

Phenomenology of GeV-scale dark matter near p-wave resonance

(Based on arXiv:2401.02513)

Sreemanti Chakraborti **IPPP, Durham University**

Collaborators: G. Bélanger, Y. Génolini and P. Salati

3-7 JUNE, 2024

Anfiteatro Abreu Faro, Instituto Superior Técnico Lisbon, Portugal

Organised by Centro de Física Teórica de Partículas (CFTP)

Centro de Física Teórica de Partículas

TÉCNICO LISBOA

Challenges

DM of mass range 100 MeV-a few GeV

T. Slatyer, Phys. Rev. D 93, 023527 (2016)

Ways around

Velocity-dependent annihilation cross-section ??

- *p*-wave?
- BW resonance?
- ... why not have both ??

New particles

• Scalar : ϕ , Z_2 odd \rightarrow **DM** • Dark photon : $X \rightarrow$ mediator

 $\mathscr{L} \supset -\left\{ X_{\mu}J^{\mu}_{\phi} \equiv ig_{x}X^{\mu} \left(\phi^{\dagger}\partial_{\mu}\phi - \partial_{\mu}\phi^{\dagger}\phi \right) \right\} - \epsilon eQ_{f}\bar{f}Z$

$$a = -\left\{\frac{m_x^2}{4m_\phi^2}\right\} \left\{\frac{\Sigma_0^2 \equiv 1 - 4m_\phi^2/m_x^2}{\Sigma^2}\right\}$$
$$b = \left\{\frac{m_x^2}{4m_\phi^2}\right\} \left\{\frac{\Lambda_0^2 \equiv \Gamma_x/m_x}{\Sigma^2}\right\}$$
$$\Gamma_x = \frac{m_x}{12\pi} \left\{\frac{g_x^2}{4}\Sigma_0^3 + \epsilon^2 e^2 Q'^2\right\}$$
$$Q'^2 = \sum_f \left\{1 - \frac{4m_f^2}{m_x^2}\right\}^{1/2} \left\{1 + \frac{2m_f^2}{m_x^2}\right\} Q_f^2$$

$$m_{\phi}, \Sigma_0^2, g_x, \epsilon$$

When Λ_0 is smaller than Σ_0 , the cross-section is enhanced by a Breit-Wigner resonance. Above a velocity of order Σ_0 , where its peak value is reached, $\langle \sigma_{ann} v \rangle$ drops like Σ^{-3} to reach the asymptotic behavior Σ^{-2} . Below the peak, the *p*-wave annihilation regime sets in and $\langle \sigma_{ann} v \rangle$ is proportional to Σ^2 . For large values of Λ_0 with respect to Σ_0 , the two asymptotic regimes only appear.

Kinetic decoupling

- O Thermalization of DM occurs primarily through an exchange of energy due to collisions with the SM plasma
- For small ϵ , kinetic equilibrium is not always maintained, and DM can decouple from the thermal bath earlier than usual
- We assume that ϕ and $\overline{\phi}$ reach thermal equilibrium through mutual collisions at a temperature T_{ϕ} which is different from the plasma temperature T after kinetic decoupling has occurred.
- When DM decouples thermally from the primordial plasma, its temperature drops faster than usual. T_{ϕ} decreases as a^{-2} , while T scales approximately like a^{-1} . As DM cools down, the annihilation cross-section $\langle \sigma v_{ann} \rangle$ increases, and hence relic density drops. $\langle \sigma v_{ann} \rangle$ peaks at the DM dispersion velocity Σ_M , where most of the annihilation takes place.

✓ Left-branch solution : $\Sigma_0^2 < \bar{\Sigma}_{\min}^2$

✓ Right-branch solution : $\Sigma_0^2 > \overline{\Sigma}_{\min}^2$

For each (g_x, ϵ) , there could be two values of Σ_0^2 yielding the observed relic

Exists only if the plateau is above the relic line

Constraints on DM annihilation

- The model can be constrained by limiting annihilation at different DM velocities owing to the non-trivial velocity dependence
- In the g_x vs. ϵ parameter space, the velocity dependence can be tuned by choosing Σ_0^2 , because the BW peak accordingly shifts

Relic density and annihilation in the galaxies

Left-branch solution

 $\Sigma_{\rm MW}^2 \sim 3 \times 10^{-7}$

Relic density and annihilation in the galaxies

Right-branch solution

Unlike the left-branch solution, here one can always find Σ_0^2 that will give the right relic

 $\Sigma_{\rm MW}^2 \sim 3 \times 10^{-7}$

Earth-based probes **Direct detection and accelerators**

- Direct searches dedicated to light DM detection: Pandax-4T (S2+Migdal), Pandax-4T (S1+S2)
- Future projections from DARKSPHERE (NEWS-G) and SBC-1 ton
- Accelerators can probe both visible and invisible decays of the mediator
- For dark photon mass ≤ 600 MeV, the visible decay searches put limits on both *prompt* and *displaced* searches. The best limits are obtained from di-muon searches of LHCb (prompt), BaBar for large e and CHARM, E137 for small ϵ
- BaBar and LEP provide the best limits for invisible decay searches for ~ O (GeV) dark photon •

Summary plots 200 MeV

- X-ray limits XMM-Newton
- CMB μ -distortion limits FIRAS (COBE)
- Direct detection PandaX-4T (S2 only+Migdal)

• Accelerator limits - *visible decay* : LHCb (upper band), *v*-CAL, CHARM (lower band) *invisible decay* : BaBar (upper band)

Summary Plots 1GeV

• X-ray limits - XMM-Newton

• CMB μ -distortion limits - FIRAS (COBE)

Direct detection - PandaX-4T (S2 only+Migdal)

• Accelerator limits - visible decay : LHCb

invisible decay : BaBar

 -10^{-38}

Summary Plots 5 GeV

• X-ray limits - XMM-Newton

• CMB μ -distortion limits - FIRAS (COBE) • Direct detection - PandaX-4T (S1+S2) • Accelerator limits - visible decay : BaBar *invisible decay* : LEP

Take home

- ✓ We have considered a GeV-scale dark matter model where annihilation is essentially *p*-wave
- ✓ Focussing on the BW resonance region makes way for interesting probes through indirect searches
- Strong CMB-constraints are evaded by tuning the resonance parameters
- Low-energy direct detection and accelerator searches (proton and electron beam-dumps, searches through rare meson decays etc) give complementary probes

Backup

More on early kinetic decoupling

✓ When kinetic decoupling occurs close to freeze out, it can lead to ~ one order of magnitude difference in relic density

$$a = -\left\{\frac{m_x^2}{4m_\phi^2}\right\} \left\{\frac{\Sigma_0^2 \equiv 1 - 4m_\phi^2/m_x^2}{\Sigma^2}\right\}$$

$$\left\langle \sigma_{\mathrm{ann}} v \right\rangle = \frac{g_x^2 \epsilon^2 e^2 \tilde{Q}^2}{3\pi m_x^2 \Sigma_0^2} \times \left\{ \left| a \right| J(a,b) \right\}$$

$$1/\sqrt{|a|} \equiv (2m_{\phi}/m_x)(\Sigma/\Sigma_0)$$

