Minimal U(1) two-Higgs-doublet models for quark and lepton flavour

José Rebelo Rocha

CFTP/IST, U. Lisbon
jose.r.rocha@tecnico.ulisboa.pt
In collaboration with: H. B. Câmara, F. R. Joaquim and R. G. Felipe arXiv: 2406.03331 [hep-ph]

Introduction

The Standard Model of Particle Physics:
Quark mixing is encoded in the CKM matrix;
\checkmark This flavour structure is the only known source of CP violation;

The CKM parameters have been determined with extreme precision.

Introduction

The Standard Model of Particle Physics:
Quark mixing is encoded in the CKM matrix;

This flavour structure is the only known source of CP violation;
\checkmark The CKM parameters have been determined with extreme precision.

Neutrino

Flavour

Introduction

The Standard Model of Particle Physics:
Quark mixing is encoded in the CKM matrix;

This flavour structure is the only known source of CP violation;
\checkmark The CKM parameters have been determined with extreme precision.

Neutrino

Flavour

The SM must be extended!

Neutrino masses and mixing

EFFECTIVE THEORY with SM fields

$$
\mathcal{L}_{\text {eff }}=\mathcal{L}_{\mathrm{SM}}+\delta \mathcal{L}^{d=5}+\delta \mathcal{L}^{d=6}+\ldots, \quad \delta \mathcal{L}^{D=d} \equiv \sum_{k} \frac{\mathcal{O}_{k}^{(d)}}{\Lambda^{d-4}}
$$

Neutrino masses and mixing

EFFECTIVE THEORY with SM fields

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}+\delta \mathcal{L}^{d=5}+\delta \mathcal{L}^{d=6}+\ldots, \quad \delta \mathcal{L}^{D=d} \equiv \sum_{k} \frac{\mathcal{O}_{k}^{(d)}}{\Lambda^{d-4}}
$$

The lowest $d>4$ operator is unique (Weinberg Operator)
(Weinberg, 1979)

$$
\delta \mathcal{L}^{d=5}=\frac{1}{2 \Lambda} \kappa_{\alpha \beta}\left(\overline{\ell_{\alpha_{L}}^{C}} \widetilde{\Phi}^{*}\right)\left(\widetilde{\Phi}^{\dagger} \ell_{\beta_{L}}\right)+\text { H.c. }
$$

Neutrino masses and mixing

EFFECTIVE THEORY with SM fields

$$
\mathcal{L}_{\text {eff }}=\mathcal{L}_{\mathrm{SM}}+\delta \mathcal{L}^{d=5}+\delta \mathcal{L}^{d=6}+\ldots, \quad \delta \mathcal{L}^{D=d} \equiv \sum_{k} \frac{\mathcal{O}_{k}^{(d)}}{\Lambda^{d-4}}
$$

The lowest $d>4$ operator is unique (Weinberg Operator)
(Weinberg,1979)

$$
\begin{gathered}
\delta \mathcal{L}^{d=5}=\frac{1}{2 \Lambda} \kappa_{\alpha \beta}\left(\overline{\ell_{\alpha_{L}}^{C}} \widetilde{\Phi}^{*}\right)\left(\widetilde{\Phi}^{\dagger} \ell_{\beta_{L}}\right)+\text { H.c. } v / \sqrt{2} \\
\text { EWSB } \\
\mathcal{L}_{\mathrm{m}}^{\text {Majorana }}=-\frac{1}{2} \mathbf{M}_{\nu \alpha \beta} \overline{\nu_{\alpha_{L}}^{C}} \nu_{\beta_{L}}+\mathrm{H.c.}
\end{gathered}
$$

Neutrino masses and mixing

EFFECTIVE THEORY with SM fields

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}+\delta \mathcal{L}^{d=5}+\delta \mathcal{L}^{d=6}+\ldots, \quad \delta \mathcal{L}^{D=d} \equiv \sum_{k} \frac{\mathcal{O}_{k}^{(d)}}{\Lambda^{d-4}}
$$

The lowest $d>4$ operator is unique (Weinberg Operator)
(Weinberg,1979)

$$
\begin{gathered}
\delta \mathcal{L}^{d=5}=\frac{1}{2 \Lambda} \boldsymbol{\kappa}_{\alpha \beta}\left(\overline{\ell_{\alpha_{L}}^{C}} \widetilde{\Phi}^{*}\right)\left(\widetilde{\Phi}^{\dagger} \ell_{\beta_{L}}\right)+\mathrm{H.c.} \quad v / \sqrt{2} \\
\mathrm{EWSB} \\
\mathcal{L}_{\mathrm{m}}^{\text {Majorana }}=-\frac{1}{2} \mathbf{M}_{\nu \alpha \beta} \overline{\nu_{\alpha_{L}}^{C}} \nu_{\beta_{L}}+\mathrm{H.c.}
\end{gathered}
$$

Majorana Mass Eigenstates

$$
\nu_{\alpha_{L}} \rightarrow\left(\mathbf{U}_{L}^{\nu}\right)_{\alpha j} \nu_{j_{L}}
$$

$\mathbf{U}_{L}^{\nu T} \mathbf{M}_{\nu} \mathbf{U}_{L}^{\nu}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)$

Lepton Mixing Matrix
$\mathbf{U}_{\ell}=\mathbf{U}_{L}^{e \dagger} \mathbf{U}_{L}^{\nu}$

Softly-broken U(1)-symmetric 2HDM

The SM does not allow for the implementation of Abelian flavour symmetries

Softly-broken U(1)-symmetric 2HDM

The SM does not allow for the implementation of Abelian flavour symmetries

Imposing a global $\mathbf{U}(1)$ symmetry (softly broken) the scalar potential reads:

$$
\begin{aligned}
V & =\mu_{11}^{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\mu_{22}^{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\mu_{12}^{2}\left(\Phi_{1}^{\dagger} \Phi_{2}+\Phi_{2}^{\dagger} \Phi_{1}\right) \\
& +\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2} \\
& +\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)
\end{aligned}
$$

Softly-broken U(1)-symmetric 2HDM

The SM does not allow for the implementation of Abelian flavour symmetries

Imposing a global $\mathbf{U}(1)$ symmetry (softly broken) the scalar potential reads:

$$
\begin{aligned}
V & =\mu_{11}^{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\mu_{22}^{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\mu_{12}^{2}\left(\Phi_{1}^{\dagger} \Phi_{2}+\Phi_{2}^{\dagger} \Phi_{1}\right) \\
& +\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2} \\
& +\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)
\end{aligned}
$$

Mass Eigenstates

$$
\begin{array}{ll}
m_{h} & m_{I} \\
m_{H} & m_{H^{ \pm}}
\end{array}
$$

Alignment Limit

$$
\beta-\alpha=\pi / 2
$$

Softly-broken U(1)-symmetric 2HDM

The SM does not allow for the implementation of Abelian flavour symmetries

Imposing a global $\mathbf{U}(1)$ symmetry (softly broken) the scalar potential reads:

$$
\begin{aligned}
V & =\mu_{11}^{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\mu_{22}^{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\mu_{12}^{2}\left(\Phi_{1}^{\dagger} \Phi_{2}+\Phi_{2}^{\dagger} \Phi_{1}\right) \\
& +\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2} \\
& +\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)
\end{aligned}
$$

Mass Eigenstates

$$
m_{h} \quad m_{I}
$$

$$
m_{H} \quad m_{H^{ \pm}}
$$

Alignment Limit

$$
\beta-\alpha=\pi / 2
$$

Expanding the Yukawa Lagrangian in the mass eigenstates:

FCCC

Abelian flavour symmetries

GOAL

Reduce the number of free parameters in the mass matrices and make the theory more predictive

$$
\mathbf{M}_{d} \sim\left(\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times
\end{array}\right)
$$

$$
\mathbf{M}_{u} \sim\left(\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times
\end{array}\right)
$$

$$
\mathbf{M}_{e} \sim\left(\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times
\end{array}\right)
$$

$$
\mathbf{M}_{\nu} \sim\left(\begin{array}{ccc}
\times & \times & \times \\
\cdot & \times & \times \\
\cdot & \cdot & \times
\end{array}\right)
$$

Abelian flavour symmetries

GOAL

Reduce the number of free parameters in the mass matrices and make the theory more predictive
$\mathbf{M}_{d} \sim\left(\begin{array}{ccc}0 & 0 & \boxed{\bigotimes} \\ 0 & \boxed{\bigotimes} & 0 \\ \mathbb{\bigotimes} & 0 & \boxed{凶}\end{array}\right)$

$i=1,2,1,2$
$\alpha=1,2,3,3$
$\beta=3,2,1,3$

$$
i=2,1,1,2,1
$$

$$
\alpha=1,1,2,2,3
$$

$$
\beta=2,3,1,3,2
$$

Introduce flavour charges

$i=1,2,1,2$
$\alpha=1,2,3,3$
$\beta=3,2,1,3$

$$
\mathbf{M}_{\nu} \sim\left(\begin{array}{ccc}
\boxtimes & \boxed{ } & \boxed{\bigotimes} \\
\cdot & 0 & \boxed{\text { a }} \\
\bullet \cdot & \cdot & 0
\end{array}\right)
$$

$$
i=1,2,1,1 \alpha=1,1,1,2
$$

$$
j=2,2,1,2 \beta=1,2,3,3
$$

Abelian flavour symmetries

GOAL

Reduce the number of free parameters in the mass matrices and make the theory more predictive

Example:

$$
\Phi_{1,2} \rightarrow q_{1 L}+d_{2 R}
$$

Abelian flavour symmetries

GOAL

Reduce the number of free parameters in the mass matrices and make the theory more predictive

$$
\begin{array}{ll}
i=2,1,1,2,1 & i=1,2,1,2 \\
\alpha=1,1,2,2,3 & \alpha=1,2,3,3 \\
\beta=2,3,1,3,2 & \beta=3,2,1,3
\end{array}
$$

Introduce flavour charges

Example:

$$
\Phi_{1,2}>1 L+d_{2 R}
$$

Flavour charge is not conserved

$$
Q_{\Phi_{1,2}}-Q_{q_{1 L}}+Q_{d_{2 R}} \neq 0
$$

Maximally-restrictive textures from U(1) symmetries

Procedure

Equivalence classes with the maximum number of zeros

Maximally-restrictive textures from U(1) symmetries

Procedure

Equivalence classes with the maximum number of zeros

Solve system of equations for the field charges

Maximally-restrictive textures from U(1) symmetries

Procedure

Equivalence classes with the maximum number of zeros
1
Solve system of equations for the field charges

Test compatibility at the 1σ CL for all observables

Experimental Data

Parameter	Best fit $\pm 1 \sigma$
$m_{d}(\times \mathrm{MeV})$	$4.67_{-0.017}^{+0.87}$
$m_{s}(\times \mathrm{MeV})$	$934_{-3.4}^{+8.6}$
$m_{b}(\times \mathrm{GeV})$	$4.18_{-0.02}^{+0.03}$
$m_{u}(\times \mathrm{MeV})$	$2.16_{-0.26}^{+0.49}$
$m_{c}(\times \mathrm{GeV})$	1.27 ± 0.02
$m_{t}(\times \mathrm{GeV})$	172.69 ± 0.30
$\left.\theta_{12}^{q} 2^{\circ}\right)$	13.04 ± 0.05
$\left.\theta_{23}^{q}{ }^{\circ}{ }^{\circ}\right)$	2.38 ± 0.06
$\left.\theta_{13}^{q} 3{ }^{\circ}\right)$	0.201 ± 0.011
$\delta^{q}\left({ }^{\circ}\right)$	68.75 ± 4.5

Maximally-restrictive textures from U(1) symmetries

Procedure

Equivalence classes with the maximum number of zeros
1
Solve system of equations for the field charges

Test compatibility at the 1σ CL for all observables

Experimental Data

Parameter	Best fit $\pm 1 \sigma$
$m_{d}(\times \mathrm{MeV})$	$4.67_{-0.17}^{+0.48}$
$m_{s}(\times \mathrm{MeV})$	$93.4_{-3.4}^{+8.6}$
$m_{b}(\times \mathrm{GeV})$	$4.18_{-0.02}^{+0.03}$
$m_{u}(\times \mathrm{MeV})$	$2.11_{-0.26}^{+0.49}$
$m_{c}(\times \mathrm{GeV})$	1.27 ± 0.02
$m_{t}(\times \mathrm{GeV})$	172.69 ± 0.30
$\theta_{12}^{q}\left({ }^{\circ}\right)$	13.04 ± 0.05
$\theta_{23}^{q}\left({ }^{\circ}\right)$	2.38 ± 0.06
$\theta_{13}^{9}\left({ }^{\circ}\right)$	0.201 ± 0.011
$\delta^{q}\left({ }^{\circ}\right)$	68.75 ± 4.5

Maximally-restrictive textures from U(1) symmetries

Procedure

Experimental Data

Parameter	Best fit $\pm 1 \sigma$
$m_{d}(\times \mathrm{MeV})$	$4.67_{-0.17}^{+0.48}$
$m_{s}(\times \mathrm{MeV})$	$93.4_{-3.4}^{+8.6}$
$m_{b}(\times \mathrm{GeV})$	$4.18_{-0.02}^{+0.03}$
$m_{u}(\times \mathrm{MeV})$	$2.16_{-0.26}^{+0.49}$
$m_{c}(\times \mathrm{GeV})$	1.27 ± 0.02
$m_{t}(\times \mathrm{GeV})$	172.69 ± 0.30
$\theta_{12}^{q}\left({ }^{\circ}\right)$	13.04 ± 0.05
$\theta_{23}^{q}\left({ }^{\circ}\right)$	2.38 ± 0.06
$\theta_{13}^{9}\left({ }^{\circ}\right)$	0.201 ± 0.011
$\delta^{q}\left({ }^{\circ}\right)$	68.75 ± 4.5

Maximally-restrictive textures from U(1) symmetries

U(1) charges			
\mathbb{Z}_{5}			
$\left(\mathbf{M}_{e}, \mathbf{M}_{\nu}\right) \quad\left(\delta_{1}, \delta_{2}, \delta_{3}\right) \quad\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$			
$\left(5_{1}^{e}, 2_{3}^{\nu}\right)$	$(-1,-3,1) \quad(1,-5,-1)$		
$\left(5_{1}^{e}, 2_{7}^{\nu}\right)$	$(-1,-2,0) \quad(0,-3,-1)$		
$\left(5_{1}^{e}, 2_{10}^{\nu}\right)$	$(0,-1,1) \quad(1,-2,0)$		
	\mathbb{Z}_{4}		
$\left(\mathbf{M}_{d}, \mathbf{M}_{u}\right)$	$\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$	$\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$	$\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$
$\left(4_{3}^{d}, \mathbf{P}_{12} 5_{1}^{u} \mathbf{P}_{23}\right)$	(0, 1, 2)	(2, 1, 0)	$(3,2,0)$
$\left(4_{3}^{d}, \mathbf{P}_{123} 5_{1}^{u} \mathbf{P}_{12}\right)$	$(0,1,2)$	$(2,1,0)$	$(3,0,1)$
$\left(5_{1}^{d}, \mathbf{P}_{12} 4_{3}^{u}\right)$	$(0,-1,1)$	(1, -2, 0)	($2,1,0$)
$\left(5_{1}^{d}, \mathbf{P}_{321} 4_{3}^{u} \mathbf{P}_{23}\right)$	$(0,-1,1)$	(1,-2, 0)	$(-1,1,0)$

Maximally restrictive mass matrices

Quarks

Leptons

4_{3}^{d}	$\sim\left(\begin{array}{ccc}0 & 0 & \times \\ 0 & \times & \times \\ \times & \times & 0\end{array}\right)$		$5_{1}^{e} \sim\left(\begin{array}{ccc}0 & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times\end{array}\right)$
5_{1}^{d}	$\sim\left(\begin{array}{lll}0 & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times\end{array}\right)$		$2_{3}^{\nu} \sim\left(\begin{array}{ccc}\times & \times & \bullet \\ \cdot & 0 & \bullet \\ \cdot & \cdot & 0\end{array}\right)$
$\mathbf{P}_{12} 5_{1}^{u} \mathbf{P}_{23}$	$\sim\left(\begin{array}{lll}0 & 0 & \times \\ 0 & \bullet & 0 \\ \times & \times & 0\end{array}\right)$	$2_{7}^{\nu} \sim\left(\begin{array}{ccc}\times & 0 & \bullet \\ \cdot & 0 & \times \\ \cdot & \cdot & \bullet\end{array}\right)$	
$\mathbf{P}_{123} 5_{1}^{u} \mathbf{P}_{12}$	$\sim\left(\begin{array}{lll}0 & \times & \bullet \\ 0 & 0 & \times \\ \times & 0 & 0\end{array}\right)$	$2_{10}^{\nu} \sim\left(\begin{array}{ccc}\times & \bullet & 0 \\ \cdot & \times & \bullet \\ \cdot & \cdot & 0\end{array}\right)$	
$\mathbf{P}_{12} 4_{3}^{u}$	$\sim\left(\begin{array}{lll}0 & \bullet & \times \\ 0 & 0 & \times \\ \times & \times & 0\end{array}\right)$		
$\mathbf{P}_{321} 4_{3}^{u} \mathbf{P}_{23}$	$\sim\left(\begin{array}{lll}0 & \bullet & \times \\ \times & 0 & \times \\ 0 & \times & 0\end{array}\right)$		

Maximally-restrictive textures from U(1) symmetries

U(1) charges			
\mathbb{Z}_{5}			
$\left(\mathbf{M}_{e}, \mathbf{M}_{\nu}\right)$) $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$	$\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$	
$\left(5_{1}^{e}, 2_{3}^{\nu}\right)$	$(-1,-3,1)$) $(1,-5,-1)$	
$\left(5_{1}^{e}, 2_{7}^{\nu}\right)$	$(-1,-2,0)$	$(0,-3,-1)$	
$\left(5_{1}^{e}, 2_{10}^{\nu}\right)$	$(0,-1,1)$	$(1,-2,0)$	
	\mathbb{Z}		
$\left(\mathbf{M}_{d}, \mathbf{M}_{u}\right)$	$\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$	$\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$	$\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$
$\left(4_{3}^{d}, \mathbf{P}_{12} 5_{1}^{u} \mathbf{P}_{23}\right)$	$(0,1,2)$	$(2,1,0)$	(3, 2, 0)
$\left(43, \mathbf{P}_{123} 5_{1}^{u} \mathbf{P}_{12}\right)$	$(0,1,2)$	(2, 1, 0)	$(3,0,1)$
$\left(5_{1}^{d}, \mathbf{P}_{12} 4_{3}^{u}\right)$	$(0,-1,1)$	$(1,-2,0)$	($2,1,0$)
$\left(5{ }_{1}^{d}, \mathbf{P}_{321} 4_{3}^{u} \mathbf{P}_{23}\right)$	$(0,-1,1)$	(1, -2, 0)	$(-1,1,0)$

"Decoupled" entry in the matrices of type " 5 " lead to zeros in the N_{k} matrices

Maximally restrictive mass matrices

Quarks

Leptons
$4_{3}^{d} \sim\left(\begin{array}{lll}0 & 0 & \times \\ 0 & \times & \times \\ \times & \times & 0\end{array}\right)$
$5_{1}^{e} \sim\left(\begin{array}{ccc}0 & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times\end{array}\right)$
$5_{1}^{d} \sim\left(\begin{array}{ccc}0 & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times\end{array}\right)$
$2_{3}^{\nu} \sim\left(\begin{array}{ccc}\times & \times & \bullet \\ \cdot & 0 & \bullet \\ \cdot & \cdot & 0\end{array}\right)$
$\begin{aligned} \mathbf{P}_{12} 5_{1}^{u} \mathbf{P}_{23} & \sim\left(\begin{array}{ccc}0 & 0 & \times \\ 0 & \bullet & 0 \\ \times & \times & 0\end{array}\right) \\ \mathbf{P}_{123} 5_{1}^{u} \mathbf{P}_{12} & \sim\left(\begin{array}{ccc}0 & \times & \bullet \\ 0 & 0 & \times \\ \times & 0 & 0\end{array}\right)\end{aligned}$
$2_{7}^{\nu} \sim\left(\begin{array}{ccc}\times & 0 & \bullet \\ \cdot & 0 & \times \\ \cdot & \cdot & \bullet\end{array}\right)$
$2_{10}^{\nu} \sim\left(\begin{array}{ccc}\times & \bullet & 0 \\ \cdot & \times & \bullet \\ \cdot & \cdot & 0\end{array}\right)$
$\mathbf{P}_{12} 4_{3}^{u} \sim\left(\begin{array}{ccc}0 & \bullet & \times \\ 0 & 0 & \times \\ \times & \times & 0\end{array}\right)$
$\mathbf{P}_{321} 4_{3}^{u} \mathbf{P}_{23} \sim\left(\begin{array}{ccc}0 & \bullet & \times \\ \times & 0 & \times \\ 0 & \times & 0\end{array}\right)$

Maximally-restrictive textures from U(1) symmetries

Minimal flavour patterns for quarks:
\checkmark Four different models;
There is a total of ten independent parameters, matching the number of observables;

Maximally-restrictive textures from U(1) symmetries

Minimal flavour patterns for quarks:
\checkmark Four different models;
There is a total of ten independent parameters, matching the number of observables;

Minimal flavour patterns for leptons:
Three different models;
There are ten parameters, two less than the number of lepton observables;

Maximally-restrictive textures from U(1) symmetries

Minimal flavour patterns for quarks:
Four different models;
There is a total of ten independent parameters, matching the number of observables;

Minimal flavour patterns for leptons:
Three different models;
There are ten parameters, two less than the number of lepton observables;

Predictions

$$
\begin{aligned}
& \text { NO: } m_{2}=\sqrt{m_{1}^{2}+\Delta m_{21}^{2}}, \quad m_{3}=\sqrt{m_{1}^{2}+\Delta m_{31}^{2}} \\
& \text { IO: } \quad m_{1}=\sqrt{m_{3}^{2}+\left|\Delta m_{31}^{2}\right|}, \quad m_{2}=\sqrt{m_{3}^{2}+\Delta m_{21}^{2}+\left|\Delta m_{31}^{2}\right|} \\
& m_{\beta \beta}=\left|c_{12}^{2} c_{13}^{2} m_{1}+s_{12}^{2} c_{13}^{2} m_{2} e^{-i \alpha_{21}}+s_{13}^{2} m_{3} e^{-i \alpha_{31}}\right|
\end{aligned}
$$

Lepton sector predictions - NO

The symmetry-constrained lepton models provide predictions for the neutrino sector, for example:

For NO, $2_{3,7}^{\mu}$ and $2_{3,7}^{\tau}$ select the first and second octant for the atmospheric mixing angle θ_{23}, respectively

Lepton sector predictions - NO

The symmetry-constrained lepton models provide predictions for the neutrino sector, for example:
 For NO, $2_{3,7}^{\mu}$ and $2_{3,7}^{\tau}$ select the first and second octant for the atmospheric mixing angle θ_{23}, respectively

The lower bounds on $m_{\beta \beta}$ are within the sensitivity of $0 v \beta \beta$ decay experiments, while being simultaneously in tension with cosmological constraints on $m_{\text {lightest }}$

Lepton sector predictions - IO

There are models that behave similarly for inverted ordering (IO), namely 2_{10}^{μ} and 2_{10}^{τ}

Numerical procedure and phenomenological analysis

For the numerical analysis of the phenomenology of maximally-restrictive matrices, a private Python code was developed, which works as follows:

Random values for $\tan \beta, m_{I}, m_{H}, m_{H^{ \pm}}$

Numerical procedure and phenomenological analysis

For the numerical analysis of the phenomenology of maximally-restrictive matrices, a private Python code was developed, which works as follows:

Random values for $\tan \beta, m_{I}, m_{H}, m_{H^{ \pm}}$

Theoretical constraints

Numerical procedure and phenomenological analysis

For the numerical analysis of the phenomenology of maximally-restrictive matrices, a private Python code was developed, which works as follows:

Random values for $\tan \beta, m_{I}, m_{H}, m_{H^{ \pm}}$

Numerical procedure and phenomenological analysis

For the numerical analysis of the phenomenology of maximally-restrictive matrices, a private Python code was developed, which works as follows:

Random values for $\tan \beta, m_{I}, m_{H}, m_{H^{ \pm}}$

> We take the limit where $m_{I}=m_{H}=m_{H^{ \pm}}$

Numerical procedure and phenomenological analysis

For the numerical analysis of the phenomenology of maximally-restrictive matrices, a private Python code was developed, which works as follows:

Random values for $\tan \beta, m_{I}, m_{H}, m_{H^{ \pm}}$

> We take the limit where $m_{I}=m_{H}=m_{H^{ \pm}}$

SM Higgs Boson \& new scalar searches \}

HiggsTools, HiggsSignals \& HiggsBounds

Numerical procedure and phenomenological analysis

For the numerical analysis of the phenomenology of maximally-restrictive matrices, a private Python code was developed, which works as follows:

Random values for $\tan \beta, m_{I}, m_{H}, m_{H^{ \pm}}$

We take the limit

$$
\text { where } m_{I}=m_{H}=m_{H^{ \pm}}
$$

HiggsTools, HiggsSignals \& HiggsBounds

Charged lepton-flavour violation processes

Numerical procedure and phenomenological analysis

For the numerical analysis of the phenomenology of maximally-restrictive matrices, a private Python code was developed, which works as follows:

Random values for $\tan \beta, m_{I}, m_{H}, m_{H^{ \pm}}$

We take the limit

$$
\text { where } m_{I}=m_{H}=m_{H^{ \pm}}
$$

HiggsTools, HiggsSignals \& HiggsBounds

Charged lepton-flavour violation processes

Quark sector constraints

Numerical procedure and phenomenological analysis

For the numerical analysis of the phenomenology of maximally-restrictive matrices, a private Python code was developed, which works as follows:

Random values for $\tan \beta, m_{I}, m_{H}, m_{H^{ \pm}}$

Theoretical constraints

We take the limit

$$
\text { where } m_{I}=m_{H}=m_{H^{ \pm}}
$$

SM Higgs Boson \& new scalar searches
HiggsTools, HiggsSignals \& HiggsBounds

Some flavour constraints are automatically satisfied in certain models

Quark sector constraints

Numerical procedure and phenomenological analysis

The mass matrices labelled " 5 " exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:
$5^{d, u, e}: \mathbf{N}_{d, u, e} \sim\left(\begin{array}{ccc}\times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times\end{array}\right), 5^{s, c, \mu}: \mathbf{N}_{s, c, \mu} \sim\left(\begin{array}{ccc}\times & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times\end{array}\right), 5^{b, t, \tau}: \mathbf{N}_{b, t, \tau} \sim\left(\begin{array}{ccc}\times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times\end{array}\right)$

Numerical procedure and phenomenological analysis

The mass matrices labelled " 5 " exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:
$5^{d, u, e}: \mathbf{N}_{d, u, e} \sim\left(\begin{array}{ccc}\times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times\end{array}\right), 5^{s, c, \mu}: \mathbf{N}_{s, c, \mu} \sim\left(\begin{array}{ccc}\times & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times\end{array}\right), 5^{b, t, \tau}: \mathbf{N}_{b, t, \tau} \sim\left(\begin{array}{ccc}\times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times\end{array}\right)$
To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\bar{K}_{0} \rightarrow K_{0}$ transition:

$$
\begin{aligned}
M_{21}^{\mathrm{NP}}= & \frac{f_{k}^{2} m_{K}}{96 v^{2}}\left\{\left[\left(\mathbf{N}_{d}^{*}\right)_{d s}^{2}+\left(\mathbf{N}_{d}\right)_{s d}^{2}\right] \frac{10 m_{k}^{2}}{\left(m_{s}+m_{d}\right)^{2}}\left(\frac{1}{m_{I}^{2}}-\frac{c_{\beta-\alpha}^{2}}{m_{h}^{2}}-\frac{s_{\beta-\alpha}^{2}}{m_{H}^{2}}\right)\right. \\
& \left.+4\left(\mathbf{N}_{d}^{*}\right)_{d s}\left(\mathbf{N}_{d}\right)_{s d}\left[1+\frac{6 m_{K}^{2}}{\left(m_{s}+m_{d}\right)^{2}}\left(\frac{1}{m_{I}^{2}}+\frac{c_{\beta-\alpha}^{2}}{m_{h}^{2}}+\frac{s_{\beta-\alpha}^{2}}{m_{H}^{2}}\right)\right]\right\}
\end{aligned}
$$

Numerical procedure and phenomenological analysis

The mass matrices labelled " 5 " exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:
$5^{\square u, e}: \mathbf{N}_{\square}^{\square} u, e \sim\left(\begin{array}{ccc}\times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times\end{array}\right), 5^{\S c, \mu}: \mathbf{N}_{\bigotimes} c, \mu \sim\left(\begin{array}{ccc}\times & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times\end{array}\right), 5^{b, t, \tau}: \mathbf{N}_{b, t, \tau} \sim\left(\begin{array}{ccc}\times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times\end{array}\right)$
To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\bar{K}_{0} \rightarrow K_{0}$ transition:

$$
\begin{aligned}
M_{21}^{\mathrm{NP}}= & \frac{f_{k}^{2} m_{K}}{96 v^{2}}\left\{\left[\left(\mathbf{N}_{d}^{*}\right)_{d s}^{2}+\left(\mathbf{N}_{d}\right)_{s d}^{2}\right] \frac{10 m_{k}^{2}}{\left(m_{s}+m_{d}\right)^{2}}\left(\frac{1}{m_{I}^{2}}-\frac{c_{\beta-\alpha}^{2}}{m_{h}^{2}}-\frac{s_{\beta-\alpha}^{2}}{m_{H}^{2}}\right)\right. \\
& \left.+4\left(\mathbf{N}_{d}^{*}\right)_{d s}\left(\mathbf{N}_{d}\right)_{s d}\left[1+\frac{6 m_{K}^{2}}{\left(m_{s}+m_{d}\right)^{2}}\left(\frac{1}{m_{I}^{2}}+\frac{c_{\beta-\alpha}^{2}}{m_{h}^{2}}+\frac{s_{\beta-\alpha}^{2}}{m_{H}^{2}}\right)\right]\right\}
\end{aligned}
$$

Numerical procedure and phenomenological analysis

The mass matrices labelled " 5 " exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:
$5^{\square u, e}: \mathbf{N}_{\square}^{\square} u, e \sim\left(\begin{array}{ccc}\times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times\end{array}\right), 5^{\S c, \mu}: \mathbf{N}_{\bigotimes} c, \mu \sim\left(\begin{array}{ccc}\times & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times\end{array}\right), 5^{b, t, \tau}: \mathbf{N}_{b, t, \tau} \sim\left(\begin{array}{ccc}\times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times\end{array}\right)$
To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\bar{K}_{0} \rightarrow K_{0}$ transition:

$$
\begin{aligned}
M_{21}^{\mathrm{NP}}= & \frac{f_{k}^{2} m_{K}}{96 v^{2}}\left\{\left[(\mathbf{y} / d)_{d s}^{2}+(\mathbf{y} /)_{s d}^{2}\right] \frac{10 m_{k}^{2}}{\left(m_{s}+m_{d}\right)^{2}}\left(\frac{1}{m_{I}^{2}}-\frac{c_{\beta-\alpha}^{2}}{m_{h}^{2}}-\frac{s_{\beta-\alpha}^{2}}{m_{H}^{2}}\right)\right. \\
& \left.+4(\mathbf{N} / d)_{d s}(\mathbf{y} / d)_{s d}\left[1+\frac{6 m_{K}^{2}}{\left(m_{s}+m_{d}\right)^{2}}\left(\frac{1}{m_{I}^{2}}+\frac{c_{\beta-\alpha}^{2}}{m_{h}^{2}}+\frac{s_{\beta-\alpha}^{2}}{m_{H}^{2}}\right)\right]\right\}
\end{aligned}
$$

Numerical procedure and phenomenological analysis

The mass matrices labelled " 5 " exhibit an isolated non-zero entry in a given row and column, which coincides with the mass of a fermion translating into:
$5^{\square u, e}: \mathbf{N}_{\square}^{\square} u, e \sim\left(\begin{array}{ccc}\times & 0 & 0 \\ 0 & \times & \times \\ 0 & \times & \times\end{array}\right), 5^{\S c, \mu}: \mathbf{N}_{\overparen{\Omega} c, \mu} \sim\left(\begin{array}{ccc}\times & 0 & \times \\ 0 & \times & 0 \\ \times & 0 & \times\end{array}\right), 5^{b, t, \tau}: \mathbf{N}_{b, t, \tau} \sim\left(\begin{array}{ccc}\times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times\end{array}\right)$
To directly observe the effect of flavour symmetries, consider the NP contribution to the matrix element that contributes to the $\bar{K}_{0} \rightarrow K_{0}$ transition:

$$
\begin{array}{r}
M_{21}^{\mathrm{NP}}=\frac{f_{k}^{2} m_{K}}{96 v^{2}}\left\{\left[(\mathbf{y} /)_{d s}^{2}+(\mathbf{y} / d)_{s d}^{2}\right] \frac{10 m_{k}^{2}}{\left(m_{s}+m_{d}\right)^{2}}\left(\frac{1}{m_{I}^{2}}-\frac{c_{\beta-\alpha}^{2}}{m_{h}^{2}}-\frac{s_{\beta-\alpha}^{2}}{m_{H}^{2}}\right)\right. \\
\left.+4(\mathbf{N} /)_{d s}(\mathbf{y} / d)_{s d}\left[1+\frac{6 m_{K}^{2}}{\left(m_{s}+m_{d}\right)^{2}}\left(\frac{1}{m_{I}^{2}}+\frac{c_{\beta-\alpha}^{2}}{m_{h}^{2}}+\frac{s_{\beta-\alpha}^{2}}{m_{H}^{2}}\right)\right]\right\} \\
\begin{array}{c}
\downarrow m_{K}^{\mathrm{NP}}=2\left|M_{21}^{\mathrm{NP}}\right|=0 \quad \varepsilon_{K}=\varepsilon_{K}^{\mathrm{SM}}-\frac{\operatorname{Im}\left(M_{2 d}^{\mathrm{NP}} \lambda_{u}^{2}\right)}{\sqrt{2} \Delta m_{K}\left|\lambda_{u}\right|^{2}} \\
\text { The two constraints associated with } K^{0} \text { are inherently } \\
\text { satisfied for } d \text { or } s \text { decoupled }
\end{array}
\end{array}
$$

Numerical procedure and phenomenological analysis

Yukawa perturbativity bounds

$$
\tan ^{2} \beta \leq \frac{2 \pi v^{2}}{\left|\left(\mathbf{M}_{1}^{x}\right)_{i j}\right|^{2}}-1, \quad \tan ^{2} \beta \geq 1 /\left(\frac{2 \pi v^{2}}{\left|\left(\mathbf{M}_{2}^{x}\right)_{i j}\right|^{2}}-1\right)
$$

Thus, $\tan \beta$ finds its upper and lower bounds determined by the maximum value of $\left|\left(\mathbf{M}_{1}^{x}\right)_{i j}\right|$ and $\left|\left(\mathbf{M}_{2}^{x}\right)_{i j}\right|$.

Numerical procedure and phenomenological analysis

Yukawa perturbativity bounds

$$
\tan ^{2} \beta \leq \frac{2 \pi v^{2}}{\left|\left(\mathbf{M}_{1}^{x}\right)_{i j}\right|^{2}}-1, \quad \tan ^{2} \beta \geq 1 /\left(\frac{2 \pi v^{2}}{\left|\left(\mathbf{M}_{2}^{x}\right)_{i j}\right|^{2}}-1\right)
$$

Thus, $\tan \beta$ finds its upper and lower bounds determined by the maximum value of $\left|\left(\mathbf{M}_{1}^{x}\right)_{i j}\right|$ and $\left|\left(\mathbf{M}_{2}^{x}\right)_{i j}\right|$.

Lepton sector constraints

We only consider the lepton model $\left(5_{1}^{e}, 2_{3}^{v}\right)_{\mathrm{NO}}$, as the conclusions do not differ with a more detailed analysis.

The only exception is for the $\left(5_{1}^{d}, \mathbf{P}_{123} 4_{3}^{u} \mathbf{P}_{12}\right)$ model.

Numerical procedure and phenomenological analysis

Yukawa perturbativity bounds

$$
\tan ^{2} \beta \leq \frac{2 \pi v^{2}}{\left|\left(\mathbf{M}_{1}^{x}\right)_{i j}\right|^{2}}-1, \quad \tan ^{2} \beta \geq 1 /\left(\frac{2 \pi v^{2}}{\left|\left(\mathbf{M}_{2}^{x}\right)_{i j}\right|^{2}}-1\right)
$$

Thus, $\tan \beta$ finds its upper and lower bounds determined by the maximum value of $\left|\left(\mathbf{M}_{1}^{\chi}\right)_{i j}\right|$ and $\left|\left(\mathbf{M}_{2}^{\chi}\right)_{i j}\right|$.

Lepton sector constraints

We only consider the lepton model $\left(5_{1}^{e}, 2_{3}^{v}\right)_{\mathrm{NO}}$, as the conclusions do not differ with a more detailed analysis.

The only exception is for the $\left(5_{1}^{d}, \mathbf{P}_{123} 4_{3}^{u} \mathbf{P}_{12}\right)$ model.

Most restrictive constraints

Only some constraints shape the allowed region $\left(\tan \beta,\left\{m_{H}=m_{I}=m_{H^{ \pm}}\right\}\right)$, which we refer to as the most restrictive constraints.

Numerical procedure and phenomenological analysis

Numerical procedure and phenomenological analysis

Numerical procedure and phenomenological analysis

All
Δm_{K} \square $\mid\left(\mathbf{Y}_{t)_{i j}} \mid>\sqrt{4 \pi}\right.$ \square $z \rightarrow b \bar{b} \square$ $\bar{B} \rightarrow X_{o} \gamma$ \square ε_{K} $\Delta m_{B_{d}} \square \Delta m_{B_{s}}$ $\Delta m_{B_{0}} \square \Delta m_{D}$ $B_{s} \rightarrow \mu^{-} \mu^{+}$

$$
\mathbf{N}_{t} \sim\left(\begin{array}{ccc}
\times & \times & 0 \\
\times & \times & 0 \\
0 & 0 & \times
\end{array}\right)
$$

\downarrow
None of the most restrictive constraints are automatically satisfied.

The decoupled state could be picked to satisfy some constraints, for example d

Observable	Constraint	Decoupled state
$\left\|\varepsilon_{K}\right\|$	$(2.228 \pm 0.011) \times 10^{-3}$	(u, d, s)
$\Delta m_{K}^{\mathrm{NP}}$	$<3.484 \times 10^{-15} \mathrm{GeV}$	(d, s)
$\Delta m_{B_{d}}$	$(3.334 \pm 0.013) \times 10^{-13} \mathrm{GeV}$	(d, b)
$\Delta m_{B_{s}}$	$(1.1693 \pm 0.0004) \times 10^{-11} \mathrm{GeV}$	(s, b)
$\Delta m_{D}^{\mathrm{NP}}$	$<6.56 \times 10^{-15} \mathrm{GeV}$	(u, c)

Numerical procedure and phenomenological analysis

Numerical procedure and phenomenological analysis

Summary and outlook

Work done:

Study of the theoretical framework of the minimal U(1) 2HDM for flavour;
Identification of the maximally-restrictive pairs of quark and lepton mass matrices compatible with current masses, mixing and CP violation data;

Lepton sector predictions;
Phenomenological study (analytical and numerical) of the quark and charged lepton sectors.

Summary and outlook

Work done:

Study of the theoretical framework of the minimal $\mathbf{U}(1) 2 H D M$ for flavour;
\checkmark Identification of the maximally-restrictive pairs of quark and lepton mass matrices compatible with current masses, mixing and CP violation data;
\checkmark Lepton sector predictions;
Phenomenological study (analytical and numerical) of the quark and charged lepton sectors.

Abelian flavour symmetries in the 2HDM stand out as a simple approach in addressing the flavour puzzle, leading to minimal quark and lepton models that are predictive

Summary and outlook

Work done:

Study of the theoretical framework of the minimal U(1) 2HDM for flavour;
\checkmark Identification of the maximally-restrictive pairs of quark and lepton mass matrices compatible with current masses, mixing and CP violation data;
\checkmark Lepton sector predictions;
Phenomenological study (analytical and numerical) of the quark and charged lepton sectors.

Abelian flavour symmetries in the 2HDM stand out as a simple approach in addressing the flavour puzzle, leading to minimal quark and lepton models that are predictive

Thank you !

