\times { m MeV})$	$93.4_{-3.4}^{+8.6}$
$m_b(\times {\rm GeV})$	$4.18^{+0.03}_{-0.02}$
$m_u(\times \text{MeV})$	$2.16^{+0.49}_{-0.26}$
$m_c(\times {\rm GeV})$	1.27 ± 0.02
$m_t(\times \mathrm{GeV})$	172.69 ± 0.30
$ heta_{12}^q(^\circ)$	13.04 ± 0.05
$ heta^q_{23}(^\circ)$	2.38 ± 0.06
$ heta_{13}^q(^\circ)$	0.201 ± 0.011
$\delta^q(^\circ)$	68.75 ± 4.5

		_
Parameter	Best Fit $\pm 1\sigma$	_
$m_e(\times \text{keV})$	$510.99895000 \pm 0.00000015$	_
$m_{\mu}(\times \text{MeV})$	$105.6583755 \pm 0.0000023$	
$m_{\tau}(\times \mathrm{GeV})$	1.77686 ± 0.00012	
$\Delta m_{21}^2 \left(\times 10^{-5} \text{ eV}^2 \right)$	$7.50^{+0.22}_{-0.20}$	
$ \Delta m_{31}^2 \left(\times 10^{-3} \text{ eV}^2 \right) [\text{NO}]$	$2.55^{+0.02}_{-0.03}$	<u> </u>
$ \Delta m_{31}^2 \left(\times 10^{-3} \text{ eV}^2 \right) [\text{IO}]$	$2.45^{+0.02}_{-0.03}$	eptons
$ heta_{12}^\ell(^\circ)$	34.3 ± 1.0	0
$\theta_{23}^{\ell}(^{\circ})[\mathrm{NO}]$	49.26 ± 0.79	S
$ heta_{23}^{\ell}(^{\circ})[\mathrm{IO}]$	$49.46^{+0.60}_{-0.97}$	•
$\theta_{13}^{\ell}(^{\circ})[\mathrm{NO}]$	$8.53^{+0.13}_{-0.12}$	
$\theta_{13}^{\ell}(^{\circ})[\mathrm{IO}]$	$8.58^{+0.12}_{-0.14}$	
$\delta^\ell(^\circ)[\mathrm{NO}]$	194^{+24}_{-22}	
δ^ℓ (°)[IO]	284^{+26}	

Quarks

U(1) charges

-		\mathbb{Z}_5
$\overline{(\mathbf{M}_e,\!\mathbf{M}_ u)}$	$(\delta_1,\delta_2,\delta_3)$	$(\epsilon_1,\epsilon_2,\epsilon_3)$
$(5_1^e, 2_3^{\nu})$	(-1, -3, 1)	(1, -5, -1)
$(5_1^e, 2_7^{\nu})$	(-1, -2, 0)	(0, -3, -1)
$(5_1^e, 2_{10}^{\nu})$	(0, -1, 1)	(1, -2, 0)

		\mathbb{Z}_4
$(\alpha_1, \alpha_2, \alpha_3)$	$(\beta_1,\beta_2,\beta_3)$	$(\gamma_1, \gamma_2, \gamma_3)$
(0, 1, 2)	(2, 1, 0)	(3, 2, 0)
(0, 1, 2)	(2, 1, 0)	(3, 0, 1)
(0, -1, 1)	(1, -2, 0)	(2, 1, 0)
(0, -1, 1)	(1, -2, 0)	(-1, 1, 0)
	(0,1,2) $(0,1,2)$ $(0,-1,1)$	$ \begin{array}{ccc} (0,1,2) & (2,1,0) \\ (0,1,2) & (2,1,0) \\ (0,-1,1) & (1,-2,0) \end{array} $

Maximally restrictive mass matrices

Quarks

Leptons

$$4_{3}^{d} \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & \times \\ \times & \times & 0 \end{pmatrix} \qquad 5_{1}^{e} \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix}$$

$$5_{1}^{d} \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix} \qquad 2_{3}^{\nu} \sim \begin{pmatrix} \times & \times & \bullet \\ \cdot & 0 & \bullet \\ \cdot & \cdot & 0 \end{pmatrix}$$

$$\mathbf{P}_{12}5_{1}^{u}\mathbf{P}_{23} \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \bullet & 0 \\ \times & \times & 0 \end{pmatrix} \qquad 2_{7}^{\nu} \sim \begin{pmatrix} \times & 0 & \bullet \\ \cdot & 0 & \times \\ \cdot & \cdot & \bullet \end{pmatrix}$$

$$\mathbf{P}_{123}5_{1}^{u}\mathbf{P}_{12} \sim \begin{pmatrix} 0 & \times & \bullet \\ 0 & 0 & \times \\ \times & 0 & 0 \end{pmatrix} \qquad 2_{10}^{\nu} \sim \begin{pmatrix} \times & \bullet & 0 \\ \cdot & \times & \bullet \\ \cdot & \cdot & \bullet \end{pmatrix}$$

 $\mathbf{P}_{12}4_3^u \sim \begin{pmatrix} 0 & \bullet & \times \\ 0 & 0 & \times \\ \times & \times & 0 \end{pmatrix}$

U(1) charges

-		\mathbb{Z}_5
$\overline{(\mathbf{M}_e,\!\mathbf{M}_ u)}$	$(\delta_1,\delta_2,\delta_3)$	$(\epsilon_1,\epsilon_2,\epsilon_3)$
$(5_1^e, 2_3^{\nu})$	(-1, -3, 1)	(1, -5, -1)
$(5_1^e, 2_7^{\nu})$	(-1, -2, 0)	(0, -3, -1)
$(5_1^e, 2_{10}^{\nu})$	(0, -1, 1)	(1, -2, 0)

			\mathbb{Z}_4
$\overline{(\mathbf{M}_d,\!\mathbf{M}_u)}$	$(\alpha_1, \alpha_2, \alpha_3)$	$(\beta_1,\beta_2,\beta_3)$	$(\gamma_1, \gamma_2, \gamma_3)$
$(4_3^d, \mathbf{P}_{12}5_1^u \mathbf{P}_{23})$	(0, 1, 2)	(2, 1, 0)	(3, 2, 0)
$(4_3^d, \mathbf{P}_{123}5_1^u \mathbf{P}_{12})$	(0, 1, 2)	(2, 1, 0)	(3, 0, 1)
$(5_1^d, \mathbf{P}_{12} 4_3^u)$	(0, -1, 1)	(1, -2, 0)	(2, 1, 0)
$(5_1^d, \mathbf{P}_{321} 4_3^u \mathbf{P}_{23})$	(0, -1, 1)	(1, -2, 0)	(-1, 1, 0)

"Decoupled" entry in the matrices of type "5" lead to zeros in the N_k matrices

Maximally restrictive mass matrices

Quarks

Leptons

$$4_3^d \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & \times \\ \times & \times & 0 \end{pmatrix}$$

$$4_3^d \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & \times \\ \times & \times & 0 \end{pmatrix} \qquad 5_1^e \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix}$$

$$5_1^d \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix} \qquad 2_3^\nu \sim \begin{pmatrix} \times & \times & \bullet \\ \cdot & 0 & \bullet \\ \cdot & \cdot & 0 \end{pmatrix}$$

$$2_3^{\nu} \sim \begin{pmatrix} \times & \times & \bullet \\ \cdot & 0 & \bullet \\ \cdot & \cdot & 0 \end{pmatrix}$$

$$\mathbf{P}_{12}5_1^u\mathbf{P}_{23} \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & \bullet & 0 \\ \times & \times & 0 \end{pmatrix} \qquad \qquad 2_7^{\nu} \sim \begin{pmatrix} \times & 0 & \bullet \\ \cdot & 0 & \times \\ \cdot & \cdot & \bullet \end{pmatrix}$$

$$2_7^{\nu} \sim \begin{pmatrix} \times & 0 & \bullet \\ \cdot & 0 & \times \\ \cdot & \cdot & \bullet \end{pmatrix}$$

$$\mathbf{P}_{123}5_{1}^{u}\mathbf{P}_{12} \sim \begin{pmatrix} 0 & \times & \bullet \\ 0 & 0 & \times \\ \times & 0 & 0 \end{pmatrix} \qquad 2_{10}^{\nu} \sim \begin{pmatrix} \times & \bullet & 0 \\ \cdot & \times & \bullet \\ \cdot & \cdot & 0 \end{pmatrix}$$

$$2_{10}^{\nu} \sim \begin{pmatrix} \times & \bullet & 0 \\ \cdot & \times & \bullet \\ \cdot & \cdot & 0 \end{pmatrix}$$

$$\mathbf{P}_{12}4_3^u \sim \begin{pmatrix} 0 & \bullet & \times \\ 0 & 0 & \times \\ \times & \times & 0 \end{pmatrix}$$

$$\mathbf{P}_{321}4_3^u\mathbf{P}_{23} \sim \begin{pmatrix} 0 & \bullet & \times \\ \times & 0 & \times \\ 0 & \times & 0 \end{pmatrix}$$

Minimal flavour patterns for quarks:

- ✓ Four different models;
- ✓ There is a total of ten independent parameters, matching the number of observables;

Minimal flavour patterns for quarks:

- ✓ Four different models;
- ✓ There is a total of ten independent parameters, matching the number of observables;

Minimal flavour patterns for leptons:

- ✓ Three different models;
- ✓ There are ten parameters, two less than the number of lepton observables;

Minimal flavour patterns for quarks:

- ✓ Four different models;
- There is a total of ten independent parameters, matching the number of observables;

Minimal flavour patterns for leptons:

- ✓ Three different models;
- ✓ There are ten parameters, two less than the number of lepton observables;

Predictions

NO:
$$m_2 = \sqrt{m_1^2 + \Delta m_{21}^2}, \quad m_3 = \sqrt{m_1^2 + \Delta m_{31}^2}$$

IO: $m_1 = \sqrt{m_3^2 + |\Delta m_{31}^2|}, \quad m_2 = \sqrt{m_3^2 + \Delta m_{21}^2 + |\Delta m_{31}^2|}$
 $m_{\beta\beta} = \left|c_{12}^2 c_{13}^2 m_1 + s_{12}^2 c_{13}^2 m_2 e^{-i\alpha_{21}} + s_{13}^2 m_3 e^{-i\alpha_{31}}\right|$

Lepton sector predictions - NO

The symmetry-constrained lepton models provide **predictions** for the **neutrino sector**, for example:

For NO, $2^{\mu}_{3,7}$ and $2^{\tau}_{3,7}$ select the **first** and **second octant** for the atmospheric mixing angle θ_{23} , respectively

Lepton sector predictions - NO

The symmetry-constrained lepton models provide **predictions** for the **neutrino sector**, for example:

For NO, $2^{\mu}_{3,7}$ and $2^{\tau}_{3,7}$ select the **first** and **second octant** for the atmospheric mixing angle θ_{23} , respectively

The lower bounds on $m_{\beta\beta}$ are within the sensitivity of $0\nu\beta\beta$ decay experiments, while being simultaneously in tension with cosmological constraints on $m_{lightest}$

Lepton sector predictions - IO

There are models that behave similarly for **inverted ordering** (IO), namely 2_{10}^{μ} and 2_{10}^{τ}

For the numerical analysis of the phenomenology of maximally-restrictive matrices, a private *Python* code was developed, which works as follows:

Random values for tan β , m_I , m_H , $m_{H^{\pm}}$

For the numerical analysis of the phenomenology of maximally-restrictive matrices, a private *Python* code was developed, which works as follows:

Random values for $\tan \beta$, m_I , m_H , m_{H^\pm} Theoretical constraints

For the numerical analysis of the phenomenology of maximally-restrictive matrices, a private *Python* code was developed, which works as follows:

The mass matrices labelled "5" exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:

$$5^{d,u,e}: \mathbf{N}_{d,u,e} \sim \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix}, \ 5^{s,c,\mu}: \mathbf{N}_{s,c,\mu} \sim \begin{pmatrix} \times & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix}, \ 5^{b,t,\tau}: \mathbf{N}_{b,t,\tau} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

The mass matrices labelled "5" exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:

$$5^{d,u,e}: \mathbf{N}_{d,u,e} \sim \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix}, \ 5^{s,c,\mu}: \mathbf{N}_{s,c,\mu} \sim \begin{pmatrix} \times & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix}, \ 5^{b,t,\tau}: \mathbf{N}_{b,t,\tau} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\overline{K}_0 \to K_0$ transition:

$$M_{21}^{\text{NP}} = \frac{f_k^2 m_K}{96v^2} \left\{ \left[(\mathbf{N}_d^*)_{ds}^2 + (\mathbf{N}_d)_{sd}^2 \right] \frac{10m_k^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} - \frac{c_{\beta - \alpha}^2}{m_h^2} - \frac{s_{\beta - \alpha}^2}{m_H^2} \right) + 4(\mathbf{N}_d^*)_{ds} (\mathbf{N}_d)_{sd} \left[1 + \frac{6m_K^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} + \frac{c_{\beta - \alpha}^2}{m_h^2} + \frac{s_{\beta - \alpha}^2}{m_H^2} \right) \right] \right\}$$

The mass matrices labelled "5" exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:

$$5^{\underline{\mathbf{dl}}u,e}: \mathbf{N}_{\underline{\mathbf{cl}}u,e} \sim \begin{pmatrix} \times & \boxed{\mathbf{0}} & 0 \\ \boxed{\mathbf{0}} & \times & \times \\ 0 & \times & \times \end{pmatrix}, \ 5^{\underline{\mathbf{s}},c,\mu}: \mathbf{N}_{\underline{\mathbf{s}}c,\mu} \sim \begin{pmatrix} \times & \boxed{\mathbf{0}} & \times \\ \boxed{\mathbf{0}} & \times & 0 \\ \times & 0 & \times \end{pmatrix}, \ 5^{b,t,\tau}: \mathbf{N}_{b,t,\tau} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\overline{K}_0 \to K_0$ transition:

$$M_{21}^{\text{NP}} = \frac{f_k^2 m_K}{96v^2} \left\{ \left[(\mathbf{N}_d^*)_{ds}^2 + (\mathbf{N}_d)_{sd}^2 \right] \frac{10m_k^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} - \frac{c_{\beta - \alpha}^2}{m_h^2} - \frac{s_{\beta - \alpha}^2}{m_H^2} \right) + 4(\mathbf{N}_d^*)_{ds} (\mathbf{N}_d)_{sd} \left[1 + \frac{6m_K^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} + \frac{c_{\beta - \alpha}^2}{m_h^2} + \frac{s_{\beta - \alpha}^2}{m_H^2} \right) \right] \right\}$$

The mass matrices labelled "5" exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:

$$\mathbf{5}^{\underline{\mathbf{d}}\mathbf{u},e}:\mathbf{N}_{\underline{\mathbf{d}}\mathbf{u},e}\sim\begin{pmatrix} \times & \boxed{\mathbf{0}} & 0\\ \boxed{\mathbf{0}} & \times & \times\\ 0 & \times & \times \end{pmatrix},\ \mathbf{5}^{\underline{\mathbf{s}},c,\mu}:\mathbf{N}_{\underline{\mathbf{s}}c,\mu}\sim\begin{pmatrix} \times & \boxed{\mathbf{0}} & \times\\ \boxed{\mathbf{0}} & \times & 0\\ \times & 0 & \times \end{pmatrix},\ \mathbf{5}^{b,t,\tau}:\mathbf{N}_{b,t,\tau}\sim\begin{pmatrix} \times & \times & 0\\ \times & \times & 0\\ 0 & 0 & \times \end{pmatrix}$$

To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\overline{K}_0 \to K_0$ transition:

$$M_{21}^{\text{NP}} = \frac{f_k^2 m_K}{96v^2} \left\{ \left[(\mathbf{N}_d)_{ds}^2 + (\mathbf{N}_d)_{sd}^2 \right] \frac{10m_k^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} - \frac{c_{\beta - \alpha}^2}{m_h^2} - \frac{s_{\beta - \alpha}^2}{m_H^2} \right) + 4(\mathbf{N}_d)_{ds} (\mathbf{N}_d)_{sd} \left[1 + \frac{6m_K^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} + \frac{c_{\beta - \alpha}^2}{m_h^2} + \frac{s_{\beta - \alpha}^2}{m_H^2} \right) \right] \right\}$$

The mass matrices labelled "5" exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:

$$5^{\underline{\mathbf{d}}\mathbf{u},e}: \mathbf{N}_{\underline{\mathbf{d}}\mathbf{u},e} \sim \begin{pmatrix} \times & \boxed{\mathbf{0}} & 0 \\ \boxed{\mathbf{0}} & \times & \times \\ 0 & \times & \times \end{pmatrix}, \ 5^{\underline{\mathbf{s}},c,\mu}: \mathbf{N}_{\underline{\mathbf{s}}c,\mu} \sim \begin{pmatrix} \times & \boxed{\mathbf{0}} & \times \\ \boxed{\mathbf{0}} & \times & 0 \\ \times & 0 & \times \end{pmatrix}, \ 5^{b,t,\tau}: \mathbf{N}_{b,t,\tau} \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\overline{K}_0 \to K_0$ transition:

$$M_{21}^{\text{NP}} = \frac{f_k^2 m_K}{96v^2} \left\{ \left[(\mathbf{N}_d)_{ds}^2 + (\mathbf{N}_d)_{sd}^2 \right] \frac{10m_k^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} - \frac{c_{\beta - \alpha}^2}{m_h^2} - \frac{s_{\beta - \alpha}^2}{m_H^2} \right) + 4(\mathbf{N}_d)_{ds} (\mathbf{N}_d)_{sd} \left[1 + \frac{6m_K^2}{(m_s + m_d)^2} \left(\frac{1}{m_I^2} + \frac{c_{\beta - \alpha}^2}{m_h^2} + \frac{s_{\beta - \alpha}^2}{m_H^2} \right) \right] \right\}$$

$$\Delta m_K^{\text{NP}} = 2|M_{21}^{\text{NP}}| = 0$$
 $\varepsilon_K = \varepsilon_K^{\text{SM}} - \frac{\text{Im}(M_{21}^{\text{NP}}\lambda_u^{*2})}{\sqrt{2}\Delta m_K |\lambda_u|^2}$

The two constraints associated with K^0 are **inherently** satisfied for d or s decoupled

Yukawa perturbativity bounds

$$\tan^2 \beta \le \frac{2\pi v^2}{|(\mathbf{M}_1^x)_{ij}|^2} - 1, \quad \tan^2 \beta \ge 1/\left(\frac{2\pi v^2}{|(\mathbf{M}_2^x)_{ij}|^2} - 1\right)$$

Thus, $\tan \beta$ finds its upper and lower bounds determined by the maximum value of $|(\mathbf{M}_1^x)_{ij}|$ and $|(\mathbf{M}_2^x)_{ij}|$.

Yukawa perturbativity bounds

$$\tan^2 \beta \le \frac{2\pi v^2}{|(\mathbf{M}_1^x)_{ij}|^2} - 1, \quad \tan^2 \beta \ge 1/\left(\frac{2\pi v^2}{|(\mathbf{M}_2^x)_{ij}|^2} - 1\right)$$

Thus, $\tan \beta$ finds its upper and lower bounds determined by the maximum value of $|(\mathbf{M}_1^x)_{ij}|$ and $|(\mathbf{M}_2^x)_{ij}|$.

Lepton sector constraints

We only consider the lepton model $(5_1^e, 2_3^v)_{NO}$, as the conclusions do not differ with a more detailed analysis.

The only exception is for the $(5_1^d, \mathbf{P}_{123}4_3^u\mathbf{P}_{12})$ model.

Yukawa perturbativity bounds

$$\tan^2 \beta \le \frac{2\pi v^2}{|(\mathbf{M}_1^x)_{ij}|^2} - 1, \quad \tan^2 \beta \ge 1/\left(\frac{2\pi v^2}{|(\mathbf{M}_2^x)_{ij}|^2} - 1\right)$$

Thus, $\tan \beta$ finds its upper and lower bounds determined by the maximum value of $|(\mathbf{M}_1^x)_{ij}|$ and $|(\mathbf{M}_2^x)_{ij}|$.

Lepton sector constraints

We only consider the lepton model $(5_1^e, 2_3^v)_{NO}$, as the conclusions do not differ with a more detailed analysis.

The only exception is for the $(5_1^d, \mathbf{P}_{123}4_3^u\mathbf{P}_{12})$ model.

Most restrictive constraints

Only some constraints shape the allowed region $(\tan \beta, \{m_H = m_I = m_{H^{\pm}}\})$, which we refer to as the **most restrictive constraints**.

$$\mathbf{N}_t \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

$$\mathbf{N}_t \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

None of the most restrictive constraints are automatically satisfied.

$$\mathbf{N}_t \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

None of the most restrictive constraints are automatically satisfied.

The decoupled state could be picked to satisfy some constraints, for example d

Observable	Constraint	Decoupled state
$ arepsilon_K $	$(2.228 \pm 0.011) \times 10^{-3}$	(u,d,s)
$\Delta m_K^{ m NP}$	$< 3.484 \times 10^{-15} \text{ GeV}$	(d,s)
Δm_{B_d}	$(3.334 \pm 0.013) \times 10^{-13} \text{ GeV}$	(d,b)
Δm_{B_s}	$(1.1693 \pm 0.0004) \times 10^{-11} \text{ GeV}$	(s,b)
$\Delta m_D^{ m NP}$	$< 6.56 \times 10^{-15} \text{ GeV}$	(u,c)

$$\mathbf{N}_d \sim \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix}$$

- ✓ K mesons: $K^0(d\bar{s})$: Δm_K , ε_K
- ✓ B mesons:

$$B_d^0(d\overline{b}): \Delta m_{B_d}, \operatorname{Br}(B_d^0 \to \mu^+\mu^-)$$

This model highlights the effectiveness of Abelian flavour symmetries in aligning theoretical frameworks with highly constrained experimental observations.

Summary and outlook

Work done:

- ✓ Study of the theoretical framework of the minimal U(1) 2HDM for flavour;
- ✓ Identification of the maximally-restrictive pairs of quark and lepton mass matrices compatible with current masses, mixing and CP violation data;
- Lepton sector predictions;
- ✓ Phenomenological study (analytical and numerical) of the quark and charged lepton sectors.

Summary and outlook

Work done:

- ✓ Study of the theoretical framework of the minimal U(1) 2HDM for flavour;
- ✓ Identification of the maximally-restrictive pairs of quark and lepton mass matrices compatible with current masses, mixing and CP violation data;
- Lepton sector predictions;
- ✓ Phenomenological study (analytical and numerical) of the quark and charged lepton sectors.

Abelian flavour symmetries in the 2HDM stand out as a simple approach in addressing the flavour puzzle, leading to minimal quark and lepton models that are predictive

Summary and outlook

Work done:

- ✓ Study of the theoretical framework of the minimal U(1) 2HDM for flavour;
- ✓ Identification of the maximally-restrictive pairs of quark and lepton mass matrices compatible with current masses, mixing and CP violation data;
- Lepton sector predictions;
- ✓ Phenomenological study (analytical and numerical) of the quark and charged lepton sectors.

Abelian flavour symmetries in the 2HDM stand out as a simple approach in addressing the flavour puzzle, leading to minimal quark and lepton models that are predictive

Thank you!