

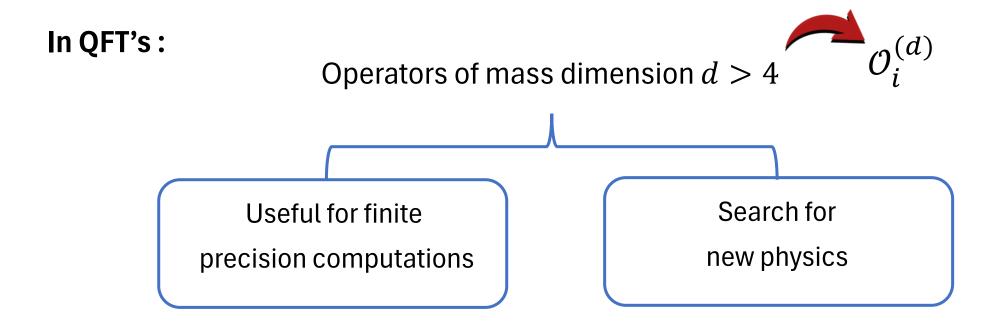
On-Shell matching in effective field theories

Fuensanta Vilches Bravo (she/her)

with M. Chala, J. López-Miras and J. Santiago [2406.xxxxx]

Why do we need effective field theories?

EFT's are perturbative (Taylor) expansions of a full theory



PLANCK | 2024

Green's basis and redundant operators

EFT Lagrangian:
$$\mathcal{L} = \mathcal{L}^{(4)} + \sum_{d>4} \sum_{i} \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

Green's basis and redundant operators

EFT Lagrangian:
$$\mathcal{L} = \mathcal{L}^{(4)} + \sum_{d>4} \sum_{i} \frac{c_i^{(a)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

Valid operators

Local operators

Preserve the symmetries of the Lagrangian

Finite number of operators

Integration by parts

Green's basis

Green's basis and redundant operators

Green's basis of the bosonic sector of the SMEFT

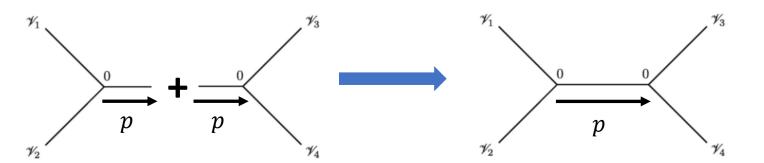
X^3		X^2H^2		H^2D^4	
\mathcal{O}_{3G}	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_{HG}	$G^{A}_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{DH}	$(D_{\mu}D^{\mu}H)^{\dagger}(D_{\nu}D^{\nu}H)$
$\mathcal{O}_{\widetilde{3G}}$	$f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$\mathcal{O}_{H\widetilde{G}}$	$G^{A}_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$ $\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$		H^4D^2
\mathcal{O}_{3W}	$\epsilon^{IJK}W_{\mu}^{I u}W_{\nu}^{J ho}W_{\rho}^{K\mu}$	\mathcal{O}_{HW}	$W^{I}_{\mu\nu}W^{I\mu\nu}(H^{\dagger}H)$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$
$\mathcal{O}_{\widetilde{3W}}$	$\epsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$	$\mathcal{O}_{H\widetilde{W}}$	$\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}	$(H^{\dagger}D^{\mu}H)^{\dagger}(H^{\dagger}D_{\mu}H)$
X^2D^2		\mathcal{O}_{HB}	$B_{\mu\nu}B^{\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}'	$(H^{\dagger}H)(D_{\mu}H)^{\dagger}(D^{\mu}H)$
\mathcal{O}_{2G}	$-\frac{1}{2}(D_{\mu}G^{A\mu\nu})(D^{\rho}G^{A}_{\rho\nu})$	$\mathcal{O}_{H\widetilde{B}}$	$\widetilde{B}_{\mu\nu}B^{\mu\nu}(H^{\dagger}H)$	$\mathcal{O}_{HD}^{\prime\prime}$	$(H^{\dagger}H)D_{\mu}(H^{\dagger}i\overleftrightarrow{D}^{\mu}H)$
\mathcal{O}_{2W}	$-\frac{1}{2}(D_{\mu}W^{I\mu\nu})(D^{\rho}W^{I}_{\rho\nu})$	\mathcal{O}_{HWB}	$W^{I}_{\mu\nu}B^{\mu\nu}(H^{\dagger}\sigma^{I}H)$		H^6
\mathcal{O}_{2B}	$-\frac{1}{2}(\partial_{\mu}B^{\mu\nu})(\partial^{\rho}B_{\rho\nu})$	$\mathcal{O}_{H\widetilde{W}B}$	$\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}(H^{\dagger}\sigma^{I}H)$	\mathcal{O}_H	$(H^{\dagger}H)^3$
	_	H^2XD^2			
		\mathcal{O}_{WDH}	$D_{\nu}W^{I\mu\nu}(H^{\dagger}i\overrightarrow{D}_{\mu}^{I}H)$		
		\mathcal{O}_{BDH}	$\partial_{\nu}B^{\mu\nu}(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)$		

V. Gherardi, D. Marzocca y E. Venturini (2021) [2003.12525v5]

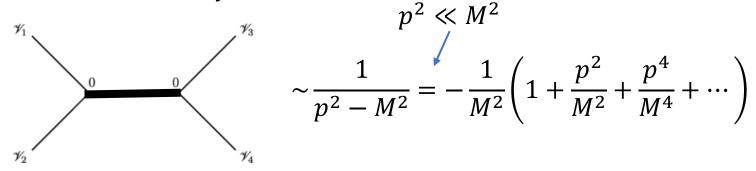
Matching: Off-Shell vs On-shell

Off-Shell matching

- Small number of diagrams (1 lPI)



- Heavy bridges contribution directly local



- But requires the construction and reduction of the Green's basis

Reduction to the physical basis

Identification of redundant operators

Field redefinitions

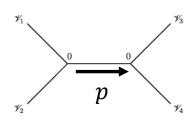
EOMs (only valid up to linear order)

Non-trivial process

Hard to program it in a systematic way

On-Shell matching

- Huge number of diagrams



- There is delicate cancellation of non-local contributions between between UV and EFT

$$\left. \frac{1}{p^2 - m^2} \right|_{\text{UV}} - \frac{1}{p^2 - m^2} \right|_{\text{EFT}} = Polynomial(p^2)$$

Reduction to the physical basis

Identification of redundant operators

Field redefinitions

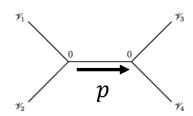
EOMs (only valid up to linear order)

Non-trivial process

Hard to program it in a systematic way

On-Shell matching

- Huge number of diagrams



- There is delicate cancellation of non-local contributions between between UV and EFT

Substitution of randomly generated physical momenta

M. Accettulli [2304.01589]

$$\left. \frac{1}{p^2 - m^2} \right|_{\text{UV}} - \frac{1}{p^2 - m^2} \right|_{\text{EFT}} = Polynomial(p^2)$$

PLANCK | 2024

On-Shell matching approach

ullet Find the Green's basis up to dimension d

• Find the physical basis

R. Fonseca [1907.12584] J.C. Criado [1901.03501] \mathcal{L}_{phys}

• Compute n-points amplitudes with $n \le d$ on-shell

By the substitution of randomly generated physical momenta

• Solve the system $\mathcal{M}_{i,Green} = \mathcal{M}_{i,phys}$

$$\mathcal{L}_{Green} = \mathcal{L}^{(4)} + \mathcal{L}_{Green}^{(6)}$$

$$\mathcal{L}_{Green} = \mathcal{L}^{(4)} + \mathcal{L}_{Green}^{(6)}$$
 $\mathcal{L}_{phys} = \mathcal{L}^{(4)} + \mathcal{L}_{phys}^{(6)} + \mathcal{L}_{phys}^{(8)}$

$$\mathcal{L}_{Green} = \mathcal{L}^{(4)} + \mathcal{L}_{Green}^{(6)}$$

$$\mathcal{L}_{Green} = \mathcal{L}^{(4)} + \mathcal{L}_{Green}^{(6)}$$
 $\mathcal{L}_{phys} = \mathcal{L}^{(4)} + \mathcal{L}_{phys}^{(6)} + \mathcal{L}_{phys}^{(8)}$

$$\mathcal{L}^{(4)} = rac{1}{2} \left(D_{\mu} H
ight)^{\dagger} \left(D^{\mu} H
ight) - m_0^2 H^{\dagger} H - \lambda \left(H^{\dagger} H
ight)^2$$

$$\mathcal{L}_{Green}^{(6)} = c_{H} \left(H^{\dagger}H\right)^{3} + c_{H\Box} \left(H^{\dagger}H\right) \Box \left(H^{\dagger}H\right) + c_{HD} \left(H^{\dagger}D^{\mu}H\right)^{\dagger} \left(H^{\dagger}D_{\mu}H\right) + r_{HD}' \left(H^{\dagger}H\right) \left(D_{\mu}H\right)^{\dagger} \left(D^{\mu}H\right) + r_{HD}' \left(H^{\dagger}H\right) D_{\mu} \left(H^{\dagger}i \overleftrightarrow{D}^{\mu}H\right) + r_{DH} \left(D^{2}H\right)^{\dagger} \left(D^{2}H\right)$$

$$\mathcal{L}_{Green} = \mathcal{L}^{(4)} + \mathcal{L}_{Green}^{(6)}$$

$$\mathcal{L}_{Green} = \mathcal{L}^{(4)} + \mathcal{L}_{Green}^{(6)}$$
 $\mathcal{L}_{phys} = \mathcal{L}^{(4)} + \mathcal{L}_{phys}^{(6)} + \mathcal{L}_{phys}^{(8)}$

$$\mathcal{L}^{(4)} = \frac{1}{2} \left(D_{\mu} H \right)^{\dagger} \left(D^{\mu} H \right) - m_{0}^{2} H^{\dagger} H - \lambda \left(H^{\dagger} H \right)^{2} \qquad \mathcal{L}_{phys}^{(6)}$$

$$\mathcal{L}_{Green}^{(6)} = c_{H} \left(H^{\dagger} H \right)^{3} + c_{H\square} \left(H^{\dagger} H \right) \square \left(H^{\dagger} H \right) + c_{HD} \left(H^{\dagger} D^{\mu} H \right)^{\dagger} \left(H^{\dagger} D_{\mu} H \right) + r_{HD}^{\prime} \left(H^{\dagger} H \right) \left(D_{\mu} H \right)^{\dagger} \left(D^{2} H \right) + r_{DH}^{\prime} \left(D^{2} H \right)^{\dagger} \left(D^{2} H \right)$$

12 PLANCK | 2024

 $\mathcal{L}^{(4)} = rac{1}{2} \left(D_{\mu} H
ight)^{\dagger} \left(D^{\mu} H
ight) - m_0^2 H^{\dagger} H - \lambda \left(H^{\dagger} H
ight)^2 \, .$

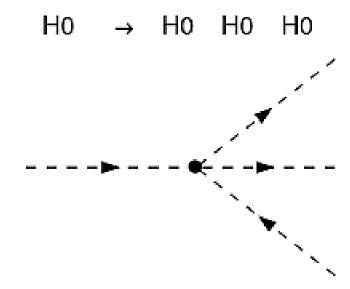
$$\mathcal{L}_{Green} = \mathcal{L}^{(4)} + \mathcal{L}_{Green}^{(6)}$$

$$\mathcal{L}_{Green} = \mathcal{L}^{(4)} + \mathcal{L}_{Green}^{(6)}$$
 $\mathcal{L}_{phys} = \mathcal{L}^{(4)} + \mathcal{L}_{phys}^{(6)} + \mathcal{L}_{phys}^{(8)}$

$$\mathcal{L}_{Green}^{(6)} = c_{H} \left(H^{\dagger}H
ight)^{3} + c_{H\Box} \left(H^{\dagger}H
ight) \Box \left(H^{\dagger}H
ight) + c_{HD} \left(H^{\dagger}D^{\mu}H
ight)^{\dagger} \left(H^{\dagger}D_{\mu}H
ight) + r_{HD}^{\prime} \left(H^{\dagger}H
ight) \left(D^{\mu}H
ight) + r_{DH}^{\prime} \left(D^{2}H
ight)^{\dagger} \left(D^{2}H
ight)$$

$$\mathcal{L}_{phys}^{(8)} = c_{H^8} \left(H^{\dagger} H \right)^4 + c_{H^6 D^2}^{(1)} \left(H^{\dagger} H \right)^2 \left(D_{\mu} H^{\dagger} D^{\mu} H \right) + c_{H^6 D^2}^{(2)} \left(H^{\dagger} H \right) \left(H^{\dagger} \sigma^I H \right) \left(D_{\mu} H^{\dagger} \sigma^I D^{\mu} H \right) + c_{H^4 D^4}^{(1)} \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\nu} H^{\dagger} D^{\mu} H \right) + c_{H^4 D^4}^{(2)} \left(D_{\mu} H^{\dagger} D_{\nu} H \right) \left(D^{\mu} H^{\dagger} D^{\nu} H \right) + c_{H^4 D^4}^{(3)} \left(D^{\mu} H^{\dagger} D_{\mu} H \right) \left(D^{\nu} H^{\dagger} D_{\nu} H \right)$$

```
rules12 = Rules[4, 0, 10] /. {rules`k → k, rules`Pair → Pair} // Simplify;
equations = {};
For [j = 1, j \le Length[amp1], j++,
para cada
              longitud
       For[i = 1, i ≤ Length[rules12], i++,
       para cada
                     longitud
        final = amp1[j] /. Flatten[rules12[i]] // TermCollect;
        final = I Sum[final[aa], {aa, 1, Length[final]}] // Expand;
                 ·· suma
                                           longitud
                                                                expande factores
        final = final /. Sust;
        final = final /. \{x^3 \to 0, x^4 \to 0, x^5 \to 0, x^6 \to 0\} /. \{x \to 1\};
        ampIR = final /. propEFT /. limitIR;
        ampUV = Z^2 final /. propEFT /. limitUV;
        ampsUV[i] = ampsUV[i] + ampUV;
        ampsIR[i] = ampsIR[i] + ampIR;
  AppendTo[equations, Table[ampsUV[i] == ampsIR[i], {i, 1, Length[rules12]}]];
  añade al final
                         tabla
                                                                 longitud
 ];
solution1 = Solve[Flatten[equations], coefsol] /. massPhys // Simplify;
            resuelve aplana
                                                                    simplifica
```



```
rules12 = Rules[4, 0, 10] /. {rules`k → k, rules`Pair → Pair} // Simplify; → Replacing momenta by randomly generated values
equations = {};
For [j = 1, j \le Length[amp1], j++,
para cada
             longitud
      For[i = 1, i ≤ Length[rules12], i++,
       para cada
                    longitud
        final = amp1[j] /. Flatten[rules12[i]] // TermCollect;
        final = I Sum[final[aa], {aa, 1, Length[final]}] // Expand;
                                          longitud
                ·· suma
                                                              expande factores
        final = final /. Sust;
        final = final /. \{x^3 \to 0, x^4 \to 0, x^5 \to 0, x^6 \to 0\} /. \{x \to 1\};
        ampIR = final /. propEFT /. limitIR;
        ampUV = Z^2 final /. propEFT /. limitUV;
        ampsUV[i] = ampsUV[i] + ampUV;
        ampsIR[i] = ampsIR[i] + ampIR;
  AppendTo[equations, Table[ampsUV[i] == ampsIR[i], {i, 1, Length[rules12]}]];
  añade al final
                        tabla
                                                               longitud
 ];
solution1 = Solve[Flatten[equations], coefsol] /. massPhys // Simplify;
            resuelve aplana
                                                                  simplifica
```

```
rules12 = Rules[4, 0, 10] /. {rules`k → k, rules`Pair → Pair} // Simplify; → Replacing momenta by randomly generated values
equations = {};
                                                                                   Running through every amplitude in the process
For [j = 1, j \le Length[amp1], j++,
para cada
             longitud
      For[i = 1, i ≤ Length[rules12], i++,
      para cada
                    longitud
        final = amp1[j] /. Flatten[rules12[i]] // TermCollect;
        final = I Sum[final[aa], {aa, 1, Length[final]}] // Expand;
                ·· suma
                                         longitud
                                                             expande factores
        final = final /. Sust;
        final = final /. \{x^3 \to 0, x^4 \to 0, x^5 \to 0, x^6 \to 0\} /. \{x \to 1\};
        ampIR = final /. propEFT /. limitIR;
        ampUV = Z^2 final /. propEFT /. limitUV;
        ampsUV[i] = ampsUV[i] + ampUV;
        ampsIR[i] = ampsIR[i] + ampIR;
  AppendTo[equations, Table[ampsUV[i] == ampsIR[i], {i, 1, Length[rules12]}]];
  añade al final
                        tabla
                                                              longitud
 ];
solution1 = Solve[Flatten[equations], coefsol] /. massPhys // Simplify;
            resuelve aplana
                                                                 simplifica
```

```
rules12 = Rules[4, 0, 10] /. {rules`k → k, rules`Pair → Pair} // Simplify; → Replacing momenta by randomly generated values
equations = {};
                                                                 Running through every amplitude in the process
For[j = 1, j ≤ Length[amp1], j++, _____
para cada
            longitud
      For[i = 1, i ≤ Length[rules12], i++,
      para cada
                   longitud
       final = amp1[j] /. Flatten[rules12[i]] // TermCollect;
       final = I Sum[final[aa], {aa, 1, Length[final]}] // Expand;
                                       longitud
                                                           expande factores
               ·· suma
       final = final /. Sust;
       final = final /. \{x^3 \to 0, x^4 \to 0, x^5 \to 0, x^6 \to 0\} /. \{x \to 1\};
       ampIR = final /. propEFT /. limitIR;
                                                                               Setting both theories amplitudes with their
       ampUV = Z^2 final /. propEFT /. limitUV;
                                                                               propagators and wavefunction renormalizations
       ampsUV[i] = ampsUV[i] + ampUV;
       ampsIR[i] = ampsIR[i] + ampIR;
  AppendTo[equations, Table[ampsUV[i] == ampsIR[i], {i, 1, Length[rules12]}]];
  añade al final
                       tabla
                                                           longitud
 ];
solution1 = Solve[Flatten[equations], coefsol] /. massPhys // Simplify;
           resuelve aplana
                                                              simplifica
```

```
rules12 = Rules[4, 0, 10] /. {rules`k → k, rules`Pair → Pair} // Simplify; —— Replacing momenta by randomly generated values
equations = {};
                                                                                Running through every amplitude in the process
For[j = 1, j ≤ Length[amp1], j++,
para cada
             longitud
      For[i = 1, i ≤ Length[rules12], i++,
                    longitud
      para cada
        final = amp1[j] /. Flatten[rules12[i]] // TermCollect;
        final = I Sum[final[aa], {aa, 1, Length[final]}] // Expand;
                                        longitud
               ·· suma
                                                           expande factores
        final = final /. Sust;
        final = final /. \{x^3 \to 0, x^4 \to 0, x^5 \to 0, x^6 \to 0\} /. \{x \to 1\};
        ampIR = final /. propEFT /. limitIR;
                                                                                Setting both theories amplitudes with their
        ampUV = Z^2 final /. propEFT /. limitUV;
                                                                                propagators and wavefunction renormalizations
        ampsUV[i] = ampsUV[i] + ampUV;
        ampsIR[i] = ampsIR[i] + ampIR;
  AppendTo[equations, Table[ampsUV[i]] == ampsIR[i], {i, 1, Length[rules12]}]];
                                                                                         Matching both theories
  añade al final
                       tabla
                                                             longitud
 ];
solution1 = Solve[Flatten[equations], coefsol] /. massPhys // Simplify;
           resuelve aplana
                                                               simplifica
```

```
rules12 = Rules[4, 0, 10] /. {rules`k → k, rules`Pair → Pair} // Simplify; —— Replacing momenta by randomly generated values
equations = {};
                                                              Running through every amplitude in the process
For[j = 1, j ≤ Length[amp1], j++, ______
para cada
         longitud
      For[i = 1, i ≤ Length[rules12], i++,
      para cada
                 longitud
       final = amp1[j] /. Flatten[rules12[i]] // TermCollect;
       final = I Sum[final[aa], {aa, 1, Length[final]}] // Expand;
                                      longitud
              ·· suma
                                                         expande factores
       final = final /. Sust;
       final = final /. \{x^3 \to 0, x^4 \to 0, x^5 \to 0, x^6 \to 0\} /. \{x \to 1\};
       ampIR = final /. propEFT /. limitIR;
                                                                            Setting both theories amplitudes with their
       ampUV = Z^2 final /. propEFT /. limitUV;
                                                                             propagators and wavefunction renormalizations
       ampsUV[i] = ampsUV[i] + ampUV;
       ampsIR[i] = ampsIR[i] + ampIR;
                                                                                     Matching both theories
  AppendTo[equations, Table[ampsUV[i] == ampsIR[i], {i, 1, Length[rules12]}]];
  añade al final
                      tabla
                                                          longitud
 ];
                                                                                    Solving the system
solution1 = Solve[Flatten[equations], coefsol] /. massPhys // Simplify; -
           resuelve aplana
                                                            simplifica
```

 $\lambda \rightarrow \text{lmbd} + \text{m0}^2 \text{ (4 lmbd rDH} - 2 rHDp) + \text{m0}^4 \text{ (16 lmbd rDH}^2 - 10 rDH rHDp)}$

Final solution: redefinition of coefficients

$$cH \rightarrow aH - lmbd^2 rDH + lmbd rHDp + m\theta^2 \left(6 \ aH \ rDH + aHD \ lmbd rDH - 8 \ aHDD \ lmbd rDH - 11 \ lmbd^2 rDH^2 - \frac{aHD \ rHDp}{2} + 4 \ aHDD \ rHDp + 9 \ lmbd rDH \ rHDp - \frac{rHDp^2}{4} - rHDpp^2 \right) + 4 \ aHDD \ rHDp + 9 \ lmbd rDH rHDp - \frac{rHDp^2}{4} - rHDpp^2 + 4 \ aHDD \ rHDp + 3 \ lmbd rDH rHDp + 3 \ lmbd rDH rHDp - \frac{7 \ rHDp^2}{4} + rHDpp^2 +$$

[2307.08745v1]

V. Gherardi, D. Marzocca and E. Venturini | 2021 [2003.12525v5]

PLANCK | 2024 20

 $\lambda \rightarrow \text{lmbd} + \text{m0}^2 \text{ (4 lmbd rDH} - 2 rHDp) + \text{m0}^4 \text{ (16 lmbd rDH}^2 - 10 rDH rHDp)}$

Final solution: redefinition of coefficients

$$cH \rightarrow aH - lmbd^2 rDH + lmbd rHDp + m0^2 \left(6 \ aH \ rDH + aHD \ lmbd rDH - 8 \ aHDD \ lmbd rDH - 11 \ lmbd^2 rDH^2 - \frac{aHD \ rHDp}{2} + 4 \ aHDD \ rHDp + 9 \ lmbd \ rDH \ rHDp - \frac{rHDp^2}{4} - rHDpp^2 \right) + 4 \ aHDD \ rHDp + 9 \ lmbd rDH \ rHDp - \frac{rHDp^2}{4} - rHDpp^2 + 4 \ aHDD \ rHDp + 3 \ lmbd rDH rHDp - \frac{rHDp^2}{4} + rHDpp^2 + \frac{aHD \ rDH + 8 \ aHDD \ lmbd \ rDH + lmbd^2 \ rDH^2 - \frac{aHD \ rHDp}{2} - 4 \ aHDD \ rHDp + 3 \ lmbd \ rDH \ rHDp - \frac{7 \ rHDp^2}{4} + rHDpp^2 + rHDpp$$

V. Gherardi, D. Marzocca and E. Venturini | 2021 [2003.12525v5]

PLANCK | 2024 21

Final solution: redefinition of coefficients

$$cH \rightarrow aH - lmbd^2 rDH + lmbd rHDp + m0^2 \left(6 \ aH \ rDH + aHD \ lmbd \ rDH - 8 \ aHDD \ lmbd \ rDH - 11 \ lmbd^2 \ rDH^2 - \frac{aHD \ rHDp}{2} + 4 \ aHDD \ rHDp + 9 \ lmbd \ rDH \ rHDp - \frac{rHDp^2}{4} + 4 \ aHDD \ rHDp + 9 \ lmbd \ rDH \ rHDp - \frac{rHDp^2}{4} + rHDp^2 + 4 \ aHDD \ rHDp + 3 \ lmbd \ rDH \ rHDp + 3 \ lmbd \ rDH \ rHDp + 7 \ rHDp^2}{4} + rHDpp^2$$

$$cH61 \rightarrow aHD \ lmbd \ rDH + 8 \ aHDD \ lmbd \ rDH + lmbd^2 \ rDH^2 - 4 \ aHDD \ rHDp + 3 \ lmbd \ rDH \ rHDp + 7 \ rHDp^2}{4} + rHDpp^2$$

$$cH62 \rightarrow 2 \ aHD \ lmbd \ rDH - aHD \ rHDp + 3 \ lmbd \ rDH \ rHDp + 3 \ lmbd \ rDH \ rHDp + 7 \ rHDp^2$$

$$cH02 \rightarrow 2 \ aHD \ lmbd \ rDH - aHD \ rHDp + 4 \ aHDD \ rHDp + 6 \ lmbd \ rDH + 1 \ lmbd^2 \ rDH^2 + 10 \ rDH \ rHDp)$$

$$del{eq:chosen}$$

$$del{eq:$$

X^3					H^2D^4
\mathcal{O}_{3G}	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_{HG}	$G^{A}_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{DH}	$(D_{\mu}D^{\mu}H)^{\dagger}(D_{\nu}D^{\nu}H)$
$\mathcal{O}_{\widetilde{3G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$\mathcal{O}_{H\widetilde{G}}$	$G^{A}_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$		H^4D^2
\mathcal{O}_{3W}	$\epsilon^{IJK}W_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}$	\mathcal{O}_{HW}	$W^{I}_{\mu\nu}W^{I\mu\nu}(H^{\dagger}H)$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$
$\mathcal{O}_{\widetilde{3W}}$	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$\mathcal{O}_{H\widetilde{W}}$	$\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}	$(H^{\dagger}D^{\mu}H)^{\dagger}(H^{\dagger}D_{\mu}H)$
X^2D^2		\mathcal{O}_{HB}	$B_{\mu\nu}B^{\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}'	$(H^{\dagger}H)(D_{\mu}H)^{\dagger}(D^{\mu}H)$
\mathcal{O}_{2G}	$-\frac{1}{2}(D_{\mu}G^{A\mu\nu})(D^{\rho}G^{A}_{\rho\nu})$	$\mathcal{O}_{H\widetilde{B}}$	$\widetilde{B}_{\mu\nu}B^{\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}''	$(H^{\dagger}H)D_{\mu}(H^{\dagger}i\overrightarrow{D}^{\mu}H)$
\mathcal{O}_{2W}	$-\frac{1}{2}(D_{\mu}W^{I\mu\nu})(D^{\rho}W^{I}_{\rho\nu})$	\mathcal{O}_{HWB}	$W^{I}_{\mu\nu}B^{\mu\nu}(H^{\dagger}\sigma^{I}H)$	H^6	
\mathcal{O}_{2B}	$-\frac{1}{2}(\partial_{\mu}B^{\mu\nu})(\partial^{\rho}B_{\rho\nu})$	$\mathcal{O}_{H\widetilde{W}B}$	$\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}(H^{\dagger}\sigma^{I}H)$	\mathcal{O}_H	$(H^{\dagger}H)^3$
		H^2XD^2			
		\mathcal{O}_{WDH}	$D_{\nu}W^{I\mu\nu}(H^{\dagger}i\overrightarrow{D}_{\mu}^{I}H)$		
		\mathcal{O}_{BDH}	$\partial_{\nu}B^{\mu\nu}(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)$		

X^3		X^2H^2		H^2D^4		
\mathcal{O}_{3G}	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_{HG}	$G^{A}_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{DH}	$(D_{\mu}D^{\mu}H)^{\dagger}(D_{\nu}D^{\nu}H)$	
$\mathcal{O}_{\widetilde{3G}}$	$f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$\mathcal{O}_{H\widetilde{G}}$	$G^{A}_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$		H^4D^2	
\mathcal{O}_{3W}	$\epsilon^{IJK}W_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$	\mathcal{O}_{HW}	$W^{I}_{\mu\nu}W^{I\mu\nu}(H^{\dagger}H)$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	
$\mathcal{O}_{\widetilde{3W}}$	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$\mathcal{O}_{H\widetilde{W}}$	$\widetilde{W}_{\mu\nu}^{I}W^{I\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}	$(H^{\dagger}D^{\mu}H)^{\dagger}(H^{\dagger}D_{\mu}H)$	
X^2D^2		\mathcal{O}_{HB}	$B_{\mu\nu}B^{\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}'	$(H^{\dagger}H)(D_{\mu}H)^{\dagger}(D^{\mu}H)$	
\mathcal{O}_{2G}	$-\frac{1}{2}(D_{\mu}G^{A\mu\nu})(D^{\rho}G^{A}_{\rho\nu})$	${\cal O}_{_{H\widetilde P}}$	$\widetilde{B}_{\mu\nu}B^{\mu u}(H^{\dagger}H)$	\mathcal{O}_{HD}''	$(H^{\dagger}H)D_{\mu}(H^{\dagger}i\overleftrightarrow{D}^{\mu}H)$	
\mathcal{O}_{2W}	$-\frac{1}{2}(D_{\mu}W^{I\mu\nu})(D^{\rho}W^{I}_{\rho\nu})$	\mathcal{O}_{HWB}	$W^{I}_{\mu\nu}B^{\mu\nu}(H^{\dagger}\sigma^{I}H)$		H^6	
\mathcal{O}_{2B}	$-\frac{1}{2}(\partial_{\mu}B^{\mu\nu})(\partial^{\rho}B_{\rho\nu})$	$\mathcal{O}_{H\widetilde{W}B}$	$\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}(H^{\dagger}\sigma^{I}H)$	\mathcal{O}_H	$(H^{\dagger}H)^3$	
		H^2XD^2				
		\mathcal{O}_{WDH}	$D_{\nu}W^{I\mu\nu}(H^{\dagger}i\overrightarrow{D}_{\mu}^{I}H)$			
		\mathcal{O}_{BDH}	$\partial_{\nu}B^{\mu\nu}(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)$			

$$m_0^2 \to m_0^2$$
 $\lambda \to \lambda - 2m_0^2 r'_{HD}$
 $c_{H^4D^4}^{(1)} \to 2r_{BDH}^2$
 $c_{H^4D^4}^{(2)} \to -2r_{BDH}^2$
 $c_{H^4D^4}^{(3)} \to 0$
 $c_{H\Box} \to c_{H\Box} + \frac{1}{2}g'r_{BDH} + \frac{1}{2}r'_{HD}$

 $c_{HD} \rightarrow c_{HD} + 2g' r_{BDH}$

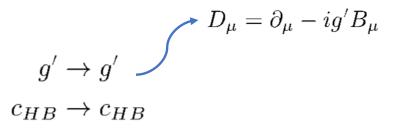
X^3			X^2H^2		H^2D^4	
\mathcal{O}_{3G}	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_{HG}	$G^{A}_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{DH}	$(D_{\mu}D^{\mu}H)^{\dagger}(D_{\nu}D^{\nu}H)$	
$\mathcal{O}_{\widetilde{3G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$\mathcal{O}_{H\widetilde{G}}$	$G^{A}_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$ $\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$		H^4D^2	
\mathcal{O}_{3W}	$\epsilon^{IJK}W_{\mu}^{I u}W_{\nu}^{J ho}W_{ ho}^{K\mu}$	\mathcal{O}_{HW}	$W^{I}_{\mu\nu}W^{I\mu\nu}(H^{\dagger}H)$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	
$\mathcal{O}_{\widetilde{3W}}$	$\epsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$	$\mathcal{O}_{H\widetilde{W}}$	$\widetilde{W}_{\mu\nu}^{I}W^{I\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}	$ (H^{\dagger}D^{\mu}H)^{\dagger}(H^{\dagger}D_{\mu}H) $	
X^2D^2		\mathcal{O}_{HB}	$B_{\mu\nu}B^{\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}'	$(H^{\dagger}H)(D_{\mu}H)^{\dagger}(D^{\mu}H)$	
\mathcal{O}_{2G}	$-\frac{1}{2}(D_{\mu}G^{A\mu\nu})(D^{\rho}G^{A}_{\rho\nu})$	$\mathcal{O}_{H\widetilde{B}}$	$\widetilde{B}_{\mu\nu}B^{\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}''	$(H^{\dagger}H)D_{\mu}(H^{\dagger}i\overrightarrow{D}^{\mu}H)$	
\mathcal{O}_{2W}	$-\frac{1}{2}(D_{\mu}W^{I\mu\nu})(D^{\rho}W^{I}_{\rho\nu})$	\mathcal{O}_{HWB}	$W^{I}_{\mu\nu}B^{\mu\nu}(H^{\dagger}\sigma^{I}H)$		H^6	
\mathcal{O}_{2B}	$-\frac{1}{2}(\partial_{\mu}B^{\mu\nu})(\partial^{\rho}B_{\rho\nu})$	$\mathcal{O}_{H\widetilde{W}B}$	$\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}(H^{\dagger}\sigma^{I}H)$	\mathcal{O}_H	$(H^{\dagger}H)^3$	
		H^2XD^2				
		\mathcal{O}_{WDH}	$D_{\nu}W^{I\mu\nu}(H^{\dagger}i\overrightarrow{D}_{\mu}^{I}H)$			
		\mathcal{O}_{BDH}	$\partial_{\nu}B^{\mu\nu}(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)$			

$$D_{\mu} = \partial_{\mu} - ig' B_{\mu}$$
 $g' \to g'$ $c_{HB} \to c_{HB}$

$$m_0^2 \to m_0^2$$
 $\lambda \to \lambda - 2m_0^2 r'_{HD}$
 $c_{H^4D^4}^{(1)} \to 2r_{BDH}^2$
 $c_{H^4D^4}^{(2)} \to -2r_{BDH}^2$
 $c_{H^4D^4}^{(3)} \to 0$
 $c_{H\Box} \to c_{H\Box} + \frac{1}{2}g'r_{BDH} + \frac{1}{2}r'_{HD}$

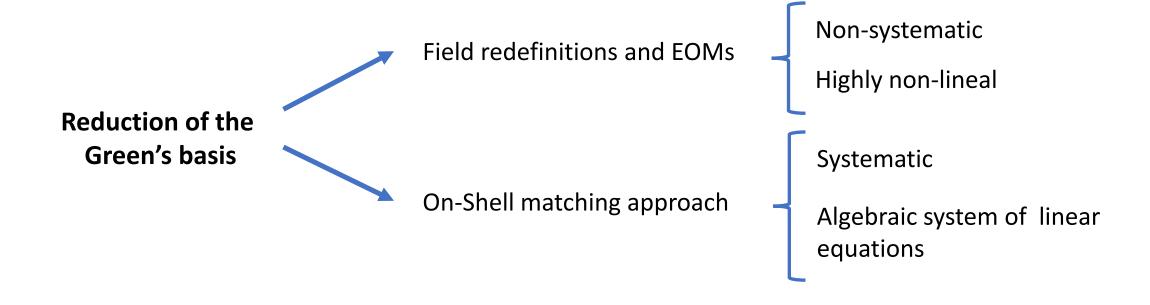
 $c_{HD} \rightarrow c_{HD} + 2g' r_{BDH}$

X^3		X^2H^2		H^2D^4	
\mathcal{O}_{3G}	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_{HG}	$G^{A}_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$ $\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{DH}	$(D_{\mu}D^{\mu}H)^{\dagger}(D_{\nu}D^{\nu}H)$
$\mathcal{O}_{\widetilde{3G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$\mathcal{O}_{H\widetilde{G}}$	$\widetilde{G}_{\mu\nu}^{A}G^{A\mu\nu}(H^{\dagger}H)$		H^4D^2
\mathcal{O}_{3W}	$\epsilon^{IJK}W_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$	\mathcal{O}_{HW}	$W^{I}_{\mu\nu}W^{I\mu\nu}(H^{\dagger}H)$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$
$\mathcal{O}_{\widetilde{3W}}$	$\epsilon^{IJK}\widetilde{W}_{\mu}^{I u}W_{\nu}^{J ho}W_{ ho}^{K\mu}$	$\mathcal{O}_{H\widetilde{W}}$	$\widetilde{W}_{\mu\nu}^{I}W^{I\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}	$ (H^{\dagger}D^{\mu}H)^{\dagger}(H^{\dagger}D_{\mu}H) $
X^2D^2		\mathcal{O}_{HB}	$B_{\mu\nu}B^{\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}'	$(H^{\dagger}H)(D_{\mu}H)^{\dagger}(D^{\mu}H)$
\mathcal{O}_{2G}	$-\frac{1}{2}(D_{\mu}G^{A\mu\nu})(D^{\rho}G^{A}_{\rho\nu})$	$\mathcal{O}_{H\widetilde{B}}$	$\widetilde{B}_{\mu\nu}B^{\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}''	$(H^{\dagger}H)D_{\mu}(H^{\dagger}i\overrightarrow{D}^{\mu}H)$
\mathcal{O}_{2W}	$-\frac{1}{2}(D_{\mu}W^{I\mu\nu})(D^{\rho}W^{I}_{\rho\nu})$	\mathcal{O}_{HWB}	$W^{I}_{\mu\nu}B^{\mu\nu}(H^{\dagger}\sigma^{I}H)$		H^6
\mathcal{O}_{2B}	$-\frac{1}{2}(\partial_{\mu}B^{\mu\nu})(\partial^{\rho}B_{\rho\nu})$	$\mathcal{O}_{H\widetilde{W}B}$	$\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}(H^{\dagger}\sigma^{I}H)$	\mathcal{O}_H	$(H^{\dagger}H)^3$
		H^2XD^2			
		\mathcal{O}_{WDH}	$D_{\nu}W^{I\mu\nu}(H^{\dagger}i\overrightarrow{D}_{"}^{I}H)$		
		\mathcal{O}_{BDH}	$\partial_{\nu}B^{\mu\nu}(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)$		

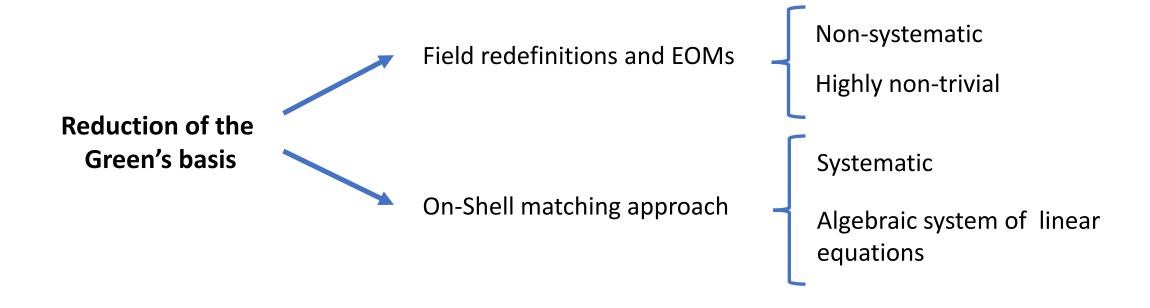


Fermions

Notice that ...



Notice that ...



The reduction of ANY theory to ANY physical basis will be completely AUTOMATIC

Universidad de Granada

THANKS FOR YOUR ATTENTION!

Generation of random momenta

$$SL(2,\mathbb{C}) \cong SU(2)_L \times SU(2)_R$$

$$\begin{cases} \lambda \in SU(2)_L \\ \tilde{\lambda} \in SU(2)_R \end{cases} \qquad \lambda^{\alpha} = \varepsilon^{\alpha\beta} \lambda_{\beta} \\ \tilde{\lambda}_{\dot{\alpha}} = \varepsilon_{\dot{\alpha}\dot{\beta}} \tilde{\lambda}^{\dot{\beta}} \end{cases}$$

Massless momenta :
$$P_{lpha\dot{lpha}}=\lambda_{lpha} ilde{\lambda}_{\dot{lpha}}$$

Massive momenta :
$$P^\mu:=q^\mu+rac{m^2}{2q\cdot k}k^\mu$$
 $q^2,k^2=0$ $q_{\alpha\dot{lpha}}=\lambda_\alpha\dot{\lambda}_{\dot{lpha}}$ $k_{\alpha\dot{lpha}}=\mu_\alpha ilde{\mu}_{\dot{lpha}}$

Evanescent operators

$$\mathcal{R} = \alpha \mathcal{O}$$
 $d = 4 - 2\epsilon$

$$IR^{(0)} + IR^{(1)} = UV^{(0)} + UV^{(1)}$$

$$IR^{(0)} + IR^{(1)}_{soft} = UV^{(0)} + UV^{(1)}_{hard} + UV^{(1)}_{soft}$$
We take the hard region

$$\int \mathcal{O} = \frac{1}{\epsilon} (a + b_{\mathcal{O}} \epsilon) \qquad \qquad \int \mathcal{R} = \frac{1}{\epsilon} (a + b_{\mathcal{R}} \epsilon)$$

$$\int \mathcal{R} = \frac{1}{\epsilon} (a + b_{\mathcal{R}} \epsilon)$$

 $\mathcal{R} = \alpha \mathcal{O} + \mathcal{E}$

Additional finite local contributions in loop amplitudes

$$\int \mathcal{R} - \mathcal{O} = \frac{1}{\epsilon} (b_{\mathcal{R}} \epsilon - b_{\mathcal{O}} \epsilon) = b$$

$$\frac{i}{p^2 - m^2 - \Pi(p^2)} = \frac{iZ}{p^2 - m_{phys}^2} + \dots,$$

$$p^2 - m^2 - \Pi(p^2)\Big|_{p^2 - m_{phys}^2} = 0$$

$$\Pi(p^2) = \Pi(m_{phys}^2) + \Pi'(m_{phys}^2)(p^2 - m_{phys}^2) + \dots$$

$$\begin{split} \frac{i}{p^2 - m^2 - \Pi(p^2)} &= \frac{i}{p^2 - m^2 - \left(\Pi(m_{phys}^2) + \Pi'(m_{phys}^2)(p^2 - m_{phys}^2) + \ldots\right)} \\ &= \frac{i}{\left(p^2 - m_{phys}^2\right)\left(1 - \Pi'(m_{phys}^2) + \ldots\right)} \backsim \frac{i\left(1 - \Pi'(m_{phys}^2)\right)^{-1}}{\left(p^2 - m_{phys}^2\right)} \end{split}$$